
PerlClass.com's
Perl Training Materials

Christopher Hicks
and

Kirrily Robert

PerlClass.com for ACT Students 20-23 Feb 2007 1

Perl Training Materials
by Christopher Hicks

Copyright ©

1999-2000, Netizen Pty Ltd

2000 by Kirrily Robert

2001-2007 by Christopher Hicks

License

This book is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License version 2as published by the Free Software..
This book is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with this
book; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
Boston, MA 02110-1301 USA or go to http://www.gnu.org/ .

This book was based on material under the Open Publications License available at
http://www.content.org/openpub/ .

File and Version Info

02/15/07 12:10:35 PM 397 pages

C:\Documents and Settings\Administrator\My Documents\perlClass\perlClass-0.49.odt

2 PerlClass.com for ACT Students 20-23 Feb 2007

Table of ContentsTable of Contents

Chapter 1: Introduction.. 17
1.1 Assumed knowledge.. 18
1.2 Day 1 rough outline... 19
1.3 Day 1 objectives...20
1.4 Day 2 outline..21
1.5 Day 2 objectives...23
1.6 Day 3 outline..24
1.7 Day 3 objectives...25
1.8 Day 4 outline..26
1.9 Day 4 objectives...27
1.10 Other topics we can discuss... 28
1.11 Platform and version details.. 29
1.12 The course notes.. 30
1.13 Other materials...32

Chapter 2: What is Perl.. 33
2.1 Perl's name... 34
2.2 Typical uses of Perl..35

2.2.1 Text processing...35
2.2.2 System administration tasks... 35
2.2.3 CGI and web programming.. 35
2.2.4 Database interaction..35
2.2.5 Other Internet programming... 35
2.2.6 Less typical uses of Perl... 35

2.3 What is Perl like?...36

PerlClass.com for ACT Students 20-23 Feb 2007 3

2.4 The Perl Philosophy...37
2.4.1 There's more than one way to do it...37
2.4.2 A correct Perl program... 37
2.4.3 Three virtues of a programmer... 37

2.4.3.1 Laziness... 37
2.4.3.2 Impatience..38
2.4.3.3 Hubris.. 38

2.4.4 Three more virtues..38
2.4.5 Share and enjoy!... 38

2.5 Parts of Perl..40
2.5.1 The Perl interpreter... 40
2.5.2 Manuals...40
2.5.3 Perl Modules...40

2.6 Chapter summary...41

Chapter 3: Creating and running a Perl program... 43
3.1 Logging into your account...44
3.2 Using perldoc...45
3.3 Using the editor..56
3.4 Our first Perl program..57
3.5 Running a Perl program from the command line.. 58
3.6 The "shebang" line...59
3.7 Comments.. 60
3.8 Command line options...61
3.9 Chapter summary...62

Chapter 4: Perl variables... 63
4.1 What is a variable?...64
4.2 Variable names.. 65
4.3 Variable scoping and the strict pragma..66

4.3.1 Arguments in favour of strictness...66
4.3.2 Arguments against strictness.. 66

4.4 Using the strict pragma.. 68
4.5 Scalars..69
4.6 Double and single quotes...71

4.6.1 Exercises... 72
4.7 Arrays...73

4.7.1 A quick look at context...75
4.7.2 What's the difference between a list and an array?...76
4.7.3 Exercises... 76

4 PerlClass.com for ACT Students 20-23 Feb 2007

4.7.4 Advanced exercises.. 76
4.8 Hashes..77

4.8.1 Initialising a hash..77
4.8.2 Reading hash values... 78
4.8.3 Adding new hash elements... 78
4.8.4 Other things about hashes...78
4.8.5 What's the difference between a hash and an associative array?....................79
4.8.6 Exercises... 79

4.9 Special variables.. 80
4.10 The first special variable, $_..81

4.10.1.1 Exercises.. 81
4.11 @ARGV - a special array.. 82

4.11.1.1 Exercises.. 82
4.12 %ENV - a special hash.. 83

4.12.1.1 Exercises.. 83
4.13 Chapter summary...84

Chapter 5: Operators and functions... 87
5.1 What are operators and functions?...88
5.2 Arithmetic operators.. 89
5.3 String operators..90

5.3.1 Exercises... 90
5.4 File operators... 91
5.5 Other operators.. 92
5.6 Functions..93

5.6.1 Types of arguments...93
5.6.2 Return values.. 94

5.7 More about context.. 95
5.8 String manipulation..96

5.8.1.1 Finding the length of a string...96
5.8.1.2 Case conversion... 96
5.8.1.3 chop() and chomp()..96
5.8.1.4 String substitutions with substr()... 97

5.9 Numeric functions..98
5.10 Type conversions... 99
5.11 Manipulating lists and arrays...100

5.11.1 Stacks and queues... 100
5.11.2 Sorting lists... 101
5.11.3 Converting lists to strings, and vice versa.. 101

5.12 Hash processing... 102

PerlClass.com for ACT Students 20-23 Feb 2007 5

5.13 Reading and writing files...103
5.14 Time... 104
5.15 Exercises.. 105
5.16 Chapter summary...106

Chapter 6: Conditional constructs.. 107
6.1 What is a block?...108
6.2 Scope..109
6.3 What is a conditional statement?... 110
6.4 What is truth?...111
6.5 Comparison operators.. 112

6.5.1 Existence and Defined-ness..113
6.5.2 Boolean logic operators.. 115
6.5.3 Using boolean logic operators as short circuit operators..............................116

6.6 Types of conditional constructs... 118
6.6.1 if statements.. 118
6.6.2 while loops..119
6.6.3 for and foreach..119
6.6.4 Exercises... 120

6.7 Practical uses of while loops: taking input from STDIN.....................................121
6.8 Best practices template for file manipulation.. 123
6.9 Named blocks.. 124
6.10 Breaking out of loops...125
6.11 Chapter summary...126

Chapter 7: Subroutines.. 127
7.1 Introducing subroutines... 128
7.2 Calling a subroutine... 129
7.3 Passing arguments to a subroutine...130
7.4 Returning values from a subroutine...131
7.5 Exercises.. 132
7.6 Chapter summary...133

Chapter 8: Regular expressions.. 135
8.1 What are regular expressions?... 136
8.2 Regular expression operators and functions.. 137

8.2.1 m/PATTERN/ - the match operator..137
8.2.2 s/PATTERN/REPLACEMENT/ - the substitution operator........................ 137

8.3 Binding operators...139
8.4 Metacharacters... 140

6 PerlClass.com for ACT Students 20-23 Feb 2007

8.4.1 Some easy metacharacters.. 140
8.5 Quantifiers... 142
8.6 Greediness..143
8.7 Exercises.. 144
8.8 Character classes..145

8.8.1 Exercises as a group..145
8.9 Alternation... 146
8.10 The concept of atoms...147
8.11 Exercises.. 148
8.12 split() function..149
8.13 Exercises.. 150
8.14 Chapter summary...151

Chapter 9: Practical exercises... 153
9.1 Exercises.. 154

Chapter 10: File I/O.. 155
10.1 Assumed knowledge.. 156
10.2 Angle brackets - the line input and globbing operators..................................... 157

10.2.1 Exercises... 159
10.2.1.1 Advanced exercises... 159

10.3 open() and friends - the gory details.. 160
10.3.1 Opening a file for reading, writing or appending....................................... 160

10.3.1.1 Exercises.. 162
10.3.2 Reading directories... 162

10.3.2.1 Exercises.. 163
10.3.3 Opening files for simultaneous read/write..163

10.3.3.1 Exercises.. 164
10.3.4 Opening pipes... 164

10.3.4.1 Exercises.. 166
10.4 Finding information about files... 167

10.4.1 Exercises... 168
10.5 Recursing down directories... 170

10.5.1 Exercises... 171
10.6 File locking.. 172
10.7 Handling binary data..173
10.8 Chapter summary...175

PerlClass.com for ACT Students 20-23 Feb 2007 7

Chapter 11: Advanced regular expressions... 177
11.1 Assumed knowledge.. 178
11.2 Review exercises..179
11.3 More metacharacters..180
11.4 Working with multiline strings.. 181

11.4.1 Exercises... 183
11.5 Regexp modifiers for multiline data.. 184
11.6 Backreferences...186

11.6.1 Special variables... 186
11.7 Exercises.. 188

11.7.1 Advanced.. 188
11.8 Section summary..189

Chapter 12: More functions.. 191
12.1 The grep() function.. 192

12.1.1 Exercises... 193
12.2 The map() function.. 194

12.2.1 Exercises... 194
12.3 Chapter summary...195

Chapter 13: System interaction.. 197
13.1 system() and exec()..198

13.1.1 Exercises... 198
13.2 Using backticks..199

13.2.1 Exercises... 200
13.3 Platform dependency issues...201
13.4 Security considerations.. 202

13.4.1 Exercises... 203
13.5 Section summary..204

Chapter 14: References and data structures... 205
14.1 Assumed knowledge.. 206
14.2 Introduction to references.. 207
14.3 Uses for references...208

14.3.1 Creating complex data structures..208
14.3.2 Passing arrays and hashes to subroutines and functions.............................208
14.3.3 Object oriented Perl.. 208

14.4 Creating and dereferencing references.. 209
14.5 Passing multiple arrays/hashes as arguments.. 212

8 PerlClass.com for ACT Students 20-23 Feb 2007

14.6 Complex data structures...213
14.7 Anonymous data structures..214
14.8 Exercises.. 216
14.9 Section summary..217

Chapter 15: About databases.. 219
15.1 What is a database?..220
15.2 Types of databases... 221
15.3 Database management systems..222
15.4 Uses of databases... 223
15.5 Chapter summary...224

Chapter 16: Textfiles as databases... 225
16.1 Delimited text files...226

16.1.1 Reading delimited text files.. 226
16.1.2 Searching for records..227
16.1.3 Sorting records..228
16.1.4 Writing to delimited text files...229

16.2 Comma-separated variable (CSV) files... 231
16.3 Problems with flat file databases... 232

16.3.1 Locking... 232
16.3.2 Complex data.. 232
16.3.3 Efficiency..232

16.4 Chapter summary...233

Chapter 17: Relational databases.. 235
17.1 Tables and relationships...236
17.2 Structured Query Language... 239

17.2.1 General syntax.. 239
17.2.1.1 SELECT...240
17.2.1.2 INSERT... 240
17.2.1.3 DELETE.. 241
17.2.1.4 UPDATE..241
17.2.1.5 CREATE..241
17.2.1.6 DROP...242

17.3 Chapter summary...243

Chapter 18: MySQL... 245
18.1 MySQL features...246

PerlClass.com for ACT Students 20-23 Feb 2007 9

18.1.1 General features.. 246
18.1.2 Cross-platform compatibility..246

18.2 Comparisions with other popular DBMSs...247
18.2.1 PostgreSQL...247
18.2.2 Oracle, Sybase, etc..247

18.3 Getting MySQL... 248
18.3.1 Red Hat Linux...248
18.3.2 Debian Linux.. 248
18.3.3 Compiling from source... 248
18.3.4 Binaries for other platforms..248

18.4 Setting up MySQL databases...249
18.4.1 Creating the Acme inventory database... 249
18.4.2 Setting up permissions..250
18.4.3 Creating tables.. 250

18.5 The MySQL client... 253
18.6 Understanding the MySQL client prompts..255
18.7 Exercises.. 256
18.8 Chapter summary...257

Chapter 19: The DBI and DBD modules.. 259
19.1 What is DBI?... 260
19.2 Supported database types...261
19.3 How does DBI work?.. 262
19.4 DBI/DBD syntax..263

19.4.1 Variable name conventions...263
19.5 Connecting to the database.. 264
19.6 Executing an SQL query..265
19.7 Doing useful things with the data.. 266
19.8 An easier way to execute non-SELECT queries..267
19.9 Quoting special characters in SQL.. 268
19.10 Exercises.. 269

19.10.1 Advanced exercises.. 269
19.11 Chapter summary...270

Chapter 20: Acme Widget Co. Exercises... 271
20.1 The Acme inventory application..272
20.2 Listing stock items...273

20.2.1 Advanced exercises:... 274
20.3 Adding new stock items...275

20.3.1 Advanced exercises.. 275

10 PerlClass.com for ACT Students 20-23 Feb 2007

20.4 Entering a sale into the system.. 276
20.5 Creating sales reports...277

20.5.1 Advanced exercises.. 277
20.6 Searching for stock items...278

20.6.1 Advanced exercises.. 278

Chapter 21: References... 279
21.1 Uses for Perl references... 280
21.2 Creating and deferencing... 281
21.3 Complex data structures...283
21.4 Passing multiple arrays/hashes as arguments.. 284
21.5 Anonymous data structures..285
21.6 Chapter summary...286

Chapter 22: What is CGI?.. 287
22.1 Definition of CGI...288
22.2 Introduction to HTTP...289
22.3 Terminology...291
22.4 HTTP status codes... 293
22.5 HTTP Methods.. 294

22.5.1.1 GET..294
22.5.1.2 HEAD.. 294
22.5.1.3 POST..294

22.6 Exercises.. 295
22.7 What is needed to run CGI programs?...297
22.8 Chapter summary...298

Chapter 23: Generating web pages with Perl.. 299
23.1 Your public_html directory... 300
23.2 The CGI directory..301
23.3 The HTTP headers... 302
23.4 HTML output...303
23.5 Running and debugging CGI programs... 304

23.5.1 Exercises... 304
23.6 Quoting made easy...305

23.6.1 Here documents.. 305
23.7 Pick your own quotes...306
23.8 Exercises.. 307
23.9 Environment variables... 308

PerlClass.com for ACT Students 20-23 Feb 2007 11

23.9.1 Exercises... 308
23.10 Chapter summary...309

Chapter 24: Processing form input.. 311
24.1 A quick look at HTML forms.. 312
24.2 The FORM element... 313
24.3 Input fields... 314

24.3.1 TEXT.. 314
24.3.2 CHECKBOX.. 314
24.3.3 SELECT..314
24.3.4 SUBMIT... 314

24.4 The CGI module.. 315
24.4.1 What is a module?.. 315
24.4.2 Using the CGI module.. 316
24.4.3 Accepting parameters with CGI... 316
24.4.4 Debugging with the CGI module's offline mode..317
24.4.5 Exercises... 317

24.5 Practical Exercise: Data validation.. 318
24.5.1 Exercises... 318

24.6 Practical Exercise: Multi-form "Wizard" interface..319
24.6.1 Exercises... 322

24.7 Practical Exercise: File upload.. 323
24.8 Chapter summary...325

Chapter 25: Security issues... 327
25.1 Authentication and access control for CGI scripts.. 328

25.1.1 Why is CGI authentication a bad idea?.. 328
25.2 HTTP authentication..329
25.3 Access control..330

25.3.1 Exercises... 330
25.4 Tainted data..331

25.4.1 Exercises... 332
25.5 cgiwrap...333
25.6 Secure HTTP..334
25.7 Chapter summary...335

Chapter 26: Other related Perl modules.. 337
26.1 Useful Perl modules...338
26.2 Failing gracefully with CGI::Carp...339

26.2.1 Exercise...340

12 PerlClass.com for ACT Students 20-23 Feb 2007

26.3 Encoding URIs with URI::Escape... 341
26.3.1 Exercise...341

26.4 Creating templates with Text::Template..342
26.4.1 Introduction to object oriented modules... 342
26.4.2 Using the Text::Template module.. 342
26.4.3 Exercise...343

26.5 Sending email with Mail::Mailer...344
26.5.1 Exercises... 345

26.6 Chapter Summary.. 346

Chapter 27: Con-clusion.. 347
27.1 Day 1: What you've learned...348
27.2 Day 2: What you've learned...349
27.3 Day 3: What you've learned...350
27.4 Day 4: What you've learned...351
27.5 Where to now?... 352
27.6 Further reading...353

27.6.1 Books.. 353
27.6.2 Online... 353

Chapter 28: Win32::EventLog.. 355
28.1 Win32::EventLog Examples..356
28.2 Win32::EventLog Reference... 358

28.2.1 The EventLog Object and its Methods... 358
28.2.2 Other Win32::EventLog functions... 361

Chapter 29: Win32::NetAdmin... 363
29.1 Example... 364
29.2 Win32::NetAdmin provided functions.. 366

Chapter 30: Other Perl Win32 Modules... 371
30.1 Win32::NetResource..372

30.1.1 Examples...372
30.1.2 Data Types.. 373

30.1.2.1 %NETRESOURCE... 373
30.1.2.2 %SHARE_INFO ...374

30.1.3 Functions...374
30.2 Win32::Service.. 378

30.2.1 Examples...378

PerlClass.com for ACT Students 20-23 Feb 2007 13

30.2.2 Functoins...379
30.3 Win32::Sound.. 380

30.3.1 Quick Sample..380

Chapter 31: *NIX cheat sheet.. 381
31.1 Some UNIX commands... 382

Chapter 32: Editor cheat sheet.. 383
32.1 vi.. 384

32.1.1 Running...384
32.1.2 Using...384
32.1.3 Exiting...384
32.1.4 Gotchas... 384
32.1.5 Help...385

32.2 pico...386
32.2.1 Running...386
32.2.2 Using...386
32.2.3 Exiting...386
32.2.4 Gotchas... 386
32.2.5 Help...386

32.3 joe...387
32.3.1 Running...387
32.3.2 Using...387
32.3.3 Exiting...387
32.3.4 Gotchas... 387
32.3.5 Help...387

32.4 jed...388
32.4.1 Running...388
32.4.2 Using...388
32.4.3 Exiting...388
32.4.4 Gotchas... 388
32.4.5 Help...388

Chapter 33: ASCII Pronunciation Guide.. 389

Chapter 34: HTML Cheat Sheet.. 391

Chapter 35: Acknowledgements.. 395
35.1 Folks...396
35.2 Projects...397

14 PerlClass.com for ACT Students 20-23 Feb 2007

PerlClass.com for ACT Students 20-23 Feb 2007 15

Chapter 1: Chapter 1: IntroIntro
ductionduction

This chapter will...

Welcome to PerlClass.com's Perl training module. This is a training
course in which you will learn how to program in the Perl program
ming language.

1 Introduction

1.1 Assumed knowledge
To gain the most from this course, you should:
• Be able to use the UNIX operating system

• Move around the file system
• Create and edit files
• Run programs

• Have programmed in least one other language and
• Understand variables, including data types and arrays
• Understand conditional and looping constructs
• Understand the use of subroutines and/or functions

• Basic database theory - tables, records, fields
• Basic HTML - paragraphs, headings, ordered and unordered lists, anchor

tags, images, etc.
If you need help with editing files under UNIX, a cheat-sheet is available in
Appendix A and an editor command summary in Appendix B.

The UNIX operating system commands you will need are mentioned and ex
plained very briefly throughout the course - please feel free to ask if you need
more help. The required Perl knowledge was covered in PerlClass.com's "Intro
duction to Perl" course, which many of you will have attended recently. Lastly,
an HTML cheat-sheet is provided in Appendix D for those who need remind
ing.

18 PerlClass.com for ACT Students 20-23 Feb 2007

Introduction 1

1.2 Day 1 rough outline
• What is Perl? (30 minutes)
• Creating and running a Perl program (45 minutes)
• Morning tea (15 minutes)
• Variable types (45 minutes)
• Operators and Functions (60 minutes)
• Lunch break (60 minutes)
• Conditional constructs (45 minutes)
• Subroutines (30 minutes)
• Afternoon tea (15 minutes)
• Regular expressions (45 minutes)
• Practical exercises (until finish)

PerlClass.com for ACT Students 20-23 Feb 2007 19

1 Introduction

1.3 Day 1 objectives
• Understand the history and philosophy behind the Perl programming

language
• Know where to find additional information about Perl
• Write simple Perl scripts and run them from the UNIX command line
• Use Perl's command line options to enable warnings
• Understand Perl's three main data types and how to use them
• Use Perl's strict pragma to enforce lexical scoping and better coding
• Understand Perl's most common operators and functions and how to use them
• Understand and use Perl's conditional and looping constructs
• Understand and use subroutines in Perl
• Understand and use simple regular expressions for matching and substitution

20 PerlClass.com for ACT Students 20-23 Feb 2007

Introduction 1

1.4 Day 2 outline
• Revise introduction to Perl material
• File I/O

• Line input and globbing operators
• Opening files, directories, and pipes
• Finding information about files
• Recursing down directories
• File locking
• Handling binary data

• Advanced regular expressions
• Review of basic regexps
• Multiline strings
• Backreferences

• More functions
• grep() and map() functions
• printf() and sprintf()
• pack() and unpack()
• List manipulation with splice()

• System interaction
• system() and exec()
• Backticks
• Interacting with the file system
• Dealing with users, groups and permissions
• Interacting with processes
• Security considerations

• References and complex data structures
• Creating and dereferencing
• Complex data structures

PerlClass.com for ACT Students 20-23 Feb 2007 21

1 Introduction

• Anonymous data structures

22 PerlClass.com for ACT Students 20-23 Feb 2007

Introduction 1

1.5 Day 2 objectives
• Be able to open files and directories to read and write data, using various

techniques
• Perform tests on files and directories
• Open pipes to read or write data through another program
• Use regular expressions to handle multiline data
• Use backreferences to create complex regular expressions
• Use and understand more complex Perl functions such as grep() and map()
• Use Perl functions to call system commands
• Use Perl to interact with the file system, users, and processes
• Understand the security implications of running system commands from Perl,

and how to increase security
• Understand and use Perl references to create complex data structures and

anonymous data structures

PerlClass.com for ACT Students 20-23 Feb 2007 23

1 Introduction

1.6 Day 3 outline
• About databases
• Text based ("flat file") databases
• Relational databases
• Tables and relationships
• Structured Query Language (SQL)
• MySQL and other database servers
• Features of MySQL
• Getting MySQL
• Setting up MySQL databases
• The MySQL client
• The DBI and DBD modules
• What is DBI?
• DBI syntax
• DBI exercises
• Extended exercises
• References (optional topic)

24 PerlClass.com for ACT Students 20-23 Feb 2007

Introduction 1

1.7 Day 3 objectives
• Understand what a database is and use correct terminology to describe types

of databases and parts of databases
• Understand and use flat file or textual databases with Perl
• Understand the advantages and limitations of flat file or textual databases and

relational databases
• Understand and use Structured Query Language (SQL) to manipulate data in

a relational database
• Know about MySQL and other relational databases suitable for small to

medium applications
• Use the MySQL command line client to perform SQL queries
• Understand and use Perl's DBI module to interact with databases
• Use the skills and knowledge learned in this module to create a sample

application

PerlClass.com for ACT Students 20-23 Feb 2007 25

1 Introduction

1.8 Day 4 outline
• What is CGI? (60 minutes)
• Generating web pages with a Perl script (45 minutes)
• Practical exercises (45 minutes)
• Accepting and processing form input with the CGI module (60 minutes)
• Lunch break
• Practical examples (60 minutes)
• Security issues (45 minutes)
• Other related features and Perl modules (60+ minutes)

26 PerlClass.com for ACT Students 20-23 Feb 2007

Introduction 1

1.9 Day 4 objectives
• Understand the meaning of CGI and the HyperText Transfer Protocol (http)
• Know how to generate simple web pages using Perl
• Understand how to accept and process data from web forms using the CGI

module
• Understand security issues pertaining to CGI programming and how to avoid

security problems
• Recognise and use a number of Perl modules for purposes related to CGI

programming

PerlClass.com for ACT Students 20-23 Feb 2007 27

1 Introduction

1.10 Other topics we can discuss
• Win32 – Perl programming in Windows

• XML – there seems to be a lot of XML data lately

• Tk – GUI toolkit

• mod_perl – Perl integration with apache

• Inline – seamless inclusion of non-Perl in Perl

• Data::Dumper – a convenient way to print out complex data structures

• DBIx::Class – a friendy OOP-style layer on top of DBI

• Storable – persistance of complex Perl object across processes, systems, etc.

• ???

• ???

• ???

28 PerlClass.com for ACT Students 20-23 Feb 2007

Introduction 1

1.11 Platform and version details
This course is taught using Linux, a UNIX-like operating system. Most of what
is learned will work equally well on Microsoft Windows, MacOS or other oper
ating systems. Your instructor will inform you throughout the course of any ar
eas which differ.
All PerlClass.com's Perl training courses use Perl 5.8. Perl 5 is the most recent
major release of the Perl language. Perl 5 differs significantly from previous
versions of Perl, so you will need a Perl 5 interpreter to use what you learn.
However, nearly all older Perl programs should work fine under Perl 5.

PerlClass.com for ACT Students 20-23 Feb 2007 29

1 Introduction

1.12 The course notes
These course notes contain material which will guide you through the topics
listed above, as well as appendices containing other useful information.
The following typographical conventions are used in these notes:
System commands appear in this typeface
Literal text which you should type in to the command line or editor appears as
monospaced font.
Keystrokes which you should type appear like this: ENTER. Combinations of
keys appear like this: CTRL-D

Program listings and other literal listings of what appears on the

screen appear in a monospaced font like this.

Parts of commands or other literal text which should be replaced by your own
specific values appears like this

Notes and tips appear offset from the text like this.

30 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Notes marked with "RTFM!" are pointers to more
information which can be found in your textbook or in
online documentation such as manual pages or websites.

Advanced
Notes which are marked "Advanced" are for those who are
racing ahead or who already have some knowledge of the
topic at hand. The information contained in these notes is not
essential to your understanding of the topic, but may be of
interest to those who want to extend their knowledge.

Introduction 1

PerlClass.com for ACT Students 20-23 Feb 2007 31

RTFM!
Src Chap Pgs #

Nutshell 2nd Perl in a Nutshell
Camel 2nd Programming Perl
Camel 3rd Programming Perl
perldoc perldoc online

Cookbook 2nd Perl Cookbook
Learning 3rd Learning Perl
Learning 4th Learning Perl

Most RTFM boxes will appear with a table like this. The
"src" column refers to a variety of standard Perl references.
"Chap" is the chapter which for electronic contexts like man
and perldoc would refer to the "man page" or "whole pod".

1 Introduction

1.13 Other materials
In addition to these notes, you should have a copy of the required text book for
this course: Perl in a Nutshell 2nd Ed. by Nathan Patwardhan, Ellen Siever and
Stephen Spainhour. The Nutshell will be used throughout the course, and will
be a valuable reference to take home and keep next to your computer.

32 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 2: Chapter 2: What isWhat is
PerlPerl

In this chapter...

This section describes Perl and its uses. You will learn about this his
tory of Perl, the main areas in which it is commonly used, and a little
about the Perl community and philosophy. Lastly, you will find out
how to get Perl and what software comes as part of the Perl distribu
tion.

2 What is Perl

2.1 Perl's name
Perl has been said to stand for "Practical Extraction and Reporting Language"
(by it's fans) or "Pathologically Eclectic Rubbish Lister" (by its detractors). In
fact, Perl is not an acronym; it's a shortened version of the program's original
name, "pearl", and when you're talking about the language it's spelled with a
capital "P" and lowercase "erl", not all capitals as is sometimes seen (especially
in job advertisements posted by contract agencies). When you're talking about
the Perl interpreter, it's spelled in all lower case: perl.
Perl has been described as everything from "line noise" to "the Swiss-army
chainsaw of programming languages". The latter of these nicknames gives
some idea of how programmers see Perl - as a very powerful tool that does just
about everything.

34 PerlClass.com for ACT Students 20-23 Feb 2007

What is Perl 2

2.2 Typical uses of Perl

2.2.1 Text processing
Perl's original main use was text processing. It is exceedingly powerful in this
regard, and can be used to manipulate textual data, reports, email, news articles,
log files, or just about any kind of text, with great ease.

2.2.2 System administration tasks
System administration is made easy with Perl. It's particularly useful for tying
together lots of smaller scripts, working with file systems, networking, and so
on.

2.2.3 CGI and web programming
Since HTML is just text with built-in formatting, Perl can be used to process
and generate HTML. Perl is probably the most popular language around for
web development, and there are many tools and scripts available for free.

2.2.4 Database interaction
Perl's DBI module makes interacting with all kinds of databases --- from Oracle
down to comma-separated variable files --- easy and portable. Perl is increas
ingly being used to write large database applications, especially those which
provide a database back end to a website.

2.2.5 Other Internet programming
Perl modules are available for just about every kind of Internet programming,
from Mail and News clients, interfaces to IRC and ICQ, right down to lower
level Socket programming.

2.2.6 Less typical uses of Perl
Perl is used in some unusual places as well. The Human Genome Project relies
on Perl for DNA sequencing, NASA uses Perl for satellite control, PDL (Perl
Data Language, pron. "piddle") makes number-crunching easy, and there is
even a Perl Object Environment (POE) which is used for event-driven state ma
chines.

PerlClass.com for ACT Students 20-23 Feb 2007 35

2 What is Perl

2.3 What is Perl like?
The following (somewhat paraphrased) article, entitled "What is Perl", comes
from The Perl Journal (http://www.tpj.com/) (Used with permission.)

Perl is a general purpose programming language developed in 1987 by Larry Wall. It has become
the language of choice for WWW development, text processing, Internet services, mail filtering,
graphical programming, and every other task requiring portable and easily-developed solutions.

Perl is interpreted. This means that as soon as you write your program, you can run it - there's no
mandatory compilation phase. The same Perl program can run on UNIX, Windows, NT, MacOS,
DOS, OS/2, VMS and the Amiga.

Perl is collaborative. The CPAN software archive contains free utilities written by the Perl commu
nity, so you save time.

Perl is free. Unlike most other languages, Perl is not proprietary. The source code and compiler are
free, and will always be free.

Perl is fast. The Perl interpreter is written in C, and a decade of optimizations have resulted in a fast
executable.

Perl is complete. The best support for regular expressions in any language, internal support for hash
tables, a built-in debugger, facilities for report generation, networking functions, utilities for CGI
scripts, database interfaces, arbitrary-precision arithmetic - are all bundled with Perl.

Perl is secure. Perl can perform "taint checking" to prevent security breaches. You can also run a
program in a "safe" compartment to avoid the risks inherent in executing unknown code.

Perl is open for business. Thousands of corporations rely on Perl for their information processing
needs.

Perl is simple to learn. Perl makes easy things easy and hard things possible. Perl handles tedious
tasks for you, such as memory allocation and garbage collection.

Perl is concise. Many programs that would take hundreds or thousands of lines in other program
ming languages can be expressed in a pageful of Perl.

Perl is object oriented. Inheritance, polymorphism, and encapsulation are all provided by Perl's ob
ject oriented capabilities.

Perl is flexible The Perl motto is "there's more than one way to do it." The language doesn't force a
particular style of programming on you. Write what comes naturally.

Perl is fun. Programming is meant to be fun, not only in the satisfaction of seeing our well-tuned
programs do our bidding, but in the literary act of creative writing that yields those programs. With
Perl, the journey is as enjoyable as the destination.

36 PerlClass.com for ACT Students 20-23 Feb 2007

What is Perl 2

2.4 The Perl Philosophy

2.4.1 There's more than one way to do it
The Perl motto is "there's more than one way to do it" - often abbreviated TM
TOWTDI. What this means is that for any problem, there will be multiple ways
to approach it using Perl. Some will be quicker, more elegant, or more readable
than others, but that doesn't make them wrong.

2.4.2 A correct Perl program...
"... is one that does the job before your boss fires you." That's in the preface to
the Camel book, which is highly recommended reading.
Of course, some Perl programs are more correct than others, but while elegance
is a fine thing to strive for, most Perl people realize that sometimes you just
have to write a quick and dirty hack that'll keep things running for the mean
time. If you get the time to make it beautiful later, so much the better.

2.4.3 Three virtues of a programmer
The Camel book contains the following entries in its glossary:

2.4.3.1 Laziness

PerlClass.com for ACT Students 20-23 Feb 2007 37

2 What is Perl

The quality that makes you go to great effort to reduce overall energy expendi
ture. It makes you write labor-saving programs that other people will find use
ful, and document what you wrote so you don't have to answer so many ques
tions about it. Hence, the first great virtue of a programmer.

2.4.3.2 Impatience
The anger you feel when the computer is being lazy. This makes you write pro
grams that don't just react to your needs, but actually anticipate them. Or at
least pretend to. Hence, the second great virtue of a programmer.

2.4.3.3 Hubris
Excessive pride, the sort of thing Zeus zaps you for. Also the quality that makes
you write (and maintain) programs that other people won't want to say bad
things about. Hence, the third great virtue of a programmer.

2.4.4 Three more virtues
In his "State of the Onion" keynote speech at The Perl Conference 2.0 in 1998,
Larry Wall described another three virtues, which are the virtues of a communi
ty of programmers. These are:
• Diligence
• Patience
• Humility
You may notice that these are the opposites of the first three virtues. However,
they are equally necessary for Perl programmers who wish to work together,
whether on a software project for their company or on an Open Source project
with many contributors around the world.

2.4.5 Share and enjoy!
Perl is Open Source software, and most of the modules and extensions for Perl
are also released under Open Source licenses of various kinds (Perl itself is re
leased under dual licenses, the GNU General Public License and the Artistic Li
cense, copies of which are distributed with the software).
The culture of Perl is fairly open and sharing, and thousands of volunteers
worldwide have contributed to the current wealth of software and knowledge
available to us. If you have time, you should try and give back some of what
you've received from the Perl community. Contribute a module to CPAN, help

38 PerlClass.com for ACT Students 20-23 Feb 2007

What is Perl 2

a new Perl programmer to debug her programs, or write about Perl and how it's
helped you. Even buying books written by the Perl gurus (like many of the
O'Reilly Perl books) helps give them the financial means to keep supporting
Perl.

PerlClass.com for ACT Students 20-23 Feb 2007 39

2 What is Perl

2.5 Parts of Perl

2.5.1 The Perl interpreter
The main part of Perl is the interpreter. The interpreter is available for UNIX,
Windows, and many other platforms.

The current version of Perl is 5.8.8, which is available from the Perl website
(http://www.perl.com/) or any of a number of mirror sites. Work has been
moving slowly on Perl 6 and it is still early in the test stage. You can check
http://www.perl.org/ for current version status.

A Windows version is available from ActiveState (http://www.activestate.
com/) or as part of Cygwin tool kit (http://www.cygwin.com/).

2.5.2 Manuals
Along with the interpreter come the manuals for Perl. These are accessed via
the perldoc command or, on UNIX systems, also via the man command. More
than 30 manual pages come with the current version of perl. These can be
found by typing man perl (or perldoc perl on non-UNIX systems). The Perl
FAQs (Frequently Asked Questions files) are available in perldoc format, and
can be accessed by typing perldoc perlfaq
Watch while this is demonstrated; you'll get a chance to try it soon.

2.5.3 Perl Modules
Perl also comes with a collection of modules. These are Perl programs which
carry out certain common tasks, and can be included as common libraries in
any Perl script. Less commonly used modules aren't included with the distribu
tion, but can be downloaded from (CPAN (http://www.perl.com/CPAN)) and
installed separately.

40 PerlClass.com for ACT Students 20-23 Feb 2007

http://www.redhat.com/service/custom/cygwin/
http://www.activestate.com/
http://www.activestate.com/
http://www.perl.org/

What is Perl 2

2.6 Chapter summary
• Common uses of Perl include

• text processing
• system administration
• CGI and web programming
• other Internet programming

• Perl is a general purpose programming language, distributed for free via the
Perl website (http://www.perl.com/) and mirror sites

• Perl includes excellent support for regular expressions, object oriented
programming, and other features

• Perl allows a great degree of programmer flexibility - "There's more than one
way to do it".

• The three virtues of a programmer are Laziness, Impatience and Hubris. Perl
will help you foster these virtues

• The three virtues of a programmer in a group environment are Diligence,
Patience, and Humility.

• Perl is a collaborative language - everyone is free to contribute to the Perl
software and the Perl community

• Parts of Perl include:
• the Perl interpreter
• documentation in several formats
• library modules

PerlClass.com for ACT Students 20-23 Feb 2007 41

Chapter 3: Chapter 3: CreatingCreating
and running a Perland running a Perl

programprogram

In this chapter...

In this chapter we will be creating a very simple "Hello, world" pro
gram in Perl and exploring some of the basic syntax of the Perl pro
gramming language.

3 Creating and running a Perl program

3.1 Logging into your account
Your username and password will have been given to you with these course
notes.

Table 3-1. Details required to connect to the PerlClass.com training server
Hostname or IP address perlclass.fini.net

192.168.___._____

Your username
Your password

1. Open putty
2. Connect to the training server at the hostname or IP number given above
3. Login using the username and password you were given

You will find yourself at a UNIX shell prompt. Hopefully (if you met the pre
requisites of this course) you will now be able to see that your account has a
subdirectory called exercises/ which are the example scripts and exercises giv
en in these course notes. If you're not quite up to speed with UNIX, there's a
cheat-sheet in Appendix A of these notes.

44 PerlClass.com for ACT Students 20-23 Feb 2007

Creating and running a Perl program
3

3.2 Using perldoc
On the command line, type perldoc perl. You will find yourself in the Perl
documentation pages. Here's how to get around inside the documentation:

Table 3-2. Getting around in perldoc
Action Keystroke
Page down SPACE
Page up b
Quit q

$ perldoc perl

PERL(1) User Contributed Perl Documentation

PERL(1)

NAME

 perl - Practical Extraction and Report Language

SYNOPSIS

 perl [-sTuU] [-hv] [-V[:configvar]]

 [-cw] [-d[:debugger]] [-D[number/list]]

 [-pna] [-Fpattern] [-l[octal]] [-0[octal]]

 [-Idir] [-m[-]module] [-M[-]’module...’]

 [-P] [-S] [-x[dir]]

 [-i[extension]] [-e ’command’]

 [--] [program-file] [argument]...

 If you’re new to Perl, you should start with perlintro, which is a

 general intro for beginners and provides some background to help

 you navigate the rest of Perl’s extensive documentation.

 For ease of access, the Perl manual has been split up into several

 sections.

 Overview

PerlClass.com for ACT Students 20-23 Feb 2007 45

3 Creating and running a Perl program

 perl Perl overview (this section)

 perlintro Perl introduction for beginners

 perltoc Perl documentation table of contents

 Tutorials

 perlreftut Perl references short introduction

 perldsc Perl data structures intro

 perllol Perl data structures: arrays of arrays

 perlrequick Perl regular expressions quick start

 perlretut Perl regular expressions tutorial

 perlboot Perl OO tutorial for beginners

 perltoot Perl OO tutorial, part 1

 perltooc Perl OO tutorial, part 2

 perlbot Perl OO tricks and examples

 perlstyle Perl style guide

 perlcheat Perl cheat sheet

 perltrap Perl traps for the unwary

 perldebtut Perl debugging tutorial

 perlfaq Perl frequently asked questions

 perlfaq1 General Questions About Perl

 perlfaq2 Obtaining and Learning about Perl

 perlfaq3 Programming Tools

 perlfaq4 Data Manipulation

 perlfaq5 Files and Formats

 perlfaq6 Regexes

 perlfaq7 Perl Language Issues

 perlfaq8 System Interaction

 perlfaq9 Networking

 Reference Manual

 perlsyn Perl syntax

 perldata Perl data structures

 perlop Perl operators and precedence

46 PerlClass.com for ACT Students 20-23 Feb 2007

Creating and running a Perl program
3

 perlsub Perl subroutines

 perlfunc Perl built-in functions

 perlopentut Perl open() tutorial

 perlpacktut Perl pack() and unpack() tutorial

 perlpod Perl plain old documentation

 perlpodspec Perl plain old documentation format

 specification

 perlrun Perl execution and options

 perldiag Perl diagnostic messages

 perllexwarn Perl warnings and their control

 perldebug Perl debugging

 perlvar Perl predefined variables

 perlre Perl regular expressions, the rest of the

 story

 perlreref Perl regular expressions quick reference

 perlref Perl references, the rest of the story

 perlform Perl formats

 perlobj Perl objects

 perltie Perl objects hidden behind simple variables

 perldbmfilter Perl DBM filters

 perlipc Perl interprocess communication

 perlfork Perl fork() information

 perlnumber Perl number semantics

 perlthrtut Perl threads tutorial

 perlothrtut Old Perl threads tutorial

 perlport Perl portability guide

 perllocale Perl locale support

 perluniintro Perl Unicode introduction

 perlunicode Perl Unicode support

 perlebcdic Considerations for running Perl on EBCDIC

 platforms

 perlsec Perl security

 perlmod Perl modules: how they work

PerlClass.com for ACT Students 20-23 Feb 2007 47

3 Creating and running a Perl program

 perlmodlib Perl modules: how to write and use

 perlmodstyle Perl modules: how to write modules with

 style

 perlmodinstall Perl modules: how to install from CPAN

 perlnewmod Perl modules: preparing a new module for

 distribution

 perlutil utilities packaged with the Perl

 distribution

 perlcompile Perl compiler suite intro

 perlfilter Perl source filters

 Internals and C Language Interface

 perlembed Perl ways to embed perl in your C or C++

 application

 perldebguts Perl debugging guts and tips

 perlxstut Perl XS tutorial

 perlxs Perl XS application programming interface

 perlclib Internal replacements for standard C

library

 functions

 perlguts Perl internal functions for those doing

 extensions

 perlcall Perl calling conventions from C

 perlapi Perl API listing (autogenerated)

 perlintern Perl internal functions (autogenerated)

 perliol C API for Perl’s implementation of IO in

 Layers

 perlapio Perl internal IO abstraction interface

 perlhack Perl hackers guide

 Miscellaneous

 perlbook Perl book information

48 PerlClass.com for ACT Students 20-23 Feb 2007

Creating and running a Perl program
3

 perltodo Perl things to do

 perldoc Look up Perl documentation in Pod format

 perlhist Perl history records

 perldelta Perl changes since previous version

 perl584delta Perl changes in version 5.8.4

 perl583delta Perl changes in version 5.8.3

 perl582delta Perl changes in version 5.8.2

 perl581delta Perl changes in version 5.8.1

 perl58delta Perl changes in version 5.8.0

 perl573delta Perl changes in version 5.7.3

 perl572delta Perl changes in version 5.7.2

 perl571delta Perl changes in version 5.7.1

 perl570delta Perl changes in version 5.7.0

 perl561delta Perl changes in version 5.6.1

 perl56delta Perl changes in version 5.6

 perl5005delta Perl changes in version 5.005

 perl5004delta Perl changes in version 5.004

 perlartistic Perl Artistic License

 perlgpl GNU General Public License

 Language-Specific

 perlcn Perl for Simplified Chinese (in EUC-CN)

 perljp Perl for Japanese (in EUC-JP)

 perlko Perl for Korean (in EUC-KR)

 perltw Perl for Traditional Chinese (in Big5)

 Platform-Specific

 perlaix Perl notes for AIX

 perlamiga Perl notes for AmigaOS

 perlapollo Perl notes for Apollo DomainOS

 perlbeos Perl notes for BeOS

 perlbs2000 Perl notes for POSIX-BC BS2000

PerlClass.com for ACT Students 20-23 Feb 2007 49

3 Creating and running a Perl program

 perlce Perl notes for WinCE

 perlcygwin Perl notes for Cygwin

 perldgux Perl notes for DG/UX

 perldos Perl notes for DOS

 perlepoc Perl notes for EPOC

 perlfreebsd Perl notes for FreeBSD

 perlhpux Perl notes for HP-UX

 perlhurd Perl notes for Hurd

 perlirix Perl notes for Irix

 perlmachten Perl notes for Power MachTen

 perlmacos Perl notes for Mac OS (Classic)

 perlmacosx Perl notes for Mac OS X

 perlmint Perl notes for MiNT

 perlmpeix Perl notes for MPE/iX

 perlnetware Perl notes for NetWare

 perlos2 Perl notes for OS/2

 perlos390 Perl notes for OS/390

 perlos400 Perl notes for OS/400

 perlplan9 Perl notes for Plan 9

 perlqnx Perl notes for QNX

 perlsolaris Perl notes for Solaris

 perltru64 Perl notes for Tru64

 perluts Perl notes for UTS

 perlvmesa Perl notes for VM/ESA

 perlvms Perl notes for VMS

 perlvos Perl notes for Stratus VOS

 perlwin32 Perl notes for Windows

By default, the manpages listed above are installed in the

/usr/local/man/ directory.

Extensive additional documentation for Perl modules is available.

The default configuration for perl will place this additional

documentation in the /usr/local/lib/perl5/man directory (or else in

the man subdirectory of the Perl library directory). Some of this

additional documentation is distributed standard with Perl, but

you’ll also find documentation for third-party modules there.

You should be able to view Perl’s documentation with your man(1)

program by including the proper directories in the appropriate

50 PerlClass.com for ACT Students 20-23 Feb 2007

Creating and running a Perl program
3

start-up files, or in the MANPATH environment variable. To find out

where the configuration has installed the manpages, type:

 perl -V:man.dir

If the directories have a common stem, such as /usr/local/man/man1

and /usr/local/man/man3, you need only to add that stem

(/usr/local/man) to your man(1) configuration files or your MANPATH

environment variable. If they do not share a stem, you’ll have

to add both stems.

If that doesn’t work for some reason, you can still use the supplied

perldoc script to view module information. You might also look into

getting a replacement man program.

If something strange has gone wrong with your program and you’re not

sure where you should look for help, try the -w switch first. It

will often point out exactly where the trouble is.

DESCRIPTION

Perl is a language optimized for scanning arbitrary text files,

extracting information from those text files, and printing reports

based on that information. It’s also a good language for many

system management tasks. The language is intended to be practical

(easy to use, efficient, complete) rather than beautiful (tiny,

elegant, minimal).

Perl combines (in the author’s opinion, anyway) some of the best

features of C, sed, awk, and sh, so people familiar with those

languages should have little difficulty with it. (Language

historians will also note some vestiges of csh, Pascal, and even

BASIC-PLUS.) Expression syntax corresponds closely to C expression

syntax. Unlike most UNIX utilities, Perl does not arbitrarily limit

the size of your data—if you’ve got the memory, Perl can slurp in

your whole file as a single string. Recursion is of unlimited

depth. And the tables used by hashes (sometimes called "associative

arrays") grow as necessary to prevent degraded performance. Perl

can use sophisticated pattern matching techniques to scan large

amounts of data quickly. Although optimized for scanning text, Perl

PerlClass.com for ACT Students 20-23 Feb 2007 51

3 Creating and running a Perl program

can also deal with binary data, and can make dbm files look like

hashes. Setuid Perl scripts are safer than C programs through a

dataflow tracing mechanism that prevents many stupid security holes.

If you have a problem that would ordinarily use sed or awk or sh,

but it exceeds their capabilities or must run a little faster, and

you don’t want to write the silly thing in C, then Perl may be for

you. There are also translators to turn your sed and awk scripts

into Perl scripts.

But wait, there’s more...

Begun in 1993 (see perlhist), Perl version 5 is nearly a complete

rewrite that provides the following additional benefits:

 · modularity and reusability using innumerable modules

 Described in perlmod, perlmodlib, and perlmodinstall.

 · embeddable and extensible

Described in perlembed, perlxstut, perlxs, perlcall, perlguts,

and xsubpp.

· roll-your-own magic variables (including multiple simultaneous

DBM implementations)

 Described in perltie and AnyDBM_File.

 · subroutines can now be overridden, autoloaded, and prototyped

 Described in perlsub.

 · arbitrarily nested data structures and anonymous functions

 Described in perlreftut, perlref, perldsc, and perllol.

 · object-oriented programming

 Described in perlobj, perlboot, perltoot, perltooc, and

52 PerlClass.com for ACT Students 20-23 Feb 2007

Creating and running a Perl program
3

perlbot.

 · support for light-weight processes (threads)

 Described in perlthrtut and threads.

 · support for Unicode, internationalization, and localization

 Described in perluniintro, perllocale and Locale::Maketext.

 · lexical scoping

 Described in perlsub.

 · regular expression enhancements

 Described in perlre, with additional examples in perlop.

· enhanced debugger and interactive Perl environment, with

integrated editor support

 Described in perldebtut, perldebug and perldebguts.

 · POSIX 1003.1 compliant library

 Described in POSIX.

 Okay, that’s definitely enough hype.

AVAILABILITY

 Perl is available for most operating systems, including virtually

all UNIX-like platforms. See "Supported Platforms" in perlport for a

listing.

ENVIRONMENT

 See perlrun.

AUTHOR

PerlClass.com for ACT Students 20-23 Feb 2007 53

3 Creating and running a Perl program

 Larry Wall <larry@wall.org>, with the help of oodles of other

folks.

 If your Perl success stories and testimonials may be of help to

others who wish to advocate the use of Perl in their applications, or if

you wish to simply express your gratitude to Larry and the Perl

developers, please write to perl-thanks@perl.org .

FILES

 "@INC" locations of perl libraries

SEE ALSO

 a2p awk to perl translator

 s2p sed to perl translator

 http://www.perl.com/ the Perl Home Page

 http://www.cpan.org/ the Comprehensive Perl Archive

 http://www.perl.org/ Perl Mongers (Perl user groups)

DIAGNOSTICS

The "use warnings" pragma (and the -w switch) produces some lovely

diagnostics.

See perldiag for explanations of all Perl’s diagnostics. The "use

diagnostics" pragma automatically turns Perl’s normally terse

warnings and errors into these longer forms.

Compilation errors will tell you the line number of the error, with

an indication of the next token or token type that was to be

examined. (In a script passed to Perl via -e switches, each -e is

counted as one line.)

Setuid scripts have additional constraints that can produce error

messages such as "Insecure dependency". See perlsec.

Did we mention that you should definitely consider using the -w

switch?

BUGS

The -w switch is not mandatory.

54 PerlClass.com for ACT Students 20-23 Feb 2007

Creating and running a Perl program
3

Perl is at the mercy of your machine’s definitions of various

operations such as type casting, atof(), and floating-point output

with sprintf().

If your stdio requires a seek or eof between reads and writes on a

particular stream, so does Perl. (This doesn’t apply to sysread()

and syswrite().)

While none of the built-in data types have any arbitrary size limits

(apart from memory size), there are still a few arbitrary limits: a

given variable name may not be longer than 251 characters. Line

numbers displayed by diagnostics are internally stored as short

integers, so they are limited to a maximum of 65535 (higher numbers

usually being affected by wraparound).

You may mail your bug reports (be sure to include full configuration

information as output by the myconfig program in the perl source

tree, or by "perl -V") to perlbug@perl.org . If you’ve succeeded in

compiling perl, the perlbug script in the utils/ subdirectory can be

used to help mail in a bug report.

Perl actually stands for Pathologically Eclectic Rubbish Lister, but

don’t tell anyone I said that.

NOTES

The Perl motto is "There’s more than one way to do it." Divining

how many more is left as an exercise to the reader.

The three principal virtues of a programmer are Laziness,

Impatience, and Hubris. See the Camel Book for why.

perl v5.8.5 2005-12-21 PERL(1)

As you can see, there is a lot of documentation included with Perl.

PerlClass.com for ACT Students 20-23 Feb 2007 55

3 Creating and running a Perl program

3.3 Using the editor
A Perl script is just a normal text file, which means that you can edit it using a
normal text editor.
The system you are using has several editors available for your use, including
vi, pico, or its work-alike nano and others. Those who are not already familiar
with vi should probably use pico, as it has a simpler interface. If you're an
emacs user, sorry, feel free to use it, but the instructor isn't inclined to support
emacs.
To edit a file using pico, type:

$ pico filename

(Note that the dollar sign is your UNIX/Linux command line prompt - you don't
have to type it.)
To edit a file using vi, type:

$ vi filename

For other editors, just type the name of the editor followed by the name of the
file you wish to edit.
A summary of editor commands appears in Appendix B in the back of these
course notes, just in case you need them.
Incidentally, Appendix C contains a guide to pronouncing ASCII characters, es
pecially punctuation. This will help you translate perl into spoken language, for
ease of communication with other programmers.

56 PerlClass.com for ACT Students 20-23 Feb 2007

Creating and running a Perl program
3

3.4 Our first Perl program
We're about to create our first, simple Perl script: a "hello world" program.
There are a couple of things you should know in advance:
• Perl programs (or scripts --- the words are interchangeable) consist of a series

of statements
• When you run the program, each statement is executed in turn, from the top

of your script to the bottom. (There are two special cases where this doesn't
occur, one of which --- subroutine declarations --- we'll be looking at later
today)

• Each statement ends in a semi-colon
• Statements can flow over several lines
• Whitespace (spaces, tabs and newlines) are ignored most places in a Perl

script.
Now, just for practice, open a file called hello.pl in your text editor. Type in
the following one-line Perl program:

print "Hello, world!\n";

This one-line program calls the print function with a single parameter, the
string literal "Hello, world!" followed by a newline character.
Save it and exit.

PerlClass.com for ACT Students 20-23 Feb 2007 57

3 Creating and running a Perl program

3.5 Running a Perl program from the command
line

We can run the program from the command line by typing in:

perl hello.pl

You should see this output:

Hello, world!

This program should, of course, be entirely self-explanatory. The only thing
you really need to note is the \n ("backslash N") which denotes a new line.

58 PerlClass.com for ACT Students 20-23 Feb 2007

Creating and running a Perl program
3

3.6 The "shebang" line
So what if we want to run our program from the command line without having
to type in the name of the Perl interpreter first?
You can make a file executable by typing:

$ chmod +x hello.pl

at the command line. (For more information about the chmod command, type
man chmod).
In order to let the shell know what to do with our program when we try to run it
with ./hello.pl from the command line, we put the following line at the top of
our program:

#!/usr/bin/perl

That's what we call a "shebang" line (because the # is a "hash" sign, and the ! is
referred to as a "bang", hence "hashbang" or "shebang"). It tells the system
what to use to interpret our script. Of course, if the Perl interpreter were some
where else on our system, we'd have to change the shebang line to reflect that.

PerlClass.com for ACT Students 20-23 Feb 2007 59

3 Creating and running a Perl program

3.7 Comments
Incidentally, comments in Perl start with a hash sign (#), either on a line on
their own or after a statement. Anything after a hash is a comment.

This is a hello world program

print "Hello, world!\n"; # print the message

60 PerlClass.com for ACT Students 20-23 Feb 2007

Creating and running a Perl program
3

3.8 Command line options
Perl has a number of command line options, which you can specify on the com
mand line by typing perl options hello.pl or which you can include in the
shebang line. Let's say you want to use the -w command line option to turn on
warnings:

#!/usr/bin/perl -w

(Incidentally, it's always a good idea to turn on warnings while you're develop
ing something.)

PerlClass.com for ACT Students 20-23 Feb 2007 61

Advanced
Setting the special variable $^W to a true value will locally
disable warnings (i.e. in the current block).

RTFM!
Src Chap Pgs #

Nutshell 2nd 3 35-38

Camel 2nd 6 330-337 "Switches"

Camel 3rd 19 486-505

perldoc perlrun

Cookbook 2nd

Learning 3rd 2 26-27

Learning 4th

3 Creating and running a Perl program

3.9 Chapter summary
Here's what you know about Perl's operation and syntax so far:
• Perl programs typically start with a "shebang" line
• statements (generally) end in semicolons
• statements may span multiple lines; it's only the semicolon that ends a

statement
• comments are indicated by a hash (#) sign. Anything after a hash sign on a

line is a comment.
• \n is used to indicate a new line
• whitespace is ignored almost everywhere
• command line arguments to Perl can be indicated on the shebang line
• the -w command line argument turns on warnings

62 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 4: Chapter 4: PerlPerl
variablesvariables

In this chapter...

In this section we will explore Perl's three main variable types ---
scalars, arrays, and hashes --- and learn to assign values to them, re
trieve the values stored in them, and manipulate them in certain
ways.

4 Perl variables

4.1 What is a variable?
A variable is a place where we can store data. Think of it like a pigeonhole with
a name on it indicating what data is stored in it.
The Perl language is very much like human languages in many ways, so you
can think of variables as being the "nouns" of Perl. For instance, you might
have a variable called "total" or "employee".

64 PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables 4

4.2 Variable names
Variable names in Perl may contain alphanumeric characters in upper or lower
case, and underscores. A variable name may not start with a number, though -
that means something special, which we'll encounter later. Likewise, variables
that start with anything non-alphanumeric are also special, and we'll discuss
that later, too.
It's standard Perl style to name variables in lower case, with underscores sepa
rating words in the name. For instance, employee_number. Upper case is usually
used for constants, for instance LIGHT_SPEED or PI. Following these conventions
will help make your Perl more maintainable and more easily understood by oth
ers.
Lastly, variable names all start with a punctuation sign depending on what sort
of variable they are:

Table 4-1. Variable punctuation
Variable type Starts with Pronounced
Scalar $ dollar
Array @ at
Hash % Percent

(Don't worry if those variable type names don't mean anything to you. We're
about to cover it.)

PerlClass.com for ACT Students 20-23 Feb 2007 65

4 Perl variables

4.3 Variable scoping and the strict pragma
Many programming languages require you to "pre-declare" variables -- that is,
say that you're going to use them before you use them. Variables can either be
declared as global (that is, they can be used anywhere in the program) or local
(they can only be used in the same part of the program in which they were de
clared).
In Perl, it is not necessary to declare your variables before you begin. You can
summon a variable into existence simply by using it, and it will be globally
available to any routine in your program. If you're used to programming in C or
any of a number of other languages, this may seem odd and even dangerous to
you. This is, in fact, the case.

4.3.1 Arguments in favour of strictness
• avoids accidental creation of unwanted variables when you make a typing

error
• avoids scoping problems, for instance when a subroutine uses a variable with

the same name as a global variable
• allows for warnings if values are assigned to variables and never used

4.3.2 Arguments against strictness
• takes a while to get used to, and may slow down development until it

becomes instinctual
• enforces a nasty, fascist style of coding which isn't nearly as much fun
Sometimes a little bit of fascism is a good thing, like when you want the trains
to run on time. Because of this, Perl lets you turn strictness on if you want it,
using something called the strict pragma. A pragma, in Perl-speak, is a set of
rules for how your code is to be dealt with.

66 PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables 4

PerlClass.com for ACT Students 20-23 Feb 2007 67

RTFM!
Src Chap Pgs #

Nutshell 2nd 8 335-336

Camel 2nd 7 500

Camel 3rd 4 137-138

perldoc strict

Cookbook 2nd

Learning 3rd B 289

Learning 4th

4 Perl variables

4.4 Using the strict pragma
In the interests of bug-free code and teaching better Perl style, we're going to
use the strict pragma throughout this training course. Here's how it's invoked:

#!/usr/bin/perl -w

use strict;

That typically goes at the top of your program, just under your shebang line and
introductory comments.
Once we use the strict pragma, we have to explicitly declare new variables us
ing my. You'll see this in use below, and it will be discussed again later when we
talk about blocks and subroutines.
Try running the program exercises/strictfail.pl and see what happens.
What needs to be done to fix it? Try it and see if it works. By the way, get used
to this error message - it's one of the most common Perl programming mistakes,
though it's easily fixed.

68 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 4
5

74
117

Camel 2nd 3 189

Camel 3rd 4 130-136

perldoc -f my
perlsub

Cookbook 2nd 10 376-376

Learning 3rd 4 67

Learning 4th

Perl variables 4

4.5 Scalars
The simplest form of variable in Perl is the scalar. A scalar is a single item of
data such as:
• Arthur
• Just Another Perl Hacker
• 42
• 0.000001
• 3.27e17
Here's how we assign values to scalar variables:

my $name = "Arthur";

my $whoami = 'Just Another Perl Hacker';

my $meaning_of_life = 42;

my $number_less_than_1 = 0.000001;

my $very_large_number = 3.27e17; # 3.27 by 10 to the power of 17

As you can see, a scalar can be text of any length, and numbers of any precision
(machine dependent, of course). Perl magically converts between them when it
needs to. For instance, it's quite legal to say:

adding an integer to a floating point number

my $sum = $meaning_of_life + $number_less_than_1;

here we're putting the int in the middle of a string we

want to print

print "$name says, 'The meaning of life is $meaning_of_life.'\n";

PerlClass.com for ACT Students 20-23 Feb 2007 69

Advanced
There are other ways to assign things apart from the =
operator, too. They're covered on pages 92-93 of the Camel.

4 Perl variables

This may seem extraordinarily alien to those used to strictly typed languages,
but believe it or not, the ability to transparently convert between variable types
is one of the great strengths of Perl. Some people say that it's also one of the
great weaknesses.

70 PerlClass.com for ACT Students 20-23 Feb 2007

Advanced
You can explicitly cast scalars to various specific data types.
Look up int() on page 180 of the camel, for instance.

Perl variables 4

4.6 Double and single quotes

While we're here, let's look at the assignments above. You'll see that some have
double quotes, some have single quotes, and some have no quotes at all.
In Perl, quotes are required to distinguish strings from the language's reserved
words or other expressions. Either type of quote can be used, but there is one
important difference: double quotes can include other variable names inside
them, and those variables will then be interpolated - as in the last example
above - while single quotes do not interpolate.

single quotes don't interpolate...

my $price = '$9.95';

double quotes interpolate...

my $invoice_item = "24 widgets at $price each\n";

print $invoice_item;

The above example is available in your directory as exercises/interpolate.pl
so you can experiment with different kinds of quotes.

PerlClass.com for ACT Students 20-23 Feb 2007 71

RTFM!
Src Chap Pgs #

Nutshell 2nd 4 45-47 String interpolation

Camel 2nd 52
41

Input Operators
Pick your own quotes

Camel 3rd 2 60-65 String literals...

perldoc perldata
perlop

Scalar values
Quote and Quote-like operators

Cookbook 2nd 1 3

Learning 3rd 2 23-24

Learning 4th

4 Perl variables

Note that special characters such as the \n newline character are only available
within double quotes. Single quotes will fail to expand these special characters
just as they fail to expand variable names.
When using either type of quotes, you must have a matching pair of opening
and closing quotes. If you want to include a quote mark in the actual quoted
text, you can escape it by preceding it with a backslash:

print "He said, \"Hello!\"\n";

You can also use a backslash to escape other special characters such as dollar
signs within double quotes:

print "The price is \$300\n";

To include a literal backslash in a double-quoted string, use two backslashes: \\

4.6.1 Exercises
1. Write a script which sets some variables:

a. your name
b. your street number
c. your favorite colour

2. Print out the values of these variables using double quotes for variable
interpolation

3. Change the quotes to single quotes. What happens?
4. Write a script which prints out C:\WINDOWS\SYSTEM\ twice -- once using

double quotes, once using single quotes. How do you have to escape the
backslashes in each case?

You'll find answers to the above in exercises/answers/scalars.pl.

72 PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables 4

4.7 Arrays
If you think of a scalar as being a singular thing, arrays are the plural form. Just
as you have a flock of sheep or a bunch of bankers, you can have an array of
scalars.
An array is a list of (usually related) scalars all kept together. Arrays start with
an @ (at sign), and are initialized thus:

my @fruit = ("apples", "oranges", "guavas",

 "passionfruit", "grapes");

my @magic_numbers = (23, 42, 69);

my @random_scalars = ("mumble", 123.45, "willy the wombat", -300);

As you can see, arrays can contain any kind of scalars. They can have just
about any number of elements, too, without needing to know how many before
you start. Really any number - tens or hundreds of thousands, if you've got the
memory.

So if we don't know how many items there are in an array, how can we find
out? Well, there are a couple of ways.

PerlClass.com for ACT Students 20-23 Feb 2007 73

RTFM!
Src Chap Pgs #

Nutshell 2nd 4 47-49

Camel 2nd 1
2

6
47-49

Camel 3rd 1
2

8-10
72-76

perldoc perldata

Cookbook 2nd 4 110-149

Learning 3rd 3 40-55

Learning 4th

4 Perl variables

First of all, Perl's arrays are indexed from zero. We can access individual ele
ments of the array like this:

print $fruits[0]; # prints "apples"

print $random_scalars[2]; # prints "willy the wombat"

Wait a minute, why are we using dollar signs in the example above, instead of
at signs? The reason is this: we only want a scalar back, so we show that we
want a scalar. There's a useful way of thinking of this, which is explained in
chapter 1 of the Camel: if scalars are the singular case, then the dollar sign is
like the word "the" - "the name", "the meaning of life", etc. The @ sign on an ar
ray, or the % sign on a hash, is like saying "those" or "these" - "these fruit",
"those magic numbers". However, when we only want one element of the array,
we'll be saying things like "the first fruit" or "the last magic number" - hence
the scalar-like dollar sign.
If we wanted what we call an array slice we could say:

@fruits[1,2,3]; # oranges, guavas, passionfruit

@magic_numbers[0..1]; # 23, 42

You just learned something new, by the way: the .. ("dot dot") range operator
(see pages 90-91 of your Camel or perldoc perlop) which creates a temporary
list of numbers between the two you specify - in this case 0 and 1, but it could
have been 1 and 100 if we'd had an array big enough to use it on. You'll run
into this operator again and again, so remember it.
Another thing you can do with arrays is insert them into a string, the same as
for scalars:

print "My favorite fruits are @fruits\n"; # whole array

print "Two types of fruit are @fruits[0,2]"; # array slice

Returning to the point, how do we find the last element in an array? Well,
there's a special variable called $#array which is the index of the last element,
so you can say:

@fruit[0..$#fruit];

and you'll get the whole array. If you print $#fruit you'll find it's 4, which is

74 PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables 4

not the same as the number of elements - 5. Remember that it's the index of the
last element and that the index starts at zero, so you have to add one to it to
find out how many elements in the array.
But wait! There's More Than One Way To Do It - and an easier way, at that. If
you evaluate the array in a scalar context - that is, do something like this:

my $fruit_count = @fruits;

... you'll get the number of elements in the array.
There's more than two ways to do it, as well - scalar(@fruits) and
int(@fruits) will also tell us how many elements there are in the array.

4.7.1 A quick look at context
There's a term you've heard used just recently but which hasn't been explained:
context.
All Perl expressions are evaluated in a context. The two main contexts are:
• scalar context, and
• list context
Here's an example of an expression which can be evaluated in either context:

my $howmany = @array; # scalar context

my @newarray = @array; # list context

If you look at an array in a scalar context, you'll see how many elements it has;
if you look at it in list context, you'll see the contents of the array itself.

PerlClass.com for ACT Students 20-23 Feb 2007 75

Advanced
Using $count = scalar @fruits is the clearest way
to express "how many are in fruits?" and is considered a best
practice.

4 Perl variables

4.7.2 What's the difference between a list and an array?
Not much, really. A list is just an unnamed array. Here's a demonstration of the
difference:

printing a list of scalars

print ("Hello", " ", $name, "\n");

printing an array

@hello = ("Hello", " ", $name, "\n");

print @hello;

If you come across something that wants a LIST, you can either give it the ele
ments of list as in the first example above, or you can pass it an array by name.
If you come across something that wants an ARRAY, you have to actually give
it the name of an array.

4.7.3 Exercises
1. Create an array of your friends' names
2. Print out the first element
3. Print out the last element
4. Print out the array from within a double-quoted string using variable

interpolation
5. Print out an array slice of the 2nd to 4th items using variable interpolation

Answers to the above can be found in exercises/answers/arrays.pl

4.7.4 Advanced exercises
1. Print the array without putting quotes around its name. What happens?
2. Set the special variable $, to something appropriate and try the previous

step again (see page 132 of your Camel for this variable's documentation)
3. What happens if you have a small array and then you assign a value to

$array[1000]?
Answers to the above can be found in exercises/answers/arrays_advanced.pl

76 PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables 4

4.8 Hashes
A hash is a two-dimensional array which contains keys and values. Instead of
looking up items in a hash by an array index, you can look up values by their
keys.

4.8.1 Initialising a hash
Hashes are initialized in exactly the same way as arrays, with a comma separat
ed list of values:

my %monthdays = ("January", 31, "February", 28, "March", 31, ...);

Of course, there's more than one way to do it:

my %monthdays = (

 "January" => 31,

 "February" => 28,

 "March" => 31,

PerlClass.com for ACT Students 20-23 Feb 2007 77

RTFM!
Src Chap Pgs #

Nutshell 2nd 4 49

Camel 2nd 1
2

7-8
50

Camel 3rd 1
2

10-12
76-78

perldoc perlldata

Cookbook 2nd 5 150-178

Learning 3rd 5 73-85

Learning 4th

4 Perl variables

 # ...

);

The spacing in the above example is commonly used to make hash assignments
more readable.
The => operator is syntactically the same as the comma, but is used to distin
guish hashes more easily from normal arrays. Also, you don't need to put
quotes on the item which comes immediately before the => operator:

my %monthdays = (

 January => 31,

 February => 28,

 March => 31,

 # ...

);

4.8.2 Reading hash values
You get at elements in a hash by using the following syntax:

print $monthdays{"January"}; # prints 31

Again you'll notice the use of the dollar sign, which you should read as "the
monthdays belonging to January".

4.8.3 Adding new hash elements
You can also create elements in a hash on the fly:

my %monthdays = ();

$monthdays{"January"} = 31;

$monthdays{"February"} = 28;

...

4.8.4 Other things about hashes
• Hashes have no internal order
• There is no equivalent to $#array to get the size of a hash

78 PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables 4

• However, there are functions such as each(), keys() and values() which will
help you manipulate hash data. We look at these later, when we deal with
functions.

4.8.5 What's the difference between a hash and an
associative array?

Back in the days of Perl version 4 (and earlier), hashes were called associative
arrays. The name "hash" is now preferred because it's much quicker to type. If
you consider all the times that hashes are talked about in the newsgroup com
p.lang.perl.misc (news:comp.lang.perl.misc) and other Perl newsgroups, the re
naming of associative arrays to hashes has resulted in a major saving of band
width.

4.8.6 Exercises
1. Create a hash of people and something interesting about them
2. Print out a given person's interesting fact
3. Change an person's interesting fact
4. Add a new person to the hash
5. What happens if you try to print an entry for a person who's not in the hash?

Answers to these exercises are given in exercises/answers/hash.pl

PerlClass.com for ACT Students 20-23 Feb 2007 79

Advanced
You may like to look up the following functions which relat
ed to hashes: keys(), values(), each(), delete(), exists(),
and defined().

4 Perl variables

4.9 Special variables
Perl has many special variables. These are used to set or retrieve certain values
which affect the way your program runs. For instance, you can set a special
variable to turn interpreter warnings on and off, or read a special variable to
find out the command line arguments passed to your script.
Special variables can be scalars, arrays, or hashes. We'll look at some of each
kind.

80 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 4 53-59

Camel 2nd 2
7

127-140
403

Camel 3rd 28
32

653-676
884

perldoc perlvar
English English provides friendlier

names for special variables

Cookbook 2nd

Learning 3rd 3 49 $_ quickly

Learning 4th

Perl variables 4

4.10 The first special variable, $_
The first special variable, and possibly the one you'll encounter most often, is
called $_ ("dollar-underscore"), and it represents the current thing that your Perl
script's working with - often a line of text or an element of a list or hash. It can
be set explicitly, or it can be set implicitly by certain looping constructs (which
we'll look at later).
The special variable $_ is often the default argument for functions in Perl. For
instance, the print() function defaults to printing $_

$_ = "Hello, world!\n";

print;

If you can think of Perl variables as being "nouns", then $_ is the pronoun "it".

4.10.1.1 Exercises
1. Set $_ to a string like "Hello, world", then print it out by using the print()

command's default argument
The answers to the above exercise are in exercises/answers/scalars2.pl.

PerlClass.com for ACT Students 20-23 Feb 2007 81

4 Perl variables

4.11 @ARGV - a special array

Perl programs accept arbitrary arguments or parameters from the command line,
like this:

perl printargs.pl foo bar baz

This passes "foo", "bar" and "baz" as arguments into our program, where they
end up in an array called @ARGV. Try this script, which you'll find in your direc
tory. It's called exercises/printargs.pl.

#!/usr/bin/perl -w

print "@ARGV\n";

To run the script, type:

% exercises/printargs.pl foo bar baz

You should see "foo bar baz" printed out.

4.11.1.1 Exercises
1. Modify your earlier array-printing script to print out the script's command

line arguments instead of the names of your friends. Call your script by
typing ./scriptname.pl firstarg secondarg thirdarg or similar.

The answers to the above exercise is in exercises/answers/argv.pl

82 PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables 4

4.12 %ENV - a special hash
Just as there are special scalars and arrays, there is a special hash called %ENV.
This hash contains the names and values of environment variables. To view
these variables under UNIX, simply type env on the command line.

4.12.1.1 Exercises
1. A user's home directory is stored in the environment variable HOME. Print out

your own home directory.
The answer to the above can be found in exercises/answers/env.pl

PerlClass.com for ACT Students 20-23 Feb 2007 83

4 Perl variables

4.13 Chapter summary
• Perl variable names typically consist of alphanumeric characters and

underscores. Lower case names are used for most variables, and upper case
for global constants.

• The statement use strict; is used to make Perl require variables to be pre-
declared and to avoid certain types of programming errors.

• There are three types of Perl variables: scalars, arrays, and hashes.
• Scalars are single items of data and are indicated by a dollar sign ($) at the

beginning of the variable name.
• Scalars can contain strings, numbers, etc
• Strings must be delimited by quote marks. Using double quote marks will

allow you to interpolate other variables and meta-characters such as \n
(newline) into a string. Single quotes do not interpolate.

• Arrays are one-dimensional lists of scalars and are indicated by an at sign (@)
at the beginning of the variable name.

• Arrays are initialised using a comma-separated list of scalars inside round
brackets.

• Arrays are indexed from zero
• Item n of an array can be accessed by using $arrayname[n]
• The index of the last item of an array can be accessed by using $#arrayname.
• The number of elements in an array can be found by interpreting the array in

a scalar context, eg my $items = @array;
• Hashes are two-dimensional arrays of keys and values, and are indicated by a

percent sign (%) at the beginning of the variable name.
• Hashes are initialised using a comma-separated list of scalars inside curly

brackets. Whitespace and the => operator (which is syntactically identical to
the comma) can be used to make hash assignments look neater.

• The value of a hash item whose key is foo can be accessed by using
$hashname{foo}

• Hashes have no internal order
• $_ is a special variable which is the default argument for many Perl functions

and operators

84 PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables 4

• The special array @ARGV contains all command line parameters passed to the
script

• The special hash %ENV contains information about the user's environment.

PerlClass.com for ACT Students 20-23 Feb 2007 85

Chapter 5: Chapter 5: OperatorsOperators
and functionsand functions

In this chapter...

In this chapter, we look at some of the operators and functions which
can be used to manipulate data in Perl. In particular, we look at oper
ators for arithmetic and string manipulation, and many kinds of func
tions including functions for scalar and list manipulation, more com
plex mathematical operations, type conversions, dealing with files,
etc.

5 Operators and functions

5.1 What are operators and functions?
Operators and functions are routines that are built into the Perl language to do
stuff.
The difference between operators and functions in Perl is a very tricky subject.
There are a couple of ways to tell the difference:
• Functions usually have all their parameters on the right hand side
• Operators can act in much more subtle and complex ways than functions
• Look in the documentation - if it's in perldoc perlop, it's an operator; if it's in

perldoc perlfunc, it's a function. Otherwise, it's probably a subroutine.
The easiest way to explain operators is to just dive on in, so here we go...

88 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 4 60 - 65

Camel 2nd 2 76 - 94

Camel 3rd 3 86 - 110

perldoc perlop

Cookbook 2nd

Learning 3rd 2 28 - 34

Learning 4th

Operators and functions 5

5.2 Arithmetic operators
Arithmetic operators can be used to perform arithmetic operations on variables
or constants. The commonly used ones are:

Table 5-5. Arithmetic operators
Operator Example Description

+ $a + $b Addition
- $a - $b Subtraction
* $a * $b Multiplication
/ $a / $b Division
% $a % $b Modulus (remainder when $a is divided

by $b, eg 11 % 3 = 2)
** $a ** $b Exponentiation ($a to the power of $b)

PerlClass.com for ACT Students 20-23 Feb 2007 89

Advanced
Just like in C, there are some short cut arithmetic operators:

$a += 1; # same as $a = $a + 1

$a -= 3; # same as $a = $a - 3

$a *= 42; # same as $a = $a * 42

(In fact, you can extrapolate the above with just about any
operator - see page 17 of the Camel for more about this)
You can also use $a++ and $a---- if you're familiar with
such things. ++$a and ----$a are also valid, but they do some
slighty different things and you won't need them today (but
you can read about them on pages 17 to 18 of the Camel if
you are sufficiently interested).

5 Operators and functions

5.3 String operators
Just as we can add and multiply numbers, we can also do similar things with
strings:

Table 5-5. String operators
Operator Example Description

. $a . $b Concatenation (puts $a and $b
together as one string)

x $a x $b Repeat (repeat $a $b times --- eg
"foo" x 3 gives us "foofoofoo"

my $fullname = $first_name . $mid_initial . $last_name;

my $line = '-' x 80;

my $ruler = $line . "\n";

5.3.1 Exercises
1. Calculate the cost of 18 widgets at $37.00 each and print the answer

(Answer: exercises/answers/widgets.pl)
2. Print out a line of dashes without using more than one dash in your code

(except for the -w). (Answer: exercises/answers/dashes.pl)
3. Use exercises/operate.pl to practice using arithmetic and string operators.

90 PerlClass.com for ACT Students 20-23 Feb 2007

Operators and functions 5

5.4 File operators
We can use file test operators to test various attributes of files and directories:

Table 5-5. File test operators
Operator Example Description

-e -e $a Exists - does the file exist?
-r -r $a Readable - is the file readable?
-w -w $a Writable - is the file writable?
-d -d $a Directory - is it a directory?
-f -f $a File - is it a normal file?
-T -T $a Text - is the file a text file?

if (-e "~/.forward"} {

print "your email is being forwarded somewhere else";

}

unless (-w $log_file) {

print "can't write to $log_file\n";

}

if (-T "perl.exe") {

print "your perl.exe is a text file!\n";

}

PerlClass.com for ACT Students 20-23 Feb 2007 91

5 Operators and functions

5.5 Other operators
You'll encounter all kinds of other operators in your Perl career, and they're all
described in the Camel from page 76 onwards. We'll cover them as they be
come necessary to us -- you've already seen operators such as the assignment
operator (=), the => operator which behaves a bit like the comma operator, and
so on.

92 PerlClass.com for ACT Students 20-23 Feb 2007

Advanced
While we're here, let's just mention what "unary" and
"binary" operators are.

A unary operator is one that only needs something on one
side of it, like the file operators or the autoincrement (++) op
erator.

A binary operator is one that needs something on either side
of it, such as the addition operator.

A trinary operator also exists, but we don't deal with it in this
course. C programmers will probably already know about it,
and can use it if they want.

Operators and functions 5

5.6 Functions
A function is like an operator - and in fact some functions double as operators
in certain conditions - but with the following differences:
• longer names
• can take any kinds of arguments
• arguments always come after the function name
The only real way to tell whether something is a function or an operator is to
check the perlop and perlfunc manual pages and see which it appears in.

5.6.1 Types of arguments
Functions typically take the following kind of arguments:
SCALAR -- Any scalar variable - 42, "foo", or $a
LIST -- Any named or unnamed list (remember that a named list is an array)
ARRAY -- A named array; usually results in the array being modified
HASH -- Any named or unnamed hash
PATTERN -- A pattern to match on - we'll talk more about these later on, in

PerlClass.com for ACT Students 20-23 Feb 2007 93

RTFM!
Src Chap Pgs #

Nutshell 2nd 5 92 - 146

Camel 2nd 1
3

8
141-242

Verbs

Camel 3rd 29 677-830

perldoc perlfunc

Cookbook 2nd

Learning 3rd 4 56

Learning 4th

5 Operators and functions

Regular Expressions
FILEHANDLE -- A filehandle indicating a file that you've opened or one of the
pseudo-files that is automatically opened, such as STDIN, STDOUT, and
STDERR
There are other types of arguments, but you're not likely to need to deal with
them in this module.

5.6.2 Return values
Just as a function can take arguments of various kinds, they can return various
things for you to use - though they don't have to, and you don't have to use
them if you don't want.
If a function returns a scalar, and we want to use it, we can say something like:

my $age = 29.75;
my $years = int($age);

and $years will be assigned the returned value of the int() function when giv
en the argument $age - in this case, 29, since int() truncates instead of round
ing.
If we just wanted to do something to a variable and didn't care what value was
returned, we could just say:

my $input = <STDIN>;
chomp($input);

While we're at it, you should also know that the brackets on functions are op
tional if it's not likely to cause confusion. What's likely to cause confusion
varies from one person to the next, but it's a pretty safe bet to use brackets as
much as possible when you're starting out, and then drop them off if you see
that other people are usually doing it. Seriously. You can learn a lot about Perl
style by looking at other people's code, especially code found on CPAN or giv
en as examples in Perl books, newsgroups, etc.

94 PerlClass.com for ACT Students 20-23 Feb 2007

Operators and functions 5

5.7 More about context
Many different functions and operators behave differently depending on
whether they're called in scalar context or list context. Each one will be noted
in its documentation, either in the Camel or in the manual pages.
Here are some Perl operators and functions that care about context:

Table 5-4. Context-senstive functions
What? Scalar context List context
reverse() Reverses characters in

a string
Reverses the order of
the elements in an
array

each() Returns the next key
in a hash

Returns a two-element
list consisting of the
next key and value
pair in a hash

gmtime() and
localtime()

Returns the time as a
string in common
format

Returns a list of
second, minute, hour,
day, etc

keys() Returns the number of
keys (and hence the
number of elements)
in a hash

Returns a list of all the
keys in a hash

readdir() Returns the next
filename in a
directory, or undef if
there are no more

Returns a list of all the
filenames in a
directory

There are many other cases where an operation varies depending on context.
Take a look at the notes on context at the start of perldoc perlfunc to see the
official guide to this: "anything you want, except consistency".
You can also use perldoc -f functionname to get the documentation for just
a single function.

PerlClass.com for ACT Students 20-23 Feb 2007 95

5 Operators and functions

5.8 String manipulation

5.8.1.1 Finding the length of a string
The length of a string can be found using the length() function:

#!/usr/bin/perl -w

use strict;

my $string = "This is my string";
print length($string);

5.8.1.2 Case conversion
You can convert Perl strings from upper case to lower case, or vice versa, using
the lc() and uc() functions, respectively.

#!/usr/bin/perl -w

print lc("Hello, World!"); # prints "hello, world!"
print uc("Hello, World!"); # prints "HELLO, WORLD!"

The lcfirst() and ucfirst() functions can be used to change only the first let
ter of a string.

#!/usr/bin/perl -w

print lcfirst("Hello, World!"); # prints "hello, World!"
print lcfirst(uc("Hello, World!")); # prints "hELLO, WORLD!"

Notice how, in the last line of the example above, the lcfirst() operates on the
result of the uc() function.

5.8.1.3 chop() and chomp()
The chop() function removes the last character of a string and returns that char
acter.

#!/usr/bin/perl -w

use strict;

96 PerlClass.com for ACT Students 20-23 Feb 2007

Operators and functions 5

my $char = chop("Hello"); # $char is now equal to "o"

my $string = "Goodbye";

$char = chop $string;
print $char . "\n"; # "e"
print $string . "\n"; # "Goodby"

The chomp() works similarly, but only removes the last character if it is a new
line. This is very handy for removing extraneous newlines from user input.

5.8.1.4 String substitutions with substr()
The substr() function can be used to return a portion of a string, or to change a
portion of a string.

#!/usr/bin/perl -w

use strict;

my $string = "Hello, world!";
print substr($string, 0, 5); # prints "Hello"

substr($string, 0, 5) = "Greetings";
print $string; # prints "Greetings, world!"

PerlClass.com for ACT Students 20-23 Feb 2007 97

5 Operators and functions

5.9 Numeric functions
There are many numeric functions in Perl, including trig functions and func
tions for dealing with random numbers. These include:
• abs() (absolute value)
• cos(), sin(), and atan2()
• exp() (exponentiation)
• log() (logarithms)
• rand() and srand() (random numbers)
• sqrt() (square root)

98 PerlClass.com for ACT Students 20-23 Feb 2007

Operators and functions 5

5.10 Type conversions
The following functions can be used to force type conversions (if you really
need them):

oct() turns an octal number into its decimal equivalent.

int() truncates a number. It does not round.

hex() turns a hexadecimal number into its decimal equivalent.

chr() turns a decimal number into its character equivalent

ord() turns a character into its decimal equivalent

scalar() provides a scalar context.

my $fatty_decimal = hex(“BEEF”);

my $secret_agent = oct(007);

my $backspace = ord(127); # ASCII BS

my $m = asc('m');

PerlClass.com for ACT Students 20-23 Feb 2007 99

5 Operators and functions

5.11 Manipulating lists and arrays
5.11.1 Stacks and queues

Stacks and queues are special kinds of lists.
A stack can be thought of like a stack of paper on a desk. Things are put onto
the top of it, and taken off the top of it.
A queue, on the other hand, has things added to the end of it and taken out of
the start of it. Queues are also referred to as "FIFO" lists (for "First In, First
Out").
We can simulate stacks and queues in Perl using the following functions:
• push() -- add items to the end of a list
• pop() -- remove items from the end of a list
• shift() -- remove items from the start of a list
• unshift() -- add items to the start of a list
A queue can be created by pushing items onto the end of a list and shifting
them off the front.
A stack can be created by pushing items on the end of a list and popping them
off.

act like a stack

push(@stack,”item”,”item 2”);

my $item = pop(@stack);

act like a queue

push(@queue,”1”,”2”,”3”,”4”,”5,”6”,”7”,”8”);

my $item = shift(@queue); # get 1, 2..8 left

my $newitem = shift(@queue); # get 2, 3..8 left

push(@queue,”9”,”10”,”11”); # add three more

my $thirditem = shift(@queue); # get 3, 4..11 left

unshift(@queue,$thirditem) # put 3 back at the top of the queue

100 PerlClass.com for ACT Students 20-23 Feb 2007

Operators and functions 5

5.11.2 Sorting lists

The sort() function, when used on a list, returns a sorted version of that list. It
does not sort the list in place.
The reverse() function, when used on a list, returns the list in reverse order. It
does not reverse the list in place.

#!/usr/bin/perl -w

my @list = ("a", "z", "c", "m");
my @sorted = sort(@list);
my @reversed = reverse(sort(@list));

5.11.3 Converting lists to strings, and vice versa

The join() function can be used to join together the items in a list into one
string. Conversely, split() can be used to split a string into elements for a list.
To fully appreciate split() will have to wait for regular expressions, but join is
straightforward:

my $glommed_thing = join(“:”,$user,$pass,$uid,$gid);

PerlClass.com for ACT Students 20-23 Feb 2007 101

5 Operators and functions

5.12 Hash processing
The delete() function deletes an element from a hash.
The exists() function tells you whether a certain key exists in a hash.
The keys() and values() functions return lists of the keys or values of a hash,
respectively.

my @keys = keys %hash;

delete $hash{getgone};

if (exists $hash{getgone}) {

print “your Perl is sick”;

}

102 PerlClass.com for ACT Students 20-23 Feb 2007

Operators and functions 5

5.13 Reading and writing files
The open() function can be used to open a file for reading or writing. The
close() function closes a file after you're done with it.

We will cover file-related functions more in _____________

PerlClass.com for ACT Students 20-23 Feb 2007 103

5 Operators and functions

5.14 Time
The time() function returns the current time in UNIX format (that is, the num
ber of seconds since 1 Jan 1970).
The gmtime() and localtime() functions can be used to get a more friendly rep
resentation of the time, either in Greenwich Mean Time or the local time zone.
Both can be used in either scalar or list context.

104 PerlClass.com for ACT Students 20-23 Feb 2007

Operators and functions 5

5.15 Exercises
These exercises range from easy to difficult. Answers are provided in the exer
cises directory (filenames are given with each exercise).

1. Create a scalar variable containing the phrase "There's more than one way
to do it" then print it out in all upper-case (Answer:
exercises/answers/tmtowtdi.pl)

2. Print a random number
3. Print a random item from an array (Answer: exercises/answers/quotes.pl)
4. Print out the third character of a word entered by the user as an argument on

the command line (There's a starter script in exercises/thirdchar.pl and
the answer's in exercises/answers/thirdchar.pl)

5. Print out the date for a week ago (the answer's in
exercises/answers/lastweek.pl

6. Print out a sentence in reverse
a. reverse the whole sentence
b. reverse just the words

(Answer: exercises/answers/reverse.pl)

PerlClass.com for ACT Students 20-23 Feb 2007 105

5 Operators and functions

5.16 Chapter summary
• Perl operators and functions can be used to manipulate data and perform

other necessary tasks
• The difference between operators and functions is blurred; most can behave

in either way
• Chapter 3 of your Camel book, perldoc perlop, perldoc perlfunc, and

perldoc -f functionname can be used to find out detailed information
about operators and functions.

• Functions can accept arguments of various kinds
• Functions may return scalars, lists etc
• Return values may differ depending on whether a function is called in scalar

or list context

106 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 6: Chapter 6: CondiCondi
tional constructstional constructs

In this chapter...

In this section, we look at Perl's various conditional constructs and
how they can be used to provide flow control to our Perl programs.
We also learn about Perl's meaning of Truth and how to test for truth
in various ways.

6 Conditional constructs

6.1 What is a block?
The simplest block is a single statement, for instance:

print "Hello, world!\n";

Sometimes you'll want several statements to be grouped together logically.
That's what we call a block. A block can be executed either in response to some
condition being met, or as an independent chunk of code that's given a name.
Blocks always have curly brackets ({ and }) around them. In C and Java, curly
brackets are optional in some cases - not so in Perl.

{
 $fruit = "apple";
 $howmany = 32;
 print "I'd like to buy $howmany $fruit" . "s.\n";
}

You'll notice that the body of the block is indented from the brackets; this is to
improve readability. Make a habit of doing it.

108 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 50-52
73-74

Camel 2nd 2 97

Camel 3rd 4 113

perldoc perlsyn
perlsyn

Compound statements
Basic BLOCKs

Cookbook 2nd 10 373-374

Learning 3rd 2
4

34-37
56-57

Learning 4th

Conditional constructs 6

6.2 Scope
Something that needs mentioning again at this point is the concept of variable
scoping. You will recall that we use the my function to declare variables when
we're using the strict pragma. The my also scopes the variables so that they are
local to the current block

#!/usr/bin/perl -w

use strict;

my $a = "foo";

{ # start a new block
 my $a = "bar";
 print "$a\n"; # prints bar
}

print $a; # prints foo

Now, onto the situations in which we'll encounter blocks.

PerlClass.com for ACT Students 20-23 Feb 2007 109

6 Conditional constructs

6.3 What is a conditional statement?
A conditional statement is one which allows us to test the truth of some condi
tion. For instance, we might say "If the ticket price is less than ten dollars..." or
"While there are still tickets left..."
You've almost certainly seen conditional statements in other programming lan
guages, so we'll just assume that you get the general idea.

110 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 4 51-53

Camel 2nd 2 95-106

Camel 3rd 4 114-125

perldoc perlsyn

Cookbook 2nd

Learning 3rd 2 34-37

Learning 4th

Conditional constructs 6

6.4 What is truth?
Conditional statements invariably test whether something is true or not. Perl
thinks something is true if it doesn't evaluate to zero (0), an empty string (""),
or undefined.

42 # true

0 # false

"0" # false, because perl switches it to a number when

it

 # needs to

"wibble" # true

$new_variable # false (if we haven't set it to anything, it's

 # undefined)

PerlClass.com for ACT Students 20-23 Feb 2007 111

RTFM!
Src Chap Pgs #

Nutshell 2nd

Camel 2nd 1 20-21 What is truth?

Camel 3rd 1 29-30 What is truth?

perldoc
Cookbook 2nd

Learning 3rd 2 34-35

Learning 4th

6 Conditional constructs

6.5 Comparison operators
We can compare things, and find out whether our comparison statement is true
or not. The operators we use for this are:

Table 6-1. Comparison operators
Operator Example Meaning

== $a == $b Equality (same as in C and other C-like
languages)

!= $a != $b Inequality (again, C-like)
< $a < $b Less than
> $a > $b Greater than
<= $a <= $b Less than or equal to
>= $a >= $b Greater than or equal to

If we're comparing strings, we use a slightly different set of comparison opera
tors, as follows:

Table 6-2. String comparison operators
Operator Meaning

eq Equality
ne Inequality
lt Less than (in "asciibetical" order)
gt Greater than
le Less than or equal to
ge Greater than or equal to

Some examples:

69 > 42 # true

"0" == 3 - 3 # true

'apple' gt 'banana' # false; apple is alphabetically before

 # banana

1 + 2 == "3com" # true - 3com is evaluated in numeric

 # context because we used == not eq

112 PerlClass.com for ACT Students 20-23 Feb 2007

Conditional constructs 6

Assigning undef to a variable name undefines it again, as does using the undef
function with the variable's name as its argument.

6.5.1 Existence and Defined-ness
We can also check whether things are defined (something is defined when it's
had a value assigned to it), or whether an element of a hash exists.
To find out if something is defined, use Perl's defined function. You can't just
use the name of the variable because the variable can be defined an still evalu
ate to false - for example, if you assign it the value 0.

$skippy = "bush kangaroo";

if (defined($skippy)) {

 print "Skippy is defined.\n";

} else {

 print "Skippy is undefined.\n";

}

To find out if an element of a hash exists, use the exists function:

my %animals = (

 "Skippy" => "bush kangaroo",

 "Flipper" => "faster than lighting",

PerlClass.com for ACT Students 20-23 Feb 2007 113

RTFM!
Src Chap Pgs #

Nutshell 2nd 5 99

Camel 2nd 3 155

Camel 3rd 29 697

perldoc -f defined

Cookbook 2nd

Learning 3rd 2 38

Learning 4th

6 Conditional constructs

);

if (exists($animals{"Blinky Bill"}) {

 print "Blinky Bill exists.\n";

} else {

 print "Blinky Bill doesn't exist.\n";

}

One last quick example to clarify existence, definedness and truth:

my %miscellany = (

 "apple" => "red", # exists, defined, true

 "howmany" => 0, # exists, defined, false

 "koala" => undef, # exists, undefined, false

);

if (exists($miscellany{"wombat"})) { # doesn't exist

 print "Wombat exists\n";

} else {

 print "We have no wombats here.\n"; # this will happen

}

114 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 5 103

Camel 2nd 3 164

Camel 3rd 29 710

perldoc -f exists

Cookbook 2nd 5 153 - 154

Learning 3rd 5 83

Learning 4th

Conditional constructs 6

6.5.2 Boolean logic operators
Boolean logic operators can be used to combine two or more Perl statements,
either in a conditional test or elsewhere.
The short circuit operators come in two flavours: line noise, and English. Both
do similar things but have different precedence. This causes great confusion.
There are two ways of avoiding this: use lots of brackets, or read page 89 of the
Camel book very, very carefully.

Table 6-3. Boolean logic operators
English-like C-style Example Result

and && $a && $b True if both $a and $b are
true; acts on $a then if $a is
true, goes on to act on $b.

or || $a || $b True if either of $a and $b are
true; acts on $a then if $a is
false, goes on to act on $b.

Here's how you can use them to combine conditions in a test:

$a = 1;

$b = 2;

$a == 1 and $b == 2 # true

PerlClass.com for ACT Students 20-23 Feb 2007 115

Advanced
Alright, if you insist: and and or operators have very low
precedence (i.e. they will be evaluated after all the other op
erators in the condition) whereas && and || have quite high
precedence and may require parentheses in the condition to
make it clear which parts of the statement are to be evaluated
first.

6 Conditional constructs

$a == 1 or $b == 5 # true

$a == 2 or $b == 5 # false

($a == 1 and $b == 5) or $b == 2 # true (parenthesized expression

 # evaluated first)

6.5.3 Using boolean logic operators as short circuit
operators

These operators aren't just for combining tests in conditional statements --- they
can be used to combine other statements as well.
Here's a real, working example of the || short circuit operator:

open(INFILE, "input.txt") or die("Can't open input file: $!");

What is it doing?

The && operator is less commonly used outside of conditional tests, but is still
very useful. Its meaning is this: If the first operand returns true, the second will
also happen. As soon as you get a false value returned, the expression stops
evaluating.

($day eq 'Friday') and print "Have a good weekend!\n";

The typing saved by the above example is not necessarily worth the loss in
readability, especially as it could also have been written:

116 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 5 118

Camel 2nd 3 191

Camel 3rd 29 747

perldoc -f open

Cookbook 2nd

Learning 3rd 11 150 - 151

Learning 4th

Conditional constructs 6

print "Have a good weekend!\n" if $day eq 'Friday';

if ($day eq 'Friday') {
 print "Have a good weekend!\n";
}

...or any of a dozen other ways. That's right, there's more than one way to do it.
The most common usage of the short circuit operators, especially || (or or) is
to trap errors, such as when opening files or interacting with the operating sys
tem.

PerlClass.com for ACT Students 20-23 Feb 2007 117

RTFM!
Src Chap Pgs #

Nutshell 2nd

Camel 2nd 2 89 short circuit
operators

Camel 3rd 3 102

perldoc
Cookbook 2nd

Learning 3rd 10 143

Learning 4th

6 Conditional constructs

6.6 Types of conditional constructs
You'll have noticed that we snuck in something new in the last section -- the if
construct. It probably didn't surprise you much - you'll have seen something
similar in just about every programming language. (Bonus points will not be
given for naming programming languages which have no "if" construct.)

6.6.1 if statements
The if construct goes like this:

if (conditional statement) {

 # BLOCK

} elsif (conditional statement) {

 # BLOCK

} else {

 # BLOCK

}

Both the elsif and else parts of the above are optional, and of course you can
have more than one elsif. elsif is also spelt differently to other languages'
equivalents - C programmers should take especial note to not use else if.
If you're testing for something negative, it can sometimes make sense to use the
similar-but-opposite construct, unless.

unless (conditional statement) {

 # BLOCK

}

There is no such thing as an "elsunless" (thank the gods!), and if you find your
self using an else with unless then you should probably have written it as an if
test in the first place.
There's also a shorthand, and more English-like, way to use if and unless:

print "We have apples\n" if $apples;

print "Yes, we have no bananas\n" unless $bananas;

118 PerlClass.com for ACT Students 20-23 Feb 2007

Conditional constructs 6

6.6.2 while loops
We can repeat a block while a given condition is true:

while (conditional statement) {

 # BLOCK

}

my $hunger = 5;

while ($hunger) {

 print "Feed me!\n";

 $hunger--;

}

The logical opposite of this is the "until" construct:

my $full = 0;

until ($full) {

 print "Feed me!\n";

 $full++;

}

6.6.3 for and foreach
Perl has a for construct identical to C and Java:

for ($count = 0; $count <= $enough; $count++) {

 print "Had enough?\n";

}

However, since we often want to loop through the elements of an array, we
have a special "shortcut" looping construct called foreach, which is similar to
the construct available in some UNIX shells. Compare the following:

using a for loop

for ($i = 0; $i <= $#array; $i++) {

 print $array[$i] . "\n";

PerlClass.com for ACT Students 20-23 Feb 2007 119

6 Conditional constructs

}

using foreach

foreach (@array) {

 print "$_\n";

}

There are some examples of foreach in exercises/foreach.pl

foreach(n..m) can be used to automatically generate a list of numbers between n and
m.

We can loop through hashes easily too, using the keys function to return the
keys of a hash as an list that we can use:

foreach $key (keys %monthdays) {

 print "There are $monthdays{$key} days in $key.\n";

}

We'll look at hash functions later.

6.6.4 Exercises
1. Set a variable to a numeric value, then create an if statement as follows:

a. If the number is less than 3, print "Too small"
b. If the number is greater than 7, print "Too big"
c. Otherwise, print "Just right"

2. Set two variables to your first and last names. Use an if statement to print
out whichever of them comes first in the alphabet.

3. Use a while loop to print out a numbered list of the elements in an array
4. Now do it with a foreach loop
5. Now do it with a hash, printing out the keys and values for each item (hint:

look up the keys function in your Camel book)
Answers are given in exercises/answers/loops.pl

120 PerlClass.com for ACT Students 20-23 Feb 2007

Conditional constructs 6

6.7 Practical uses of while loops: taking input
from STDIN

STDIN is the standard input stream for any UNIX program. If a program is in
teractive, it will take input from the user via STDIN. Many UNIX programs ac
cept input from STDIN via pipes and redirection. For instance, the UNIX cat
utility prints out any file it has redirected to its STDIN:

$ cat < hello.pl

UNIX also has STDOUT (the standard output) and STDERR (where errors are
printed to).
We can get a Perl script to take input from STDIN (standard input) and do
things with it by using the line input operator, which is a set of angle brackets
with the name of a filehandle in between them:

my $user_input = <STDIN>;

The above example takes a single line of input from STDIN. The input is termi
nated by the user hitting Enter. If we want to repeatedly take input from
STDIN, we can use the line input operator in a while loop:

#!/usr/bin/perl -w

while ($_ = <STDIN>) {

 # do some stuff here, if you want...

 print; # NOTE: print takes $_ as its default argument

]

Conveniently enough, the while statement can be written more succinctly, be
cause in these circumstances, the line input operator assigns to $_ by default:

while (<STDIN>) {

 print;

}

PerlClass.com for ACT Students 20-23 Feb 2007 121

6 Conditional constructs

Better yet, the default filehandle used by the line input operator is STDIN, so
we can shorten the above example yet further:

while (<>) {

 print;

}

As always, there's more than one way to do it.
The above example script (which is available in your directory as
exercises/cat.pl) will basically perform the same function as the UNIX cat
command; that is, print out whatever's given to it through STDIN.
Try running the script with no arguments. You'll have to type some stuff in, line
by line, and type CTRL-D (a.k.a. ^D) when you're ready to stop. ^D indicates
end-of-file (EOF) on most UNIX systems.
Now try giving it a file by using the shell to redirect its own source code to it:

perl exercises/cat.pl < exercises/cat.pl

This should make it print out its own source code.

122 PerlClass.com for ACT Students 20-23 Feb 2007

Conditional constructs 6

6.8 Best practices template for file
manipulation

Its a good idea to follow this template when reading and writing from files:

my $filename = 'filename'; # the filename

my $fh;

open($fh, "<", $filename) or die "couldn't open $filename for read

($!)";

while(my $line = <$fh>) {

chomp($line);

do whatever else you want to do with it

}

close($fh) or die "couldn't close $filename ($!)";

There are a couple of points to note about this. The first would be the use of
the 3-argument open(). Another would be stooring the filename in a scalar for
use in error messages. die()ing on open() and close() is considered good form
and the system-provided error ($!) can be very helpful.

PerlClass.com for ACT Students 20-23 Feb 2007 123

6 Conditional constructs

6.9 Named blocks
Blocks can be given names, thus:

#!/usr/bin/perl -w

LINE: while (<STDIN>) {

 ...

}

By tradition, the names of blocks are in upper case. The name should also re
flect the type of thing you are iterating over -- in this case, a line of text from
STDIN.

124 PerlClass.com for ACT Students 20-23 Feb 2007

Conditional constructs 6

6.10 Breaking out of loops
You can break out of loops using next, last and similar statements.

#!/usr/bin/perl -w

LINE: while (<STDIN>) {

 chomp; # remove newline

 next LINE if $_ eq ''; # skip blank lines

 last LINE if lc($_) eq 'q'; # quit

}

The LINE indicating the block to break out of is optional (it defaults to the cur
rent smallest loop), but can be very useful when you wish to break out of a loop
higher up the chain:

#!/usr/bin/perl -w

LINE: while (<STDIN>) {

 chomp; # remove newline

 next LINE if $_ eq ''; # skip blank lines

 # we split the line into words and check all of them

 foreach (split $_) {

 last LINE if lc($_) eq 'quit'; # quit

 }

}

PerlClass.com for ACT Students 20-23 Feb 2007 125

6 Conditional constructs

6.11 Chapter summary
• A block in Perl is a series of statements grouped together by curly brackets.

Blocks can be used in conditional constructs and subroutines.
• A conditional construct is one which executes statements based on the truth

of a condition
• Truth in Perl is determined by testing whether something is NOT any of:

numeric zero, the null string, or undefined
• The if - elsif - else conditional construct can be used to perform certain

actions based on the truth of a condition
• The while, for, and foreach constructs can be used to repeat certain

statements based on the truth of a condition.
• A common practical use of the while loop is to read each line of a file.
• Blocks may be named using the NAME: convention
• You can break out of blocks using next, last and similar statements

126 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 7: Chapter 7: SubSub
routinesroutines

In this chapter...

In this chapter, we look at subroutines and how they can be used to
simplify your code.

7 Subroutines

7.1 Introducing subroutines
If you have a long Perl script, you'll probably find that there are parts of the
script that you want to break out into subroutines. In particular, if you have a
section of code which is repeated more than once, it's best to make it a subrou
tine to save on maintenance (and, of course, linecount).
A subroutine is basically a little self-contained mini-program in the form of
block which has a name, and can take arguments and return values:

the general case

sub name {

 BLOCK

}

the specific case

sub print_headers {

 print "Programming Perl, 2nd ed\n";

 print "by\n";

 print "Larry Wall et al.\n";

}

128 PerlClass.com for ACT Students 20-23 Feb 2007

Subroutines 7

7.2 Calling a subroutine
A subroutine can be called in either of the following ways:

&print_headers;
print_headers();

If (for some reason) you've got a subroutine that clashes with a reserved func
tion or something, you will need to prefix your function name with & (amper
sand) to be perfectly clear. You should avoid doing this anyway; overloading
built-in functions can cause more confusion than it's worth.

PerlClass.com for ACT Students 20-23 Feb 2007 129

Advanced
There are other times when you need to use an ampersand on
your subroutine name, such as when a function needs a
SUBROUTINE type of parameter, or when making an
anonymous subroutine reference.

7 Subroutines

7.3 Passing arguments to a subroutine
You can pass arguments to a subroutine by including them in the brackets when
you call it. The arguments end up in an array called @_ which is only visible in
side the subroutine.

print_headers("Programming Perl, 2nd ed", "Larry Wall et al");

we can also pass variables to a subroutine by name...
my $fiction_title = "Lord of the Rings";
my $fiction_author = "J.R.R. Tolkein";
print_headers($fiction_title, $fiction_author);

sub print_headers {
 my ($title, $author) = @_;
 print "$title\n";
 print "by\n";
 print "$author\n";
}

You can take any number of scalars in as arguments - they'll all end up in @_ in
the same order you gave them.

130 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 5 132

Camel 2nd 3 215 shift()

Camel 3rd 1
9
29

33
268
785

shift()

perldoc -f shift

Cookbook 2nd 4 143 circular lists

Learning 3rd 3 47

Learning 4th

Subroutines 7

7.4 Returning values from a subroutine
To return a value from a subroutine, simply use the return function.

sub print_headers {

 my ($title, $author) = @_;

 return "$title\nby\n$author\n\n";

}

sub sum {

 my $total;

 foreach my $x (@_) {

 $total = $total + $x;

 }

 return $total;

}

You can also return lists from your subroutine:

subroutine to return the first three arguments passed to it

sub firstthree {

 return @_[0..2];

}

my @three_items = firstthree("x", "y", "z", "a", "b");

sets @three_items to ("x", "y", "z");

PerlClass.com for ACT Students 20-23 Feb 2007 131

7 Subroutines

7.5 Exercises
1. Write a subroutine which prints out its first argument

2. Modify the above subroutine to also print out the last argument
3. Now change it to compare the first and last arguments and return the one

which is numerically larger (you'll want to use an if statement for that)

132 PerlClass.com for ACT Students 20-23 Feb 2007

Subroutines 7

7.6 Chapter summary
• A subroutine is a named block which can be called from anywhere in your

Perl program
• Subroutines can accept parameters, which are available via the special array
@_

• Subroutines can return scalar or list values.

PerlClass.com for ACT Students 20-23 Feb 2007 133

Chapter 8: Chapter 8: RegularRegular
expressionsexpressions

In this chapter...

In this chapter we begin to explore Perl's powerful regular expression
capabilities, and use regular expressions to perform matching and
substitution operations on text.

8 Regular expressions

8.1 What are regular expressions?
The easiest way to explain this is by analogy. You will probably be familiar
with the concept of matching filenames under DOS and UNIX by using wild
cards - *.txt or /usr/local/* for instance. When matching filenames, an aster
isk can be used to match any number of unknown characters, and a question
mark matches any single character. There are also less well-known filename
matching characters.
Regular expressions are similar in that they use special characters to match text.
The differences are that any kind of text can be matched, and that the set of spe
cial characters is different.
Regular expressions are also known as REs, regexes, and regexps.

136 PerlClass.com for ACT Students 20-23 Feb 2007

Advanced
If you have a mathematical background, you may like
to think of a regexp as a definition of a set of strings.
For instance, a regexp may describe the set of all
strings which begin with the letter "a".

Regular expressions 8

8.2 Regular expression operators and functions

8.2.1 m/PATTERN/ - the match operator
The most basic regular expression operator is the matching operator, m/PAT
TERN/.
• Works on $_ by default.
• In scalar context, returns true (1) if the match succeeds, or false (the empty

string) if the match fails.
• In list context, returns a list of any parts of the pattern which are enclosed in

parentheses. If there are no parentheses, the entire pattern is treated as if it
were parenthesized.

• The m is optional if you use slashes as the pattern delimiters.
• If you use the m you can use any delimiter you like instead of the slashes. This

is very handy for matching on strings which contain slashes, for instance
directory names or URLs.

• Using the /i modifier on the end makes it case insensitive.

while (<>) {

 print if m/foo/; # prints if a line contains "foo"

 print if m/foo/i; # prints if it contains "foo", "FOO", etc

 print if /foo/i; # exactly the same; the m is optional

 print if m!http://!; # using ! as an alternative delimiter

}

8.2.2 s/PATTERN/REPLACEMENT/ - the substitution
operator

This is the substitution operator, and can be used to find text which matches a
pattern and replace it with something else.
• Works on $_ by default.
• In scalar context, returns the number of matches found and replaced.
• In list context, behaves the same as in scalar context and returns the number

of matches found and replaced.

PerlClass.com for ACT Students 20-23 Feb 2007 137

8 Regular expressions

• You can use any delimiter you want, the same as the m// operator.
• Using /g on the end of it matches globally, otherwise matches (and replaces)

only the first instance of the pattern.
• Using the /i modifier makes it case insensitive.

fix some misspelt text

while (<>) {

 s/freind/friend/g;

 s/teh/the/g;

 s/jsut/just/g;

 print;

}

The above example can be found in exercises/spellcheck.pl.

138 PerlClass.com for ACT Students 20-23 Feb 2007

Regular expressions 8

8.3 Binding operators
If we want to use m// or s/// to operate on something other than $_ we need to
use binding operators to bind the match to another string.

Table 8-1. Binding operators
Operator Meaning
=~ True if the pattern matches
!~ True if the pattern doesn't match

print "Please enter your homepage URL: ";

my $url = <STDIN>;

if ($url =~ /geocities/) {

 print "Ahhh, I see you have a geocities homepage!\n";

}

PerlClass.com for ACT Students 20-23 Feb 2007 139

8 Regular expressions

8.4 Metacharacters
The special characters we use in regular expressions are called metacharacters,
because they are characters that describe other characters.

8.4.1 Some easy metacharacters
Table 8-2. Regular expression metacharacters

Metacharacter(s) Matches...
^ Start of string
$ End of string
. Any single character except \n (though special

things can happen in multiline mode)
\n Newline (subtly different to $ - when working

in multiline mode, there may be newlines
embedded in the multiline string you're
working with.

\t Matches a tab
\s Any whitespace character, such as space or tab
\S Any non-whitespace character
\d Any digit (0 to 9)
\D Any non-digit
\w Any "word" character - alphanumeric plus

underscore (_)
\W Any non-word character
\b A word break - the zero-length point between a

word character (as defined above) and a non-
word character.

140 PerlClass.com for ACT Students 20-23 Feb 2007

Regular expressions 8

Any character that isn't a metacharacter just matches itself. If you want to
match a character that's normally a metacharacter, you can escape it by preced
ing it with a backslash
Some quick examples:

Perl regular expressions are usually found within slashes - the

matching operator/function which we will see soon.

/cat/ # matches the three characters

 # c, a, and t in that order.

/^cat/ # matches c, a, t at start of line

/\scat\s/ # matches c, a, t with spaces on either side

/\bcat\b/ # same as above, but won't include the

 # spaces in the text it matches

we can interpolate variables just like in strings:

my $animal = "dog" # we set up a scalar variable

/$animal/ # matches d, o, g

/$animal$/ # matches d, o, g at end of line

/\$\d\.\d\d/ # matches a dollar sign, then a digit,

 # then a dot, then another digit, then

 # another digit, eg $9.99

PerlClass.com for ACT Students 20-23 Feb 2007 141

RTFM!
Src Chap Pgs #

Nutshell 2nd 4 67 - 73

Camel 2nd 2 58 - 68

Camel 3rd 5 158 - 164

perldoc perlre

Cookbook 2nd

Learning 3rd 7 100

Learning 4th

8 Regular expressions

8.5 Quantifiers
What if, in our last example, we'd wanted to say "Match a dollar, then any num
ber of digits, then a dot, then two more digits"? What we need are quantifiers.

Table 8-3. Regular expression quantifiers
Quantifier Meaning
? 0 or 1
* 0 or more
+ 1 or more
{n} match exactly n times
{n,} match n or more times
{n,m} match between n and m times

Some examples of quantifiers:

x? # 0 or 1 "x"

x* # 0 or more "x"

x+ # 1 or more "x"

x{5} # exactly 5 "x"

x{5,} # 5 or more "x"

x{5,10} # 5-10 "x"

bore*d # "bor", 0 or more "e", "d"

.* # 0 or more of anything

.+ # 1 or more of anything

[]*=[]* # match an "=" with optional spaces on either side

142 PerlClass.com for ACT Students 20-23 Feb 2007

Regular expressions 8

8.6 Greediness
Regular expressions are, by default, "greedy". This means that any regular ex
pression, for instance .*, will try to match the biggest thing it possibly can.
Greediness is sometimes referred to as "maximal matching".
To change this behavior, follow the quantifier with a question mark, for exam
ple .*?. This is sometimes referred to as "minimal matching".

$string = "abracadabra";

/a.*a/ # greedy -- matches "abracadabra"
/a.*?a/ # not greedy -- matches "abra"

PerlClass.com for ACT Students 20-23 Feb 2007 143

8 Regular expressions

8.7 Exercises
1. You now know enough to work out the price example above. Work it

through.
2. Another example: what regular expression would match the word "colour"

with either British or American spellings?
3. How can we match any four-letter word?

144 PerlClass.com for ACT Students 20-23 Feb 2007

Regular expressions 8

8.8 Character classes
A character class can be used to find a single character that matches any one of
a given set of characters.
Let's say you're looking for occurences of the word "grey" in text, then remem
ber that the American spelling is "gray". The way we can do this is by using
character classes. Character classes are specified using square brackets, thus:
/gr[ea]y/
We can also use character sequences by saying things like [A-Z] or [0-9]. The
sequences \d and \w can easily be expressed as character classes: [0-9] and [a-
zA-Z0-9_] respectively.
We can negate a character class by putting a caret at the start of it. That's right,
the same character that we used to match the start of the line. Larry Wall has
written that Perl does anything you want -- unless you want consistency, and it
has also been said that consistency is the hobgoblin of small minds. Therefore,
we'll learn about these character class inconsistencies, learn to love them, and
flatter ourselves that we do not have small minds.
 Here are some of the special rules that apply inside character classes. I make
no guarantee that this is a complete list; additions are always welcome.
• ^ at the start of a character class negates the character class, rather than

specifying the start of a line.
• - specifies a range of characters.
• $. () \{\ * +} and other metacharacters taken literally.

8.8.1 Exercises as a group

Your trainer will help you do the following exercises as a group.
1. How would we find any word starting with a letter in the first half of the

alphabet, or with X, Y, or Z?
2. What regular expression could be used for any word that starts with letters

other than those listed in the previous example.
3. There's almost certainly a problem with the regular expression we've just

created - can you see what it might be?

PerlClass.com for ACT Students 20-23 Feb 2007 145

8 Regular expressions

8.9 Alternation
The problem with character classes is that they only match one character. What
if we wanted to match any of a set of longer strings, like a set of words?
The way we do this is to use the pipe symbol | for alternation:

/cat|dog|budgie/ # matches any of our pets

Now we come up against another problem. If we write something like:

/^cat|dog|budgie$/

...to match any of our pets on a line by itself, what we're actually matching is:
"the start of the string followed by cat; or dog; or budgie followed by the end of
the string". This is not what we originally intended. To fix this, we enclose our
alternation in round brackets:

/^(cat|dog|budgie)$/

a simple matching program to get some email headers and print them
out

while (<>) {
 print if /^(From|Subject|Date):\s/;
}

The above email example can be found in exercises/mailhdr.pl.

146 PerlClass.com for ACT Students 20-23 Feb 2007

Regular expressions 8

8.10 The concept of atoms
Round brackets bring us neatly into the concept of atoms. The word "atom" de
rives from the Greek atomos meaning "indivisible" (little did they know!).
What we use it to mean is "something that is a chunk of regular expression in
its own right" -- as opposed to "something that can wipe out cities with a single
blast".
Atoms can be arbitrarily created by simply wrapping things in round brackets -
handy for indicating grouping, using quantifiers for the whole group at once,
and for indicating which bit(s) of a matching function should be the returned
value (but we'll deal with that later).
In the example above, there are three atoms:

1. start of line
2. cat or dog or budgie
3. end of line

How many atoms were there in our dollar prices example earlier?
Atomic groupings can have quantifiers attached to them. For instance:

match a consonant followed by a vowel twice in a row
eg "tutu"
/([^aeiou][aeiou]){2}/

match three or more words starting with "a" in a row
eg "all angry animals"
/(\ba\w+\b\s*){3,}

PerlClass.com for ACT Students 20-23 Feb 2007 147

8 Regular expressions

8.11 Exercises
1. Determine whether your name appears in a string (an answer's in

exercises/answers/namere.pl).
2. Remove footnote references (like [1]) from some text (see

exercises/footnote.txt for some sample text, and
exercises/answers/footnote.pl for an answer).

3. Split tab-separated data into an array then print out each element using a
foreach loop.

148 PerlClass.com for ACT Students 20-23 Feb 2007

Regular expressions 8

8.12 split() function

The split() function provides a convenient way to take a scalar and use a regular
expression to represent some definition of separator and it gives back the data
between those seperators. Some examples will make this seem much easier:

split a sentence based on spaces
my $words = "This is a sentence.";

my @words = split(/ /,$words);

split the time on the colons

my $time = "01:23:45";

my @timeparts = split(/:/,$time);

PerlClass.com for ACT Students 20-23 Feb 2007 149

8 Regular expressions

8.13 Exercises

1. Use split() to turn a full name into name parts.

2. Use split() to turn a string containing the alphabet
($alpha="abcedfghijklmnopqrstuvwxyz) to produce an array containing
one letter per cell.

150 PerlClass.com for ACT Students 20-23 Feb 2007

Regular expressions 8

8.14 Chapter summary
• Regular expressions are used to perform matches and substitutions on strings
• Regular expressions can include meta-characters (characters with a special

meaning, which describe sets of other characters) and quantifiers
• Character classes can be used to specify any single instance of a set of

characters
• Alternation may be used to specify any of a set of sub-expressions
• The matching operator is m/PATTERN/ and acts on $_ by default
• The substitution operator is s/PATTERN/REPLACEMENT/ and acts on $_ by

default
• Matches and substitutions can be performed on strings other than $_ by using

the =~ binding operator
• Functions such as split() and grep() use regular expression patterns as one

of their arguments

PerlClass.com for ACT Students 20-23 Feb 2007 151

Chapter 9: Chapter 9: PracticalPractical
exercisesexercises

This chapter provides you with some broader exercises to test your
new Perl skills. Each exercise requires you to use a mixture of vari
ables, operators, functions, conditional and looping constructs, and
regular expressions.

9 Practical exercises

9.1 Exercises
There are no right or wrong answers. Remember, "There's More Than One Way
To Do It."

1. Write a simple menu system where the user is repeatedly asked to choose a
message to display or Q to quit.

a. Consider case-sensitivity
b. Handle errors cleanly

2. Write a "chatterbox" program that holds a conversation with the user by
matchings patterns in the user's input.

3. Write a program that gives information about files.
a. use file test operators
b. offer to print the file out if it's a text file
c. how will you cope with files longer than a screenful?

154 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 10: Chapter 10: File I/OFile I/O

In this chapter...

In this section, we learn how to open and interact with files and direc
tories in various ways.

10 File I/O

10.1 Assumed knowledge
You should already have encountered the open() function and the <> line input
operator in a previous Perl training session or in your previous Perl experience.

156 PerlClass.com for ACT Students 20-23 Feb 2007

File I/O 10

10.2 Angle brackets - the line input and globbing
operators

You will have encountered the line input operator <> before, in situations such
as these:

reading lines from STDIN
while (<>) {
 ...
 ...
}

reading a single line of user input from STDIN
my $input = <STDIN>

• In scalar context, the line input operator yields the next line of the file refer
enced by the filehandle given.

• In list context, the line input operator yields all remaining lines of the file ref
erenced by the filehandle.

• The default filehandle is STDIN, or any files listed on the command line of the
Perl script (eg myscript.pl file1 file2 file3).

PerlClass.com for ACT Students 20-23 Feb 2007 157

RTFM!
Src Chap Pgs #

Nutshell 2nd 4 78 read it now

Camel 2nd 2 53

Camel 3rd 2 80 - 83

perldoc perlop I/O Operators

Cookbook 2nd 8 300 - 302

Learning 3rd 11 155 - 156

Learning 4th 5 70 - 72

<> is also known as the diamond operator.

10 File I/O

The globbing operator is nearly, but not quite, identical to the line input opera
tor. It looks the same, and it acts partly in a similar way, but it really is a sepa
rate operator.

If the angle brackets have anything in them other than a filehandle or nothing, it
will work as a globbing operator and whatever is between the angle brackets
will be treated as a filename wildcard. For instance:

my @files = <*.txt>

The filename glob *.txt is matched against files in the current directory, then
either they are returned as a list (in list context, as above) or one scalar at a time
(in scalar context).
If you get a list of files this way, you can then open them in turn and read from
them.

while (<*.txt>) {
 open (FILEHANDLE, $_) || die ("Can't open $_: $!");
 ...
 ...
 close FILEHANDLE;
}

The glob() function behaves in a very similar manner to the angle bracket glob
bing operator.

158 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 5 111

Camel 2nd 2 55 - 57

Camel 3rd 2 83 - 85

perldoc perlop I/O Operators

Cookbook 2nd 9 358 - 359

Learning 3rd 12 169 - 170

Learning 4th 12 165 - 166

File I/O 10

my @files = glob("*.txt")

foreach (glob "*.txt") {
 ...
}

The glob() is considered much cleaner and better to use than the angle-brackets
globbing operator.

10.2.1 Exercises
1. Use the line input operator to accept input from the user then print it out
2. Modify your previous script to use a while loop to get user input repeatedly,

until they type "Q" (or "q" - check out the lc() and uc() functions in
chapter 3 of your Camel book) (Answer: exercises/answers/userinput.pl)

3. Use the file globbing function or operator to find all Perl scripts in your
home directory and print out their names (assuming they are named in the
form *.pl) (Answer: exercises/answers/findscripts.pl)

10.2.1.1 Advanced exercises
1. Use the above example of globbing to print out all the Perl scripts one after

the other. You will need to use the open() function to read from each file in
turn. (Answer: exercises/answers/printscripts.pl)

PerlClass.com for ACT Students 20-23 Feb 2007 159

10 File I/O

10.3 open() and friends - the gory details

10.3.1 Opening a file for reading, writing or appending
The open() function is used to open a file for reading or writing (or both, or as a
pipe - more on that later).

In a typical situation, we might use open() to open and read from a file:

open(LOGFILE, "/var/log/httpd/access.log")

Note that the < (less than) used to indicate reading is assumed; we could equally
well have said "</var/log/httpd/access.log".
You should always check for failure of an open() statement:

open(LOGFILE, "/var/log/httpd/access.log") || die "Can't open
 /var/log/httpd/access.log: $!";

160 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 5 118 - 119

Camel 2nd 3 191 - 195

Camel 3rd 29 747 - 755

perldoc -f open read it now

Cookbook 2nd 7 247 - 252

Learning 3rd 11 150 - 151

Learning 4th 5 79 - 81

File I/O 10

Once a file is opened for reading or writing, we can use the filehandle we speci
fied (in this case LOGFILE) for a variety of useful purposes:

open(LOGFILE, "/var/log/httpd/access.log") || die "Can't open
 /var/log/httpd/access/log: $!";

use the filehandle in the in the <> line input operator...
while (<LOGFILE>) {
 print if /PerlClass.com.com.au/;
}

close LOGFILE;

open a new logfile for appending
open(SCRIPTLOG, ">>myscript.log") || die "Can't open myscript.log: $!";

print() takes an optional filehandle argument - defaults to STDOUT
print SCRIPTLOG "Opened logfile successfully.\n";

close SCRIPTLOG;

Note that you should always close a filehandle when you're finished with it
(though admittedly any open filehandles will be automatically closed when
your script exits).

PerlClass.com for ACT Students 20-23 Feb 2007 161

RTFM!
Src Chap Pgs #

Nutshell 2nd 4 55

Camel 2nd 2 134

Camel 3rd

perldoc perlvar aka $ERRNO

Cookbook 2nd

Learning 3rd 11 153 - 154

Learning 4th 5 82 - 84

10 File I/O

10.3.1.1 Exercises
1. Write a script which opens a file for reading. Use a while loop to print out

each line of the file.
2. Use the above script to open a Perl script. Use a regular expression to print

out only those lines not beginning with a hash character (i.e. non-comment
lines). (Answer: exercises/answers/delcomments.pl)

3. Create a new script which opens a file for writing. Write out the numbers 1
to 100 into this file. (Answer: exercises/answers/100count.pl)

4. Create a new script which opens a logfile for appending. Create a while
loop which accepts input from STDIN and appends each line of input to the
logfile. (Answer: exercises/answers/logfile.pl)

5. Create a script which opens two files, reads input from the first, and writes
it out to the second. (Answer: exercises/answers/readwrite.pl)

10.3.2 Reading directories
It is also possible to open directories (using opendir() and read from them.
However, it is not possible to read the contents of files in that directory simply
by opening it and looping through it. Opening a directory simply makes the
filenames in that directory accessible via functions such as readdir().

162 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 5 138

Camel 2nd 3 229

Camel 3rd 29 808 - 809

perldoc -f sysopen

Cookbook 2nd 7 247 - 252

Learning 3rd

Learning 4th

File I/O 10

opendir(HOMEDIR, $ENV{HOME});

my @files = readdir(HOMEDIR);

closedir HOMEDIR;

foreach (@files) {
 open(THISFILE, "<$_") || die "Can't open file $_: $!");
 ...
 ...
 close THISFILE;
}

10.3.2.1 Exercises
1. Use opendir() and readdir() to obtain a list of files in a directory. What

order are they in?
2. Use the sort() function to sort the list of files asciibetically (Answer:

exercises/answers/dirlist.pl)

10.3.3 Opening files for simultaneous read/write
Files can be opened for simultaneous read/write by putting a + in front of the >
or < sign. +< is almost always preferable, however, as +> would overwrite the

PerlClass.com for ACT Students 20-23 Feb 2007 163

RTFM!
Src Chap Pgs #

Nutshell 2nd 5
5

119
125

opendir
readdir

Camel 2nd 3
3

195
202

opendir
readdir

Camel 3rd 29
29

755
770

opendir
readdir

perldoc -f opendir
-f readdir

Cookbook 2nd 9 356 - 358

Learning 3rd 12 171 - 173

Learning 4th 12 167 - 168

10 File I/O

file before you had a chance to read from it.
Read/write access to a file is not as useful as it sounds --- you can't write into
the middle of the file using this method, only onto the end. The main use for
read/write access is to read the contents of a file and then append lines to the
end of it.
A more flexible way to read and write a file is to import the file into an array,
manipulate the array, then output each element again.

program to remove duplicate lines
open(INFILE, "file.txt") || die "Can't open file.txt for input: $!";
my @lines = <INFILE>;
close INFILE;

dup-remover taken from The Perl Cookbook
my @unique = grep { ! $seen{$_} ++ } @lines;

open(OUTFILE, ">file.txt") || die "Can't open file.txt for output: $!";
foreach (@unique) {
 print OUTFILE $_;
}

close OUTFILE;

One thing to watch out for here is memory usage. If you have a ten megabyte file, it will
use at least that much memory as a Perl data structure.

10.3.3.1 Exercises
1. Open a file, reverse its contents (line by line) and write it back to the same

filename (Answer: exercises/answers/reversefile.pl)

10.3.4 Opening pipes
If the filename given to open() begins with a pipe symbol (|), the filename is
interpreted as a command to which output is to be piped, and if the filename
ends with a |, the filename is to be interpreted as a filename which pipes input
to us.
This is often used when you want to take input from the system a line at a time.
Here's an example which reads from the rot13 filter (a simple routine which ro
tates the letters of its input by 13 letters, providing a very simple cipher for en
coding the answers to jokes, spoilers to movies, or other low-security informa
tion):

164 PerlClass.com for ACT Students 20-23 Feb 2007

File I/O 10

#!/usr/bin/perl -w

use strict;

open (ROT13, "rot13 < /etc/motd |") || die "Can't open pipe: $!";

while (<ROT13>) {
 print;
}

close ROT13;

Conversely, we can output something through rot13:

#!/usr/bin/perl -w

use strict;

open (ROT13, "|rot13") || die "Can't open pipe: $!";

print "This is some rot13'd text:\n";
print ROT13 "This is some rot13'd text.\n";

close ROT13;

PerlClass.com for ACT Students 20-23 Feb 2007 165

RTFM!
Src Chap Pgs #

Nutshell 2nd 4 59 $|

Camel 2nd 2 130

Camel 3rd 28 670

perldoc perlvar $|

Cookbook 2nd 7 281 - 284

Learning 3rd 6 92 light

Learning 4th

10 File I/O

10.3.4.1 Exercises
1. Modify the second example above (provided for you as exercises/rot13.pl

in your exercises directory to accept user input and print out the rot13'd
version.

2. Change your script to accept input from a file using open() (Answer:
exercises/answers/rot13.pl)

3. Change your script to pipe its input through the strings command, so that if
you get a file that's not a text file, it will only look at the parts of the file
which are strings. (Answer: exercises/answers/strings.pl)

166 PerlClass.com for ACT Students 20-23 Feb 2007

File I/O 10

10.4 Finding information about files
We can find out various information about files by using file test operators and
functions such as stat()

Table 10-1. File test operators
Operator Meaning

-e File exists.
-r File is readable
-w File is writable
-x File is executable
-o File is owned by you
-z File has zero size.
-s File has nonzero size (returns size).
-f File is a plain file.
-d File is a directory.
-l File is a symbolic link.
-p File is a named pipe (FIFO), or Filehandle is a pipe.
-S File is a socket.
-b File is a block special file.
-c File is a character special file.
-t Filehandle is opened to a tty.
-u File has setuid bit set.
-g File has setgid bit set.
-k File has sticky bit set.
-T File is a text file.
-B File is a binary file (opposite of -T).
-M Age of file in days when script started.
-A Same for access time.
-C Same for inode change time.

PerlClass.com for ACT Students 20-23 Feb 2007 167

10 File I/O

Here's how the file test operators are usually used:

#!/usr/bin/perl -w

use strict;

unless (-e "config.txt") {

 die "Config file doesn't exist";

}

or equivalently...

die "Config file doesn't exist" unless -e config.txt;

The stat() function returns similar information for a single file, in list form.
lstat() can also be used for finding information about a file which is pointed
to by a symbolic link.

10.4.1 Exercises
1. Write a script which asks a user for a file to open, takes their input from

STDIN, checks that the file exists, then prints out the contents of that file.
(Answer: exercises/answers/fileexists.pl)

2. Write a script to find zero-byte files in a directory. (Answer:

168 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 4 63 - 64

Camel 2nd 2 85

Camel 3rd 3 98

perldoc perlfunc

Cookbook 2nd

Learning 3rd 11 157 - 163

Learning 4th

File I/O 10

exercises/answers/zerobyte.pl)
3. Write a script to find the largest file in a directory:

exercises/answers/largestfile.pl)

PerlClass.com for ACT Students 20-23 Feb 2007 169

10 File I/O

10.5 Recursing down directories
The built-in functions described above do not enable you to easily recurse
through subdirectories. Luckily, the File::Find module is part of the standard
library distributed with Perl 5.

File::Find emulates UNIX's find command. It takes as its arguments a block to
execute for each file found, and a list of directories to search.

#!/usr/bin/perl -w

use strict;

use File::Find;

print "Enter the directory to search: ";

chomp(my $dir = <STDIN>);

find (\&wanted, $dir);

sub wanted {

 print "$_\n";

}

170 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 8 254

Camel 2nd 7 439

Camel 3rd 31 867

perldoc File::Find

Cookbook 2nd 9 359 - 361

Learning 3rd 12 173 pretty light

Learning 4th

File I/O 10

For each file found, certain variables are set. $File::Find::dir is set to the cur
rent directory name, $File::Find::name contains the full name of the file, i.e.
$File::Find::dir/$_.

10.5.1 Exercises
1. Modify the simple script above (in your scripts directory as

exercises/find.pl) to only print out the names of plain text files only (hint:
use file test operators)

2. Now use it to print out the contents of each text file. You'll probably want
to pipe your output through more so that you can see it all. (Answer:
exercises/answers/find.pl)

PerlClass.com for ACT Students 20-23 Feb 2007 171

10 File I/O

10.6 File locking
File locking can be achieved using the flock() function. This can be used to
guard against race conditions or other problems which occur when two (or
more) users open the same file in read/write mode.

172 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 5 104

Camel 2nd 3 166 - 167

Camel 3rd 29 714 - 715

perldoc -f flock

Cookbook 2nd 7 279-281

Learning 3rd

Learning 4th

File I/O 10

10.7 Handling binary data
If you are opening a file which contains binary data, you probably don't want to
read it in a line at a time using while (<>) { }, as there's no guarantee that
there will be any line breaks in the data.
Instead, we use read() to read a certain number of bytes from a file handle.

read() takes the following arguments:
• The filehandle to read from
• The scalar to put the binary data into
• The number of bytes to read
• The byte offset to start from (defaults to 0)

#!/usr/bin/perl -w

use strict;

my $image = "picture.gif";

open (IMAGE, $image) or die "Can't open image file: $!";

PerlClass.com for ACT Students 20-23 Feb 2007 173

RTFM!
Src Chap Pgs #

Nutshell 2nd 5 125

Camel 2nd 3 202

Camel 3rd 29 769

perldoc -f read

Cookbook 2nd 8 304, 325

Learning 3rd 16 225 - 227 fixed-length record
databases

Learning 4th

10 File I/O

open (OUT, ">backup/$image") or die "Can't open backup file: $!";

my $buffer;

binmode IMAGE;

while (read IMAGE, $buffer, 1024) {

 print OUT $buffer;

}

close IMAGE;

close OUT;

If you are using Windows, DOS, or some other types of systems, you may need to use
binmode() to make sure that certain linefeed characters aren't translated when Perl
reads a file in binary mode. While this is not needed on UNIX systems, it's a good idea
to use it anyway to enhance portability.

174 PerlClass.com for ACT Students 20-23 Feb 2007

File I/O 10

10.8 Chapter summary
• Angle brackets <> can be used for simple line input. In scalar context, they

return the next line; in list context, all remaining lines; the default filehandle
is STDIN or any files mentioned in the command line (ie @ARGV).

• Angle brackets can also be used as a globbing operator if anything other than
a filehandle name appears between the angle brackets. In scalar context,
returns the next file matching the glob pattern; in list context, returns all
remaining matching files.

• The open() and close() functions can be used to open and close files. Files
can be opened for reading, writing, appending, read/write, or as pipes.

• The opendir(), readdir() and closedir() functions can be used to open, read
from, and close directories.

• The File::Find module can be used to recurse down through directories.
• File test operators or stat() can be used to find information about files
• File locking can be achieved using flock()
• Binary data can be read using the read() function. The binmode() function

should be used to ensure platform independence when reading binary data.

PerlClass.com for ACT Students 20-23 Feb 2007 175

Chapter 11: Chapter 11: AdvancedAdvanced
regular expressionsregular expressions

In this section...

This section builds on the basic regular expressions taught in day 1 of
PerlClass.com's Introduction to Perl course. We will learn how to
handle data which consists of multiple lines of text, including how to
input data as multiple lines and different ways of performing matches
against that data.

11 Advanced regular expressions

11.1 Assumed knowledge
You should already be familiar with the following topics:
• Regular expression metacharacters
• Quantifiers
• "Greediness" in regular expressions, aka maximal and minimal matching
• Character classes and alternation
• The m// matching function
• The s/// substitution function
• Matching strings other than $_ with the =~ matching operator
• Assigning matched strings to lvalues

178 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 4 66- 72

Camel 2nd 2 57 - 75

Camel 3rd 5 139 - 216

perldoc perlre

Cookbook 2nd 6 179 - 238

Learning 3rd 7
8
9

98 - 104
105 - 114
115 - 127

Concepts
More
Using

Learning 4th

Advanced regular expressions 11

11.2 Review exercises
The following exercises are intended to refresh your memory of basic regular
expressions:

1. Write a script to search a file for any of the names "Yasser Arafat", "Boris
Yeltsin" or "Monica Lewinsky". Print out any lines which contain these
names. (Answer: exercises/answers/namesre.pl)

2. What pattern could be used to match any of: Elvis Presley, Elvis Aron
Presley, Elvis A. Presley, Elvis Aaron Presley. (Answer:
exercises/answers/elvisre.pl)

3. What pattern could be used to match a blank line? (Answer:
exercises/answers/blanklinere.pl)

4. What pattern could be used to match an IP address such as 203.20.104.241,
where each part of the address is a number from 0 to 255? (Answer:
exercises/answers/ipre.pl)

PerlClass.com for ACT Students 20-23 Feb 2007 179

11 Advanced regular expressions

11.3 More metacharacters
Here are some more advanced metacharacters, which build on the ones already
covered in the Introduction to Perl module:

Table 11-1. More metacharacters
Metacharacter Meaning
\B Match anything other than a word

boundary
\cX Control character, i.e. CTRL-X
\0nn Octal character represented by nn
\xnn Hexadecimal character represented

by nn
\l Lowercase next character
\u Uppercase next character
\L Lowercase until \E
\U Uppercase until \E
\Q quote (disable) metacharacters

until \E
\E End of lowercase/uppercase

search for the C++ computer language:

/C++/ # wrong! regexp engine complains about the plus signs
/C\+\+/ # this works
/C\Q++\E/ # this works too

search for "bell" control characters, eg CTRL-G

/\cG/ # this is one way
/\007/ # this is another -- CTRL-G is octal 07
/\x07/ # here it is as a hex code

180 PerlClass.com for ACT Students 20-23 Feb 2007

Advanced regular expressions 11

11.4 Working with multiline strings
Often, you will want to read a file several lines at a time. Consider, for exam
ple, a typical UNIX fortune cookie file, which is used to generate quotes for the
fortune command:

%

Let's call it an accidental feature.

 -- Larry Wall

%

Linux: the choice of a GNU generation

%

When you say "I wrote a program that crashed Windows", people just

stare at you blankly and say "Hey, I got those with the system, *for

free*".

 -- Linus Torvalds

%

I don't know why, but first C programs tend to look a lot worse than

first programs in any other language (maybe except for fortran, but

then I suspect all fortran programs look like `firsts')

 -- Olaf Kirch

%

All language designers are arrogant. Goes with the territory...

 -- Larry Wall

%

We all know Linux is great... it does infinite loops in 5 seconds.

 -- Linus Torvalds

%

Some people have told me they don't think a fat penguin really

embodies the grace of Linux, which just tells me they have never

seen a angry penguin charging at them in excess of 100mph. They'd

be a lot more careful about what they say if they had.

 -- Linus Torvalds, announcing Linux v2.0

%

The fortune cookies are separated by a line which contains nothing but a per
cent sign.

PerlClass.com for ACT Students 20-23 Feb 2007 181

11 Advanced regular expressions

To read this file one item at a time, we would need to set the delimiter to some
thing other than the usual \n - in this case, we'd need to set it to something like
 \n%\n.
To do this in Perl, we use the special variable $/.

$/ = "\n%\n";

Conveniently enough, setting $/ to "" will cause input to occur in "paragraph
mode", in which two or more consecutive newlines will be treated as the delim
iter. Undefining $/ will cause the entire file to be slurped in.

undef $/;

$_ = <FH>; # whole file now here

Since $/ isn't the easiest name to remember, we can use a longer name by using
the English module:

use English;

182 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 4 53-59

Camel 2nd 2
7

127-140
403

Camel 3rd 28
32

653-676
884

perldoc perlvar
English English provides friendlier

names for special variables

Cookbook 2nd

Learning 3rd 3 49 $_ quickly

Learning 4th

Advanced regular expressions 11

$INPUT_RECORD_SEPARATOR = "\n%\n"; # long name for $/

$RS = "\n%\n"; # same thing, awk-like

11.4.1 Exercises
1. In your directory is a file called exercises/linux.txt which is a set of

Linux-related fortunes, formatted as in the above example. Use multiline
regular expressions to find only those quotes which were uttered by Larry
Wall. (Answer: exercises/answers/larry.pl)

PerlClass.com for ACT Students 20-23 Feb 2007 183

11 Advanced regular expressions

11.5 Regexp modifiers for multiline data
The /s and /m modifiers can be used to treat the string you're matching against
as either a single or multiple lines. In single line mode, ^ will match only at the
start of the entire string, and $ will match only at the end of the entire string. In
multiline mode, they will match at embedded newlines as well.

my $string = qq(

This is some text

and some more text

spanning several lines

);

if ($string =~ /^and some/m) { # this will match

 print "Matched in multiline mode\n";

}

if ($string =~ /^and some/s) { # this won't match

 print "Matched in single line mode\n";

}

In single line mode, the dot metacharacter will match \n. In multiline mode, it
won't.
The differences between default, single line, and multiline mode are set out
very succinctly by Jeffrey Friedl in Mastering Regular Expressions (see the
Bibliography at the back of these notes for details). The following table is para
phrased from the one on page 236 of that book.
His term "clean multiline mode" refers to a mode which is similar to multi-line,
but which does not strip the newline character from the end of each line.

184 PerlClass.com for ACT Students 20-23 Feb 2007

Advanced regular expressions 11

Table 3-2. Effects of single and multiline options
Mode Specified

with
^ matches
start of ...

$ matches
end of ...

Dot matches
newline

default neither /s
nor /m

string string No

single-line /s string string Yes
multi-line /m line line No
clean multi-line /ms line line Yes

PerlClass.com for ACT Students 20-23 Feb 2007 185

11 Advanced regular expressions

11.6 Backreferences

11.6.1 Special variables
There are several special variables related to regular expressions.
• $& is the matched text
• $` is the unmatched text to the left of the matched text
• $' is the unmatched text to the right of the matched text
• $1, $2, $3, etc. The text matched by the 1st, 2nd, 3rd, etc sets of parentheses.
All these variables are modified when a match occurs, and can be used in any
way that other scalar variables can be used.

this...

my ($match) = m/^(\d+)/;

print $match;

is equivalent to this:

m/^\d+/;

print $&;

match the first three words...

m/^(\w+) (\w+) (\w+)/;

print "$1 $2 $3\n";

You can also use $& and other special variables in substitutions:

$string = "It was a dark and stormy night.";

$string =~ s/dark|wet|cold/very $&/;

If you want to use parentheses simply for grouping, and don't want them to set
a $1 style variable, you can use a special kind of non-capturing parentheses,
which look like (?: ...)

this only sets $1 - the first two sets

of parentheses are non-capturing

186 PerlClass.com for ACT Students 20-23 Feb 2007

Advanced regular expressions 11

m/^(?:\w+) (?:\w+) (\w+)/;

The special variables $1 and so on can be used in substitutions to include
matched text in the replacement expression:

swap first and second words

s/^(\w+) (\w+)/$2 $1/;

However, this is no use in a simple match pattern, because $1 and friends aren't
set until after the match is complete. Something like:

my $word = "this";

print if m/($word) $1/;

... will not match "this this". Rather, it will match "this" followed by whatever
$1 was set to by an earlier match.
In order to match "this this" we need to use the special regular expression
metacharacters \1, \2, etc. These metacharacters refer to parenthesized parts of
a match pattern, just as $1 does, but within the same match rather than referring
back to the previous match.

my $word = "this";

print if m/($word) \1/;

PerlClass.com for ACT Students 20-23 Feb 2007 187

11 Advanced regular expressions

11.7 Exercises
1. Write a script which swaps the first and the last words on each line

(Answer: exercises/answers/firstlast.pl)
2. Write a script which looks for doubled terms such as "bang bang" or "quack

quack" and prints out all occurrences. This script could be used for finding
typographic errors in text. (Answer: exercises/answers/double.pl)

11.7.1 Advanced
1. Modify the above script to work across line boundaries (Answer:

exercises/answers/multiline_double.pl)
2. What about case sensitivity?

188 PerlClass.com for ACT Students 20-23 Feb 2007

Advanced regular expressions 11

11.8 Section summary
• Input data can be split into multiline strings using the special variable $/, also

known as $INPUT_RECORD_SEPARATOR.
• The /s and /m modifiers can be used to treat multiline data as if it were a

single line or multiple lines, respectively. This affects the matching of ^ and
$, as well as whether or not . will match a newline.

• The special variables $&, $` and $' are always set when a successful match
occurs

• $1, $2, $3 etc are set after a successful match to the text matched by the first,
second, third, etc sets of parentheses in the regular expression. These should
only be used outside the regular expression itself, as they will not be set until
the match has been successful.

• Special non-capturing parentheses (?:...) can be used for grouping when
you don't wish to set one of the numbered special variables.

• Special metacharacters such as \1, \2 etc may be used within the regular
expression itself, to refer to text previously matched.

PerlClass.com for ACT Students 20-23 Feb 2007 189

Chapter 12: Chapter 12: MoreMore
functionsfunctions

In this chapter...

In this chapter, we discuss some more advanced Perl functions.

12 More functions

12.1 The grep() function
The grep() function is used to search a list for elements which match a certain
regexp pattern. It takes two arguments - a pattern and a list - and returns a list of
the elements which match the pattern.

trivially check for valid email addresses

my @valid_email_addresses = grep /\@/, @email_addresses;

The grep() function temporarily assigns each element of the list to $_ then per
forms matches on it.
There are many more complicated uses for the grep function. For instance, in
stead of a pattern you can supply an entire block which is to be used to process
the elements of the list.

my @long_words = grep { (length($_) > 8); } @words;

grep() doesn't require a comma between its arguments if you are using a block
as the first argument, but does require one if you're just using an expression.
Have a look at the documentation for this function to see how this is described.

192 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 5 112

Camel 2nd 3 178 - 179

Camel 3rd 24
29

605
730

perldoc -f grep

Cookbook 2nd 4 136 - 137

Learning 3rd 17
B

236 - 237
292

Learning 4th

More functions 12

12.1.1 Exercises
1. Use grep() to return a list of elements which contain numbers (Answer:

exercises/answers/grepnumber.pl)
2. Use grep() to return a list of elements which are

a. keys to a hash (Answer: exercises/answers/grepkeys.pl)
b. readable files (Answer: exercises/answers/grepfiles.pl)

PerlClass.com for ACT Students 20-23 Feb 2007 193

12 More functions

12.2 The map() function
The map() function can be used to perform an action on each member of a list
and return the results as a list.

my @lowercase = map lc, @words;

my @doubled = map { $_ * 2 } @numbers;

map() is often a quicker way to achieve what would otherwise be done by iterat
ing through the list with foreach.

foreach (@words) {

 push (@lowercase, lc($_);

}

Like grep(), it doesn't require a comma between its arguments if you are using
a block as the first argument, but does require one if you're just using an ex
pression.

12.2.1 Exercises
1. Create an array of numbers. Use map() to find the square of each number.

Print out the results.

194 PerlClass.com for ACT Students 20-23 Feb 2007

More functions 12

12.3 Chapter summary
• The grep() function can be used to find items in a list which match a certain

regular expression
• The map() function can be used to perform an operation on each member of a

list.

PerlClass.com for ACT Students 20-23 Feb 2007 195

Chapter 13: Chapter 13: SystemSystem
interactioninteraction

In this section...

In this section, we look at different ways to interact with the operat
ing system. In particular, we examine the system() function, and the
backtick command execution operator. We also look at security and
platform-independence issues related to the use of these commands
in Perl.

13 System interaction

13.1 system() and exec()
The system() and exec() functions both execute system commands.
system() forks, executes the commands given in its arguments, waits for them
to return, then allows your Perl script to continue. exec() does not fork, and ex
its when it's done. system() is by far the more commonly used.

$ perl -we 'system("/bin/true"); print "Foo\n";'

Foo

$ perl -we 'exec("/bin/true"); print "Foo\n";'

Statement unlikely to be reached at -e line 1.

(Maybe you meant system() when you said exec()?)

If the system command fails, the error message will be available via the special
variable $!.

$ perl -e 'system("cat non-existant-file") || die "$!";'

cat: non-existant-file: No such file or directory

13.1.1 Exercises
1. Write a script to ask the user for a username on the system, then perform

the finger command to see information about that user. (Answer:
exercises/answers/finger.pl)

198 PerlClass.com for ACT Students 20-23 Feb 2007

System interaction 13

13.2 Using backticks
Single quotes can be used to specify a literal string which can be printed, as
signed to a variable, et cetera. Double quotes perform interpolation of variables
and certain escape sequences such as \n to create a string which can also be
printed, assigned, etc.
A new set of quotes, called backticks, can be used to interpolate variables then
run the resultant string as a shell command. The output of that command can
then be printed, assigned, and so forth.
Backticks are the backwards-apostrophe character (` which appears below the
tilde (~), next to the number 1 on most keyboards.
Just as the q() and qq() functions can be used to emulate single and double
quotes and save you from having to escape quotemarks that appear within a
string, the equivalent function qx() can be used to emulate backticks.

PerlClass.com for ACT Students 20-23 Feb 2007 199

RTFM!
Src Chap Pgs #

Nutshell 2nd

Camel 2nd 2
2

52
41

Backticks
qx()

Camel 3rd 2 63

perldoc perlop
-f qx

Cookbook 2nd 19 770 - 772 Securely running
shell commands
with user input from
CGI, etc.

Learning 3rd 1
14

17
107 - 201

Learning 4th

13 System interaction

13.2.1 Exercises
1. Modify your earlier finger program to use backticks instead of system()

(Answer: exercises/answers/backtickfinger.pl)
2. Change it to use qx() instead (Answer: exercises/answers/qxfinger.pl)
3. The UNIX command whoami gives your username. Since most shells

support backticks, you can type finger `whoami` to finger yourself. Use
shell backticks inside your qx() statement to do this from within your Perl
program. (Answer: exercises/answers/qxfinger2.pl)

200 PerlClass.com for ACT Students 20-23 Feb 2007

System interaction 13

13.3 Platform dependency issues
Note that the examples given above will not work consistently on all operating
systems. In particular, the use of system() calls or backticks with UNIX-specif
ic commands will not work under Windows NT. Slightly less obviously, the use
of backticks on NT can sometimes fail when the output of a command is sent
explicitly to the screen rather than being returned by the backtick operation.

The same situation used to apply to MacOS, but now that MacOS is Linux-
based and tends to have much better support for free and open source software,
portability has basically become a Windows versus POSIX situation. With
Linux, MacOS, Solaris, and every other flavor of UNIX all living in the POSIX
camp and Microsoft survives as an anomaly.

PerlClass.com for ACT Students 20-23 Feb 2007 201

13 System interaction

13.4 Security considerations
Many of the examples given above can result in major security risks if the com
mands executed are based on user input. Consider the example of a simple fin
ger program which asked the user who they wanted to finger:

#!/usr/bin/perl -w

use strict;

print "Who do you want to finger? ";
my $username = <STDIN>;
print `finger $username`;

Imagine if the user's input had been skud; cat /etc/passwd, or worse yet,
skud; rm -rf /. The system would perform both commands as though they had
been entered into the shell one after the other.
Luckily, Perl's -T flag can be used to check for unsafe user inputs.

#!/usr/bin/perl -wT

-T stands for "taint checking". Data input by the user is considered "tainted"
and until it has been modified by the script, may not be used to perform shell
commands or system interactions of any kind. This includes system interactions

202 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd

Camel 2nd 6 356 - 360

Camel 3rd 23 557 - 566

perldoc perlsec

Cookbook 2nd 19 767 - 770

Learning 3rd B 294 light

Learning 4th

System interaction 13

such as open(), chmod(), and any other built-in Perl function which interacts
with the operating system.
The only thing that will clear tainting is referencing substrings from a regexp
match. The perlsec online documentation contains a simple example of how to
do this. Read it now, and use it to complete the following exercises.
Note that you'll also have to explicitly set $ENV{'PATH'} to something safe (like
/bin) as well.

13.4.1 Exercises
1. Modify the finger program above to perform taint checking (Answer:

exercises/answers/taintfinger.pl)
2. Take one of your scripts using open() or opendir() and modify it to accept

a filename as user input. Turn taint checking on. What sort of regular
expression could you use to check for valid filenames? (Answer:
exercises/answers/taintfile.pl)

PerlClass.com for ACT Students 20-23 Feb 2007 203

Advanced
There is a Safe module available from CPAN that will let
you setup sand boxes (similar to the JVM) that you can run
Perl code in with arbitrary restrictions.

13 System interaction

13.5 Section summary
• The system() function can be used to perform system commands. $! is set if

any error occurs.
• The backtick operator can be used to perform a system command and return

the output. The qx() quoting function/operator works similarly to backticks.
• The above methods may not result in platform independent code.
• Data input by users or from elsewhere on the system can cause security

problems. Perl's -T flag can be used to check for such "tainted" data
• Tainted data can only be untainted by referencing a substring from a pattern

match.

204 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 14: Chapter 14: ReferRefer
ences and dataences and data

structuresstructures

In this section...

In this section, we look at Perl's powerful reference syntax and how it
can be used to implement complex data structures such as multi-di
mensional lists, hashes of hashes, and more.

14 References and data structures

14.1 Assumed knowledge
For this section, it is assumed that you have a good understanding of Perl's data
types: scalars, arrays, and hashes. Prior experience with languages which use
pointers or references is helpful, but not required.

206 PerlClass.com for ACT Students 20-23 Feb 2007

References and data structures 14

14.2 Introduction to references
Perl's basic data type is the scalar. Arrays and hashes are made up of scalars, in
one- or two-dimensional lists. It is not possible for an array or hash to be a
member of another array or hash under normal circumstances.
However, there is one thing about an array or hash which is scalar in nature --
its memory address. This memory address can be used as an item in an array or
list, and the data extracted by looking at what's stored at that address. This is
what a reference is.

PerlClass.com for ACT Students 20-23 Feb 2007 207

RTFM!
Src Chap Pgs #

Nutshell 2nd 4 75 - 77

Camel 2nd 4 243 - 275

Camel 3rd 8 242 - 267

perldoc perlref

Cookbook 2nd 11 407 - 443

Learning 3rd B 296 light

Learning 4th

Also Chapter 1 in Advanced Perl Programming and Tom
Christiansen's FMTEYEWTK (Far More Than You Ever
Wanted To Know) tutorials contain information about refer
ences. They're available from the Perl website
(http://www.perl.com/)

http://www.perl.com/

14 References and data structures

14.3 Uses for references
There are three main uses for Perl references.

14.3.1 Creating complex data structures
Perl references can be used to create complex data structures, for instance hash
es of arrays, arrays of hashes, hashes of hashes, and more.

14.3.2 Passing arrays and hashes to subroutines and
functions

Since all arguments to subroutines are flattened to a list of scalars, it is not pos
sible to use two arrays as arguments and have them retain their individual iden
tities.

my @a1 = qw(a b c);

my @a2 = qw(d e f);

printargs(@a1, @a2);

sub printargs {

 print "@_\n";

}

The above example will print out a b c d e f.
References can be used in these circumstances to keep arrays and hashes passed
as arguments separate.

14.3.3 Object oriented Perl
References are used extensively in object oriented Perl. In fact, Perl objects are
references to data structures.

208 PerlClass.com for ACT Students 20-23 Feb 2007

References and data structures 14

14.4 Creating and dereferencing references
To create a reference to a scalar, array or hash, we prefix its name with a back
slash:

my $scalar = "This is a scalar";

my @array = qw(a b c);

my %hash = (

 'sky' => 'blue',

 'apple' => 'red',

 'grass' => 'green'

);

my $scalar_ref = \$scalar;

my $array_ref = \@array;

my $hash_ref = \%hash;

Note that all references are scalars, because they contain a single item of infor
mation: the memory address of the actual data.
This is what a reference looks like if you print it out:

% perl -e 'my $foo_ref = \$foo; print "$foo_ref\n";'

SCALAR(0x80c697c)

% perl -e 'my $bar_ref = \@bar; print "$bar_ref\n";'

ARRAY(0x80c6988)

% perl -e 'my $baz_ref = \%baz; print "$baz_ref\n";'

HASH(0x80c6988)

You can find out whether a scalar is a reference or not by using the ref() func
tion, which returns a string indicating the type of reference, or undef if a scalar
is not a reference..

PerlClass.com for ACT Students 20-23 Feb 2007 209

14 References and data structures

Dereferencing (getting at the actual data that a reference points to) is achieved
by prepending the appropriate variable-type punctuation to the name of the ref
erence. For instance, if we have a hash reference $hash_reference we can
dereference it by looking for %$hash_reference

my $new_scalar = $$scalar_ref;

my @new_array = @$array_ref;

my %new_hash = %$hash_ref;

In other words, wherever you would normally put a variable name (like
new_scalar) you can put a reference variable (like $scalar_ref).
Here's how you access array elements or slices, and hash elements:

print $$array_ref[0]; # prints the first element of the

 # array referenced by $array_ref

print @$array_ref[0..2]; # prints an array slice

print $$hash_ref{'sky'}; # prints a hash element's value

The other way to access the value that a reference points to is to use the "arrow"

210 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 4
5

77
126

Camel 2nd 3
4

204
251 - 252 Other tricks with

references

Camel 3rd 8
29

258
773

perldoc -f ref

Cookbook 2nd 11
13

409
499

Learning 3rd

Learning 4th

Also in Advanced Perl Programming.

References and data structures 14

notation. This notation is usually considered to be better Perl style than the one
shown above, which can have precedence problems and is less visually clean.

print $array_ref->[0];

print $hash_ref->{'sky'};

PerlClass.com for ACT Students 20-23 Feb 2007 211

14 References and data structures

14.5 Passing multiple arrays/hashes as
arguments

If we were attempt to pass two arrays together to a subroutine, they would be
flattened out to form one large array.

my @fruits = qw(apple orange pear banana);

my @rodents = qw(mouse rat hamster gerbil rabbit);

my @books = qw(camel llama panther sheep);

mylist(@fruit, @rodents);

print out all the fruits and then all the rodents

sub mylist {

 my @list = @_;

 foreach (@list) {

 print "$_\n";

 }

}

If we want to keep them separate, we need to pass the arrays by references:

myreflist(\@fruit, \@rodents);

sub myreflist {

 my ($firstref, $secondref) = @_;

 print "First list:\n";

 foreach (@$firstref) {

 print "$_\n";

 }

 print "Second list:\n";

 foreach (@$secondref) {

 print "$_\n";

 }

}

212 PerlClass.com for ACT Students 20-23 Feb 2007

References and data structures 14

14.6 Complex data structures
References are most often used to create complex data structures. Since hashes
and arrays only accept scalars as elements, references (which are inherently
scalars) can be used to create arrays of arrays or hashes, and hashes of arrays or
hashes.

my %categories = (

 'fruits' => \@fruits,

 'rodents' => \@rodents,

 'books' => \@books,

);

to print out "gerbil"...

print $categories{'rodents'}->[3];

PerlClass.com for ACT Students 20-23 Feb 2007 213

14 References and data structures

14.7 Anonymous data structures
We can use anonymous data structures to create complex data structures, to
avoid having to declare many temporary variables. Anonymous arrays are cre
ated by using square brackets instead of round ones. Anonymous hashes use
curly brackets instead of round ones.

the old two-step way:

my @array = qw(a b c d);

my $array_ref = \@array;

if we get rid of $array_ref, @array will still hang round using

up memory. Here's how we do it without the intermediate step,

by creating an anonymous array:

my $array_ref = ['a', 'b', 'c', 'd'];

look, we can still use qw() too...

my $array_ref = [qw(a b c d)];

more useful yet, put these anon arrays straight into a hash:

my %transport = (

 'cars' => [qw(toyota ford holden porsche)],

 'planes' => [qw(boeing harrier)],

 'boats' => [qw(clipper skiff dinghy)],

);

The same technique can be used to create anonymous hashes:

The old, two-step way:

my %hash = (

 a => 1,

 b => 2,

214 PerlClass.com for ACT Students 20-23 Feb 2007

References and data structures 14

 c => 3

);

my $hash_ref = \$hash;

the quicker way, with an anonymous hash:

my $hash_ref = {

 a => 1,

 b => 2,

 c => 3

};

PerlClass.com for ACT Students 20-23 Feb 2007 215

14 References and data structures

14.8 Exercises
1. Create a complex data structure as follows:

a. Create a hash called %pizza_prices which contains prices for small,
medium and large pizzas.

b. Create a hash called %pasta_prices which contains prices for small,
medium and large serves of pasta.

c. Create a hash called %milkshake_prices which contains prices for small,
medium and large milkshakes.

d. Create a hash containing references to the above hashes, so that given a
type of food and a size you can find the price of it.

e. Convert the above hash to use anonymous data structures instead of the
original three pizza, pasta and milkshake hashes

f. Add a new element to your hash which contains the prices of salads
(Answer: exercises/answers/food.pl)

2. Create a subroutine which can be passed a scalar and a hash reference.
Check whether there is an element in the hash which has the scalar as its
key. Hint: use exists for this. (Answer: exercises/answers/exists.pl)

216 PerlClass.com for ACT Students 20-23 Feb 2007

References and data structures 14

14.9 Section summary
• References are scalar data consisting of the memory address of a piece of Perl

data, and can be used in arrays, hashes, etc wherever you would use a normal
scalar

• References can be used to create complex data structures, to pass multiple
arrays or hashes to subroutines, and in object-oriented Perl.

• References are created by prepending a backslash to a variable name.
• References are dereferenced by replacing the name part of a variable name

(eg foo in $foo) with a reference, for example replace foo with $foo_ref to
get $$foo_ref

• References to arrays and hashes can also be dereferenced using the arrow ->
notation.

• References can be passed to subroutines as if they were scalars.
• References can be included in arrays or hashes as if they were scalars.
• Anonymous arrays can be made by using square brackets instead of round;

anonymous hashes can be made by using curly brackets instead of round.
These can be assigned directly to a reference, without any intermediate step.

PerlClass.com for ACT Students 20-23 Feb 2007 217

Chapter 15: Chapter 15: AboutAbout
databasesdatabases

In this chapter...

This chapter talks about databases in general, and the different types
of databases which can be used with Perl.

15 About databases

15.1 What is a database?
• A database is a collection of related information.
• The data stored in a database is persistent.

220 PerlClass.com for ACT Students 20-23 Feb 2007

About databases 15

15.2 Types of databases
There are many different types of databases, including:
• Flat-file text databases
• Associative flat-file databases such as Berkeley DB
• Relational databases
• Object databases
• Network databases
• Hierarchical databases such as LDAP
Relational databases are by far the most useful type commonly available, and
this training module focusses largely on them, after looking briefly at flat file
text databases.

PerlClass.com for ACT Students 20-23 Feb 2007 221

15 About databases

15.3 Database management systems
A database management system (DBMS) is a collection of software which can
be used to create, maintain and work with databases. A client/server database
system is one in which the database is stored and managed by a database server,
and client software is used to request information from the server or to send
commands to the server.

222 PerlClass.com for ACT Students 20-23 Feb 2007

About databases 15

15.4 Uses of databases
Databases are commonly used to store bodies of data which are too large to be
managed on paper or through simple spreadsheets. Most businesses use
databases for accounts, inventory, personnel, and other record keeping.
Databases are also becoming more widely used by home users for address
books, cd collections, recipe archives, etc. There are very few fields in which
databases cannot be used.

PerlClass.com for ACT Students 20-23 Feb 2007 223

15 About databases

15.5 Chapter summary
• A database is a collection of related information.
• Data stored in a database is persistent
• There are a number of different types of databases, including flat file,

relational, and others
• Database management systems are collections of software used to manage

databases
• Databases are widely used in many fields

224 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 16: Chapter 16: TextfilesTextfiles
as databasesas databases

In this chapter...

In this chapter we investigate text-based or "flat file" databases and
how to use Perl to manipulate them. We also discuss some of the lim
itations of this database format.

16 Textfiles as databases

16.1 Delimited text files
A delimited text file is one in which each line of text is a record, and the fields
are separated by a known character.
The character used to delimit the data varies according to the type of data.
Common delimiters include the tab character (\t in Perl) or various punctuation
characters. The delimiter should always be one which does not appear in the da
ta.
Delimited text files are easily produced by most desktop spreadsheet and
database applications (eg Microsoft Excel, Microsoft Access). You can usually
choose "File" then "Save As" or "Export", then select the type of file you would
like to save as.
Imagine a file which contains peoples' given names, surnames, and ages, delim
ited by the pipe (|) symbol:

Fred|Flintstone|40

Wilma|Flintstone|36

Barney|Rubble|38

Betty|Rubble|34

Homer|Simpson|45

Marge|Simpson|39

Bart|Simpson|11

Lisa|Simpson|9

The file above is available in your exercises directory as delimited.txt.

16.1.1 Reading delimited text files
To read from a delimited text file:

#!/usr/bin/perl -w

use strict;

open (INPUT, "delimited.txt") or die "Can't open data file: $!";

while (<INPUT>) {

226 PerlClass.com for ACT Students 20-23 Feb 2007

Textfiles as databases 16

 chomp; # remove newline

 my @fields = split(/\|/, $_);

 print "$fields[1], $fields[0]: $fields[2]\n";

}

close INPUT;

This should print out:

Flintstone, Fred: 40

Flintstone, Wilma: 36

...

And so on.

16.1.2 Searching for records
One of the common uses of databases is to search for specific records.

#!/usr/bin/perl -w

use strict;

Find out what record the user wants:

print "Search for: ";

chomp (my $search_string = <STDIN>);

open (INPUT, "delimited.txt") or die "Can't open data file: $!";

while (<INPUT>) {

 chomp; # remove newline

 my @fields = split(/\|/, $_);

 # test whether the string matches given or family name

 if ($fields[0] =~ /$search_string/

 or $fields[1] =~ /$search_string/) {

 print "$fields[1], $fields[0]: $fields[2]\n";

 }

PerlClass.com for ACT Students 20-23 Feb 2007 227

16 Textfiles as databases

}

close INPUT;

16.1.3 Sorting records
Sorting records from a flat text database can be quite difficult. Simply sorting
the items line by line is one simplistic approach:

#!/usr/bin/perl -w

use strict;

open (INPUT, "delimited.txt") or die "Can't open data file: $!";

my @records = sort <INPUT>;

foreach (@records) {

 chomp; # remove newline

 my @fields = split(/\|/, $_);

 print "$fields[1], $fields[0]: $fields[2]\n";

}

close INPUT;

The above technique can only sort on the first field of the data (in the case of
our example, that would be the given name) and may have difficulties when it
encounters the delimiter.
To sort by any other field, we would first need to load the data into a list of lists
(using references), then use the sort() function's optional first argument to
specify a subroutine to use for sorting:

#!/usr/bin/perl -w

use strict;

open (INPUT, "delimited.txt") or die "Can't open data file: $!";

while (<INPUT>) {

228 PerlClass.com for ACT Students 20-23 Feb 2007

Textfiles as databases 16

 chomp;

 my @this_record = split(/\|/, $_);

 # build a list-of-lists containing references to each record

 push (@records, \@this_record);

}

sort takes an optional argument of what subroutine to use to sort

the data...

my @sorted = sort given_name_order @records;

foreach $record (@sorted) {

 # we have to print the items via a reference to the array...

 print "$record->[1], $record->[0]: $record->[2]\n";

}

subroutine to implement sorting order

sub given_name_order {

 $a->[0] cmp $b->[0];

}

Obviously this can be quite tricky, especially if the programmer is not totally
familiar with Perl references. It also requires loading the entire data set into
memory, which would be very inefficient for large databases.

16.1.4 Writing to delimited text files
The most useful function for writing to delimited text files is join, which is the
logical equivalent of split.

#!/usr/bin/perl -w

use strict;

open OUTPUT, ">>delimited.txt" or die "Can't open output file: $!";

my @record = qw(George Jetson 35);

PerlClass.com for ACT Students 20-23 Feb 2007 229

16 Textfiles as databases

print OUTPUT join("|", @record), "\n";

230 PerlClass.com for ACT Students 20-23 Feb 2007

Textfiles as databases 16

16.2 Comma-separated variable (CSV) files
Comma separated variable files are another format commonly produced by
spreadsheet and database programs. CSV files delimit their fields with commas,
and wrap textual data in quotation marks, allowing the textual data to contain
commas if required:

"Fred","Flintstone",40

"Wilma","Flintstone",36

"Barney","Rubble",38

"Betty","Rubble",34

"Homer","Simpson",45

"Marge","Simpson",39

"Bart","Simpson",11

"Lisa","Simpson",9

CSV files are harder to parse than ordinary delimited text files. The best way to
parse them is to use the Text::ParseWords module:

#!/usr/bin/perl -w

use strict;

use Text::ParseWords;

open INPUT, "csv.txt" or die "Can't open input file: $!";

while (<INPUT>) {

 my @fields = quotewords("," 0, $_);

}

The three arguments to the quotewords() routine are:
• The delimiter to use
• Whether to keep any backslashes that appear in the data (zero for no, one for

yes)
• A list of lines to parse (in our case, one line at a time)

PerlClass.com for ACT Students 20-23 Feb 2007 231

16 Textfiles as databases

16.3 Problems with flat file databases

16.3.1 Locking
When using flat file databases without locking, problems can occur if two or
more people open the files at the same time. This can cause data to be lost or
corrupted.
If you are implementing a flat file database, you will need to handle file locking
using Perl's flock function.

16.3.2 Complex data
If your data is more complex than a single table of scalar items, managing your
flat file database can become extremely tedious and difficult.

16.3.3 Efficiency
Flat file databases are very inefficient for large quantities of data. Searching,
sorting, and other simple activities can take a very long time and use a great
deal of memory and other system resources.

232 PerlClass.com for ACT Students 20-23 Feb 2007

Textfiles as databases 16

16.4 Chapter summary
• The two main types of text database use either delimited text or comma

separated variables to store data
• Delimited text can be read using Perl's split function and written using the
join function

• Comma separated files are most easily read using the Text::ParseWords
module

• There are several problems with flat file databases including locking,
efficiency, and difficulties in handling more complex data

PerlClass.com for ACT Students 20-23 Feb 2007 233

Chapter 17: Chapter 17: RelationalRelational
databasesdatabases

In this chapter...

The first section of this training session focuses on database theory,
and covers relational database systems, and SQL - the language used
to talk to them.

17 Relational databases

17.1 Tables and relationships
In a relational database, data is stored in tables. Each table contains data about a
particular type of entity (either physical or conceptual).
 For instance, our sample database is the inventory and sales system for Acme
Widget Co. It has tables containing data for the following entities:

Table 17-1. Acme Widget Co Tables
Table Description
stock_item Inventory items
customer Customer account details
saleperson Sales people working for Acme Widget Co.
sales Sales events which occur

Tables in a database contain fields and records. Each record describes one enti
ty. Each field describes a single item of data for that entity. You can think of it
like a spreadsheet, with the rows being the records and the columns being the
fields, thus:

Table 17-2. Sample table
ID number Description Price Quantity in stock
1 widget $9.95 12
2 gadget $3.27 20

Every table must have a primary key, which is a field which uniquely identifies
the record. In the example above, the Stock ID number is the primary key.
The following figures show the tables used in our database, along with their
field names and primary keys (in bold type).

236 PerlClass.com for ACT Students 20-23 Feb 2007

Relational databases 17

Table 17-3. the stock_item table
stock_item
id
description
price
quantity

Table 17-4. the customer table
customer
id
name
address
suburb

PerlClass.com for ACT Students 20-23 Feb 2007 237

Illustration 17-1: UML-style ERD of the example schema

stock_item
 id: int(11) auto_increm ent
 description: varchar(80)
 price: float(4,2)
 quantity: int(11)

customer
 id: int(11) auto_increm ent
 nam e: varchar(80)
 address: varchar(255)
 suburb: varchar(50)
 state: char(3)
 postcode: char(10)

salesperson
 id: int(11) auto_increm ent
 nam e: varchar(80)

sales
 id: int(11) auto_increm ent
 sales_date: date
 custom er_id: int(11)
 salesperson_id: int(11)
 stock_item _id: int(11)
 quantity: int(11)
 price: float(4,2)

17 Relational databases

state
postcode

Table 17-5. the salesperson table
salesperson
id
name

Table 17-6. the sales table
sales
id
sale_date
salesperson_id
customer_id
stock_item_id
quantity
price

238 PerlClass.com for ACT Students 20-23 Feb 2007

Relational databases 17

17.2 Structured Query Language
SQL is a semi-English-like language used to manipulate relational databases. It
is based on an ANSI standard, though very few SQL implementations actually
adhere to the standard.
SQL statements are mostly case insensitive these days. While most books and
references use upper-case, these notes use lower-case throughout for readabili
ty, and because the likelihood of needing to deal with older databases which
only understand upper-case is becoming increasingly slim.
The syntax given in these course notes is cut down for simplicity; for full infor
mation, consult your database system's documentation. The MySQL documen
tation is available on our system in /usr/doc/mysql-doc and /usr/doc/mysql-
manual, or by pointing your web browser at http://training.netizen.com.au/.

17.2.1 General syntax
SQL is case usually insensitive, apart from table and field names (which may or
may not be case sensitive depending on what platform you're on -- on UNIX
they are usually case sensitive, on Windows they usually aren't).
String data can be delimited with either double or single quotes. Numerical data
does not need to be delimited.
Wildcards may be used when searching for string data. A % (percent) sign is
used to indicated multiple characters (much as an asterisk is used in DOS or
UNIX filename wildcards) while the underscore character (_) can be used to in
dicate a single character, similar to the ? under UNIX or DOS.
The following comparison operators may be used:

Table 17-7. Comparison Operators
Operator Meaning
= Equality
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
<> Inequality

PerlClass.com for ACT Students 20-23 Feb 2007 239

17 Relational databases

like Wildcard matching

In the following syntax examples, the term condition is used as shorthand
for any expression which can be evaluated for truth, for instance 2 + 2 = 4 or
name like "A%".
Conditions may be combined by using and and or; use round brackets to indi
cate precedence. For instance, name like "A%" or name like "B%" will find all
records where the ``name'' field starts with A or B.

17.2.1.1 SELECT
An SQL select statement is used to select certain rows from a table or tables.
A select query will return as many rows as match the criteria.

select field1 [, field2, field3] from table1 [, table2]

 where condition
 order by field [desc]

select id, name from customer;

select id, name from customer order by name;

select id, name from customer order by name desc;

We can use a select statement to obtain data from multiple tables. This is re
ferred to as a ``join''.

select * from customer, sales where customer.id = sales.customer_id

17.2.1.2 INSERT
An insert query is used to add data to the database, a row at a time.

The columns names are optional to make typing queries easier. This is fine for
interactive use, however it is very bad practice to omit them in programs. Always
specify column names in insert statements.

240 PerlClass.com for ACT Students 20-23 Feb 2007

Relational databases 17

insert into tablename (col_name1, col_name2, col_name3) values

(value1, value2, value3);

insert into stock_item (id, description, price, quantity) values (0,

'doodad', 9.95, 12);

Note that since the id field is an auto_increment field in the Acme inventory
database we've set up, we don't need to specify a value to go in there, and just
use zero instead --- whatever we specify will be replaced with the auto-incre
mented value. Auto-increment fields of some kind are available in most
database systems, and are very useful for creating unique ID numbers.

17.2.1.3 DELETE
A delete query can be used to delete rows which match a given criteria.

delete from tablename where condition

delete from stock_item where quantity = 0;

17.2.1.4 UPDATE
The update query is used to change the values of certain fields in existing
records.

update tablename set field1 = expression, field2 = expression

 where condition

update stock_item set quantity = (quantity - 1) where id = 4;

17.2.1.5 CREATE
The create statement is used to create new tables in the database.

create table tablename (

 column coltype options,
 column coltype options,
 ...

PerlClass.com for ACT Students 20-23 Feb 2007 241

17 Relational databases

 primary key (colname)
)

Data types include (but are not limited to):

Table 17-8. Some data types
INT an integer number
FLOAT a floating point number
CHAR(n) character data of exactly n characters
VARCHAR(n) character data of up to n characters (field

grows/shrinks to fit)
BLOB Binary Large OBject
DATE A date in YYYY-MM-DD format
ENUM enumerated string value (eg "Male" or

"Female")

Data types vary slightly between different database systems. The full range of
MySQL data types is outlined in section 7.2 of the MySQL reference manual.

create table contactlist (

 id int not null auto_increment,

 name varchar(30),

 phone varchar(30),

 primary key (id)

)

17.2.1.6 DROP
The drop statement is used to delete a table from the database.

drop table tablename

drop table contactlist

242 PerlClass.com for ACT Students 20-23 Feb 2007

Relational databases 17

17.3 Chapter summary
• A database table contains fields and records of data about one entity
• SQL (Structured Query Language) can be used to manipulate and retrieve

data in a database
• A SELECT query may be used to retrieve records which match certain criteria
• An INSERT query may be used to add new records to the database
• A DELETE query may be used to delete records from the database
• An UPDATE query may be used to modify records in the database
• A CREATE query may be used to create new tables in the database
• A DROP query may be used to remove tables from the database

PerlClass.com for ACT Students 20-23 Feb 2007 243

Chapter 18: Chapter 18: MySQLMySQL

In this chapter...

In this section we examine the popular database MySQL, which is
available for free for many platforms. MySQL is just one of many
database systems which can be accessed via Perl's DBI module.

18 MySQL

18.1 MySQL features

18.1.1 General features
• Fast
• Lightweight
• Command-line and GUI tools
• Supports a fairly large subset of SQL, including indexing, binary objects

(BLOBs), etc
• Allows changes to structure of tables while running
• Wide userbase
• Support contracts available

18.1.2 Cross-platform compatibility
• Available for most UNIX platforms
• Available for Windows NT/95/98 (there are license differences)
• Available for OS/2
• Programming libraries for C, Perl, Python, PHP, Java, Delphi, Tcl, Guile (a

scheme interpreter), and probably more...
• Open-source ODBC

246 PerlClass.com for ACT Students 20-23 Feb 2007

MySQL 18

18.2 Comparisions with other popular DBMSs

18.2.1 PostgreSQL
MySQL and PostgreSQL are very similar in many ways. MySQL is driven by
one company while PostgreSQL is an open source project with major contribu
tions coming from a variety of companies and individuals.
More information: http://www.postgresql.org/

18.2.2 Oracle, Sybase, etc
MySQL will not give you the features of Oracle or other enterprise-level
database management systems. In particular, MySQL lacks triggers and views.
The price you pay for this is that Oracle costs a lot, and requires heavy hard
ware to run on and is much more maintenance intensive. MySQL is better suit
ed to small-to-medium database applications such as web-based database appli
cations, and will do so happily on a common PC.
More information: http://www.oracle.com/

PerlClass.com for ACT Students 20-23 Feb 2007 247

18 MySQL

18.3 Getting MySQL
MySQL can be downloaded from http://www.mysql.com/or mirror sites world
wide. It is also available in packaged binary format for various operating sys
tem distributions, including RedHat and Debian linux.
Installation instructions come with the software, but in brief:

18.3.1 Red Hat Linux
Download the appropriate RPM packages, and type rpm -i packagename.rpm

MySQL is included with Fedora, Red Hat Enterprise, CentOS, and any other
current Red Hat-derived Linuxes. So the standard package installers should
have no trouble installing this for you. For instance;

yum install mysql

18.3.2 Debian Linux
Use apt-get, dselect, or dpkg to install the .deb packages. For instance, apt-
get install mysql.

18.3.3 Compiling from source
Download the tar.gz file from http://www.mysql.com/ and read the README file.
Then type ./configure, make, and make install.

18.3.4 Binaries for other platforms
Binaries are available for many platforms, including Windows and some com
mercial UNIX platforms. Follow the installation instructions found in the
README file.

248 PerlClass.com for ACT Students 20-23 Feb 2007

MySQL 18

18.4 Setting up MySQL databases
A tool called mysqladmin is distributed with MySQL. This tool allows the
database administrator (DBA) to create, remove, or otherwise manage databas
es.

Table 18-1. Mysqladmin commands:
 create databasename Create a new database
 drop databasename Delete a database and all its tables
 flush-hosts Flush all cached hosts
 flush-logs Flush all logs
 flush-tables Flush all tables
 kill id,id,... Kill mysql threads
 password new-password Change old password to new-

password
 processlist Show list of active threads in

server
 reload Reload grant tables
 refresh Flush all tables and close and

open logfiles
 shutdown Take server down
 status Gives a short status message from

the server
 variables Prints variables available
 version Get version info from server

More help for this command is available by typing mysqladmin --help from the
command line or by reading the MySQL reference manual.

18.4.1 Creating the Acme inventory database
To create a database called inventory, we would perform the following steps as
the user who has permission to run mysqladmin (eg root):

% mysqladmin create inventory
% mysqladmin reload

PerlClass.com for ACT Students 20-23 Feb 2007 249

18 MySQL

18.4.2 Setting up permissions
To set up security permissions for the inventory database, we would need to
create appropriate records in the mysql database (that's right, it's a database
which has the same name as the database server). This is the central repository
for access control information for all databases served by your MySQL server.
Typically, you will want to:
• create an entry in the db table for the database
• set the default permissions for the database
• create an entry in the user table for any users who should be allowed to

access the database
• set default permissions for each user
All these are achieved by performing simple INSERT or UPDATE queries on
the tables in question.

Table 18-2. Available permissions include ...
Select May perform SELECT queries
Insert May perform INSERT queries
Update May perform UPDATE queries
Delete May perform DELETE queries
Create May create new tables
Drop May drop (delete) tables
Reload May reload the database
Shutdown May shut down the database
Process Has access to processes on the OS
File Has access to files on the OS's file system

18.4.3 Creating tables
The SQL statements used to create tables are documented in the MySQL manu
al. CREATE statements are used to create each individual table by specifying the
fields for each table, their data types and other options.
Below is an example --- these SQL statements create the Acme Widget Co. ta
bles we will be working with throughout this session. The output you see is
generated by the mysqldump program, and can be read back into a database

250 PerlClass.com for ACT Students 20-23 Feb 2007

MySQL 18

via command line redirection, eg mysql database < filename.

#

Table structure for table 'customer'

#

CREATE TABLE customer (

 id int(11) DEFAULT '0' NOT NULL auto_increment,

 name varchar(80),

 address varchar(255),

 suburb varchar(50),

 state char(3),

 postcode char(10),

 PRIMARY KEY (id)

);

#

Table structure for table 'sales'

#

CREATE TABLE sales (

 id int(11) DEFAULT '0' NOT NULL auto_increment,

 sale_date date,

 customer_id int(11),

 salesperson_id int(11),

 stock_item_id int(11),

 quantity int(11),

 price float(4,2),

 PRIMARY KEY (id)

);

#

Table structure for table 'salesperson'

#

CREATE TABLE salesperson (

 id int(11) DEFAULT '0' NOT NULL auto_increment,

 name varchar(80),

 PRIMARY KEY (id)

);

#

PerlClass.com for ACT Students 20-23 Feb 2007 251

18 MySQL

Table structure for table 'stock_item'

#

CREATE TABLE stock_item (

 id int(11) DEFAULT '0' NOT NULL auto_increment,

 description varchar(80),

 price float(4,2),

 quantity int(11),

 PRIMARY KEY (id)

);

252 PerlClass.com for ACT Students 20-23 Feb 2007

MySQL 18

18.5 The MySQL client
To talk to any database server, you will need to use a client of some kind.
MySQL comes with a text-based client by default, but there are graphical
clients available, as well as ODBC drivers to allow you to interact with a
MySQL database from Windows applications such as Microsoft Access.
The command line client can be invoked from the command line with the mysql
command. The mysql command takes a database name as a required argument,
as well as other optional arguments such as -p, which causes the client to ask
for a password for access to the database if access controls have been set up.
You can see all the options available on the command line by typing mysql –
help.

$ mysql -p databasename

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 2 to server version: 3.21.33b

Type 'help' for help.

mysql>

The MySQL client allows you to type in commands on one or many lines.
When you finish a statement, type ; to end, same as for Perl.
To quit the client, type quit or \q.
For a full outline of commands available in the client, type help or \h. It will
give you this message:

PerlClass.com for ACT Students 20-23 Feb 2007 253

Advanced
You can set up access controls on a database by editing the
data in the mysql database (i.e. type mysql mysql on the com
mand line) or by using the mysqlaccess command. Type
mysqlaccess --help for more information about this com
mand.

18 MySQL

mysql> \h

MySQL commands:

help (\h) Display this text

? (\h) Synonym for `help'

clear (\c) Clear command

connect (\r) Reconnect to the server. Optional arguments are db

and host

edit (\e) Edit command with $EDITOR

exit (\) Exit mysql. Same as quit

go (\g) Send command to mysql server

print (\p) print current command

quit (\q) Quit mysql

rehash (\#) Rebuild completion hash

status (\s) Get status information from the server

use (\u) Use another database. Takes database name as

argument

Connection id: 1 (Can be used with mysqladmin kill)

254 PerlClass.com for ACT Students 20-23 Feb 2007

MySQL 18

18.6 Understanding the MySQL client prompts
The prompt that shows when you are using the MySQL client tells you a lot
about what's going on.
The normal prompt looks like this:

mysql>

This means it is waiting for you to enter an SQL query.
If you are in the middle of entering an SQL query, it will be waiting for a semi-
colon to terminate the query, and will look like this:

 ->

If you have opened a set of quotes but not closed them, you will see one of
these prompts:

 '>

 ">

PerlClass.com for ACT Students 20-23 Feb 2007 255

18 MySQL

18.7 Exercises
1. Connect to a database which has the same name as your login (for instance,

train01) by typing mysql -p train01 (the -p flag causes it to ask you for
your password, which in this case is the same as your login password). The
database you are connecting to is your own personal copy of the Acme
Widget Co. inventory and sales database mentioned in the previous section

2. Type show tables to show a list of tables in this database
3. Type describe customer to see a description of the fields in the table

customer
4. Type select * from customer to perform a simple SQL query
5. Try selecting fields from other tables. Try both select * and select

field1, field2 type queries.
6. Use the where clause to limit which records you select
7. Use the order by clause to change the order in which records are returned
8. Insert a record into the customer table which contains your own name and

address details
9. Update the price of widgets in the stock_item table to change their price to

$19.95
When developing database applications, it is often useful to keep a client pro
gram such as this one open to test queries or check the state of your data. You
can open multiple telnet sessions to our training system to do this if you wish.

256 PerlClass.com for ACT Students 20-23 Feb 2007

MySQL 18

18.8 Chapter summary
• MySQL is one of many database systems which can be used as the back-end

to a web site
• MySQL can be downloaded from http://www.mysql.com/ or mirror sites
• The MySQL command line client can be used to interact with MySQL

databases
• The MySQL client allows the user to type in SQL queries and prints results

to the screen.

PerlClass.com for ACT Students 20-23 Feb 2007 257

Chapter 19: Chapter 19: The DBIThe DBI
and DBD modulesand DBD modules

In this chapter...

In this section we look at the Perl module which can be used to inter
act with many database servers: DBI.

19 The DBI and DBD modules

19.1 What is DBI?
Like the Perl modules discussed in last week's CGI programming course, the
DBI and DBD modules are written by Perl people and distributed free via
CPAN (the Comprehensive Perl Archive Network).
DBI stands for "Database Interface" while DBD stands for "Database Driver".
You need both types of modules, working together, in order to access databases
using Perl.

260 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 12 411 - 423

Camel 2nd

Camel 3rd

perldoc DBI

Cookbook 2nd 14 562 - 578

Learning 3rd B 291 light

Learning 4th

The DBI and DBD modules 19

19.2 Supported database types
Databases supported by Perl's DBI module include:
• Oracle
• Sybase
• Informix
• MySQL
• Msql
• Ingres
• Postgres
• Xbase
• DB2
• ... and more

PerlClass.com for ACT Students 20-23 Feb 2007 261

19 The DBI and DBD modules

19.3 How does DBI work?
DBI is a generic interface which acts as a "funnel" between the programmer
and multiple databases.
DBI protects you from needing to know the minutiae of connecting to different
databases by providing a consistent interface for the programmer. The only
thing you need to vary is the connection string, to indicate what sort of database
you wish to connect to.
To use DBI, you need to install the DBI module from CPAN, as well as any
DBD modules for the databases you use. For instance, to use MySQL you need
to install the DBD::Mysql module.

262 PerlClass.com for ACT Students 20-23 Feb 2007

Advanced
To install DBI, download the DBI module from CPAN
(http://www.perl.com/CPAN), unzip it using a command like
tar -xzvf DBI.tar.gz, then follow the instructions in the
README file distributed with the module.

The DBI and DBD modules 19

19.4 DBI/DBD syntax
The syntax of the database modules is best found by using the perldoc com
mand. perldoc DBI will give you general information applicable to all DBI
scripts, while perldoc DBD::yourdatabase will give information specific
to your own database. In our case, we use perldoc DBD::mysql.
DBI is an object oriented Perl module, like the Text::Template and
Mail::Mailer modules covered in the CGI Programming in Perl training mod
ule. This means that when we connect to the database we will be creating an
object which is called a "database handle" which refers to a specific session
with the database. Thus we can have multiple sessions open at once by creating
multiple database handles.
We can also create statement handle objects, which are Perl objects which refer
to a previously prepared SQL statement. Once we have a statement handle, we
can use it to execute the underlying SQL as often as we want.

19.4.1 Variable name conventions
The following variable name conventions are used in the DBD/DBI documenta
tion:

Table 19-1. DBI module variable naming conventions
Variable name Meaning
$dbh database handle object
$sth statement handle object
$rc Return code (boolean: true=ok, false=error)
$rv Return value (usually an integer)
@ary List of values returned from the database, typically

a row of data
$rows Number of rows processed (if available, else -1)

PerlClass.com for ACT Students 20-23 Feb 2007 263

19 The DBI and DBD modules

19.5 Connecting to the database
use DBI;

my $driver = 'mysql';
my $database = 'database_name'; # name of your database here
my $username = undef; # your database username
my $password = undef; # your database password

note that username and password should be assigned to if your
database
uses authentication (ie requires you to log in)

we set up a connection string specific to this database
my $dsn = "DBI:$driver:database=$database";

make the actual connection - this returns a database handle we can
use later
my $dbh = DBI->connect($dsn, $username, $password);

when you're done (at the end of your script)
$dbh->disconnect();

264 PerlClass.com for ACT Students 20-23 Feb 2007

The DBI and DBD modules 19

19.6 Executing an SQL query
set up an SQL statement
my $sql_statement = "select * from customer";
my $sth = $dbh->prepare($sql_statement)
 || die "Could not prepare: " . $dbh->errstr();

execute it
$sth->execute() || die "Could not execute: " . $dbh->errstr();

how many rows did we get?
my $num_rows = $sth->rows();
my $num_fields = $sth->{'NUM_OF_FIELDS'};

close the sql query, if we don't want it any more.
$sth->finish();

PerlClass.com for ACT Students 20-23 Feb 2007 265

19 The DBI and DBD modules

19.7 Doing useful things with the data
get an array full of the next row of data that matches the query
(the most common, and simplest, case)
while (my @ary = $sth->fetchrow_array()) {
 print "The first field is $ary[0]\n";
}

get a hash reference instead
(the more complicated, but more useful, version)
while (my $hashref= $sth->fetchrow_hashref()) {
 print "Name is $hashref->{'name'}\n";
}

you can also get an arrayref
(equally complicated and not quite as useful)
while (my $ary_ref = $sth->fetchrow_arrayref()) {
 print "The first field is $ary_ref->[0]\n";
}

266 PerlClass.com for ACT Students 20-23 Feb 2007

Advanced
Of the above methods, fetchrow_array() is the only one that
does not require an understanding of Perl references.
References are not a beginner-level topic, but for those who
are interested, they are documented in chapter 4 of the
Camel. They are worth learning if only for the added benefit
of being able to access fields by name when using the
fetchrow_hashref method.

The DBI and DBD modules 19

19.8 An easier way to execute non-SELECT
queries

If you wish to execute a query such as INSERT, UPDATE, or DELETE, you
may find it easier to use the do() method:

$dbh->do("delete from sales")
 || warn("Can't delete from sales table");

This method returns the number of rows affected, or undef if there is an error.

PerlClass.com for ACT Students 20-23 Feb 2007 267

19 The DBI and DBD modules

19.9 Quoting special characters in SQL
Sometimes you want to use a value in your SQL which may contain characters
which have special behavior in SQL, such as a percent sign or a quote mark.
Luckily, there is a method which can automatically escape all special charac
ters:

my $string = "20% off all stock";
my $clean_string = $dbh->quote($string);

268 PerlClass.com for ACT Students 20-23 Feb 2007

The DBI and DBD modules 19

19.10 Exercises
1. Use exercises/scripts/easyconnect.pl to connect to your Acme Widget

Co. database. You will need to edit some of the lines at the top.
2. Use a while loop to output data a row at a time
3. Check all your statements for indications of failure, and output messages to

the user using warn() if any of the steps fail.

19.10.1 Advanced exercises
1. If you wish, you can use a hash reference instead of an array
2. Change the SQL in easyconnect.pl to use a non-SELECT statement, and

use the do method instead of the prepare and execute methods. Don't forget
to check the return value!

PerlClass.com for ACT Students 20-23 Feb 2007 269

19 The DBI and DBD modules

19.11 Chapter summary
• The DBI module provides a consistent interface to a variety of database

systems
• The DBI module can be downloaded from CPAN
• Documentation for the DBI module can be found by typing perldoc DBI

270 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 20: Chapter 20: AcmeAcme
Widget Co. ExercisesWidget Co. Exercises

In this chapter...

In the second half of this training module, we will be tying together
what we have learned about SQL and DBI, and creating a simple ap
plication for Acme Widget Co. to assist them in inventory manage
ment, sales, and billing.

20 Acme Widget Co. Exercises

20.1 The Acme inventory application
In your exercises/ directory you will find a subdirectory called acme/ which
contains the outline of the Acme inventory application which you will build
upon for the rest of today.

272 PerlClass.com for ACT Students 20-23 Feb 2007

Acme Widget Co. Exercises 20

20.2 Listing stock items
The shell of a stock-listing script is available in your exercises/acme/ directory
as stocklist.pl.

#!/usr/bin/perl -w

use strict;

use DBI;

my $driver = 'mysql';

my $database = 'trainXX';

my $username = 'trainXX';

my $password = 'your_password_here';

my $dsn = "DBI:$driver:database=$database";

my $dbh = DBI->connect($dsn, $username, $password)

 || die $DBI::errstr;

my $sql_statement = "select * from stock_item";

my $sth = $dbh->prepare($sql_statement);

$sth->execute() or die ("Can't execute SQL: " . $dbh->errstr());

while (my @ary = $sth->fetchrow_array()) {

 print <<"END";

ID: $ary[0]

Description: $ary[1]

Price: $ary[2]

Quantity: $ary[3]

END

}

$dbh->disconnect();

1. Fill in the variables indicated ($database, $sql_statement, etc)
2. Test your script from the command line
3. Sort the output in alphabetical order by Description

PerlClass.com for ACT Students 20-23 Feb 2007 273

20 Acme Widget Co. Exercises

20.2.1 Advanced exercises:
1. If you are familiar with Perl references, convert the script to use

fetchrow_hashref()
2. Ask the user to specify a field to sort by, either as a command line argument

or on STDIN. If the sort order parameter is given, use it to change the sort
order in your SQL statement and re-output the result, otherwise default to
something sensible such as ID

274 PerlClass.com for ACT Students 20-23 Feb 2007

Acme Widget Co. Exercises 20

20.3 Adding new stock items
1. Write a script which prompts the user for input, asking for values for

description, quantity and price. Remember that the stock item's ID will be
automatically filled in by the database, as it is an "auto increment" field.

2. Next, create an SQL query to add a record to the database. Output a
message to the user indicating the success (or failure) of the operation. A
sample script to get you started is available in exercises/acme/addstock.pl

20.3.1 Advanced exercises
1. Check that the price is a number (use regular expressions for these checks)
2. Check that it has two decimal places
3. Check that the number of items in stock is a number

PerlClass.com for ACT Students 20-23 Feb 2007 275

20 Acme Widget Co. Exercises

20.4 Entering a sale into the system
1. The program exercises/acme/sale.pl provides an interface which can be

used to input data pertinent to the occurence of a sale
2. Write a script which records the sale in the sales table
3. Your script will also have to update the stock_item table to reduce the

number of items still in stock.
4. What happens if you try to buy/sell more items than are available? Put in a

check to stop this from happening.

276 PerlClass.com for ACT Students 20-23 Feb 2007

Acme Widget Co. Exercises 20

20.5 Creating sales reports
1. Copy the code from the previous example's script to create a script that asks

the user for a salesperson's ID number and a start and end date.
2. Use the script to output a sales report for the chosen salesperson for the

period between the two dates.

20.5.1 Advanced exercises
1. Create an extra option for "all" sales people, which shows all the sales

people in descending order of sales made. You may need to use an SQL
group by clause to achieve this.

PerlClass.com for ACT Students 20-23 Feb 2007 277

20 Acme Widget Co. Exercises

20.6 Searching for stock items
1. Create a script which asks a user for a string to search for in a stock item's

description (eg "dynamite").
2. Allow the user to choose either "Full name", "Beginning of name" or "Part

of name" as a search type.
3. Create different SQL queries using LIKE to search the data depending on

their choices

20.6.1 Advanced exercises
1. Change the script so that people can use DOS/UNIX style wildcards (* and

?) then use their wildcard expression in your SQL query - convert the
wildcards to SQL-style wildcards by using regular expressions

278 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 21: Chapter 21: ReferenceReference
ss

In this chapter...

This section is included as an optional topic. It is intended for those
who have experience in C or other languages which use pointers and
references.

RTFM!
References are covered at length in the first chapter of the
O'Reilly book Advanced Perl Programming by Sriram Srini
vasan (the "Panther" book). Lastly, perldoc perlref contains
online documentation related to Perl references.

21 References

21.1 Uses for Perl references
• creating complex data structures, for example multi-dimensional arrays
• passing multiple arrays and hashes to subroutines and functions without them

getting smushed together
• creating anonymous data structures

280 PerlClass.com for ACT Students 20-23 Feb 2007

References 21

21.2 Creating and deferencing
To create a reference to a scalar, array or hash, we prefix its name with a back
slash:

my $scalar = "This is a scalar";

my @array = qw(a b c);

my %hash = ('sky' => 'blue',

'apple' => 'red',

'grass' => 'green'

);

my $scalar_ref = \$scalar;

my $array_ref = \@array;

my $hash_ref = \%hash;

Note that all references are scalars, because they contain a single item of infor
mation - the memory address of the actual data.
Dereferencing (getting at the value that a reference points to) is achieved by
prepending the appropriate variable-type punctuation to the name of the refer
ence. For instance, if we have a hash reference $hash_reference we can deref
erence it by looking for %$hash_reference.

my $new_scalar = $$scalar_ref;

my @new_array = @$array_ref;

my %new_hash = %$hash_ref;

In other words, wherever you would normally put a variable name (like
new_scalar) you can put a reference variable (like $scalar_ref).
Here's how you access array elements or slices, and hash elements:

print $$array_ref[0]; # prints the first element of the

 # array referenced by $array_ref

print $$array_ref[0..2]; # prints an array slice

print $$hash_ref{'sky'}; # prints a hash element's value

PerlClass.com for ACT Students 20-23 Feb 2007 281

21 References

The other way to access the value that a reference points to is using the "arrow"
notation. This notation is usually considered to be better Perl style than the one
shown above, which can have precedence problems and is less visually clean.

print $array_ref->[0];

print $hash_ref->{'sky'};

282 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
The Panther book describes a good way to visualise this
method. Ask your instructor to demonstrate it or to loan you
a copy of the book if you need a better understanding of the
above syntax.

References 21

21.3 Complex data structures
We can use references to create complex data structures, such as this hash in
which the values are arrays rather than scalars. Actually, they are scalars, since
the array references are scalars, but they point to arrays.

my @fruits = qw(apple orange pear banana);

my @rodents = qw(mouse rat hamster gerbil rabbit);

my @books = qw(camel llama panther);

my %categories = (

 'fruits' => \@fruits,

 'rodents' => \@rodents,

 'books' => \@books,

);

to print out "gerbil"...

print $categories->{'rodents'}->[3];

PerlClass.com for ACT Students 20-23 Feb 2007 283

21 References

21.4 Passing multiple arrays/hashes as
arguments

If we were to attempt to pass two arrays together to a function or subroutine,
they would be flattened out to form one large array:

mylist(@fruit, @rodents);

print out all the fruits then all the rodents

sub mylist {

 my @list = @_;

 foreach (@list) {

 print "$_\n";

 }

}

If we want them kept separate, pass references:

myreflist(@fruit, @rodents);

sub myreflist {

 my ($firstref, $secondref) = @_;

 print "First list:\n";

 foreach (@$firstref) {

 print "$_\n";

 }

 print "Second list:\n";

 foreach (@$secondref) {

 print "$_\n";

 }

}

284 PerlClass.com for ACT Students 20-23 Feb 2007

References 21

21.5 Anonymous data structures
Lastly, references can be used to create anonymous data structures which are
destroyed once you're done with them. An anonymous array is created by using
square brackets instead of round ones. An anonymous hash uses curly brackets
instead of round ones.

the old two-step way:

my @array = qw(a b c d);

my $array_ref = \@array;

if we get rid of $array_ref, @array will still hang round using

up memory. Here's how we do it without the intermediate step:

my $array_ref = ['a', 'b', 'c', 'd'];

look, we can still use qw() too...

my $array_ref = [qw(a b c d)];

more useful yet:

my %transport = (

 'cars' => [qw(toyota ford holden porsche)],

 'planes' => [qw(boeing harrier)],

 'boats' => [qw(clipper skiff dinghy)],

);

PerlClass.com for ACT Students 20-23 Feb 2007 285

21 References

21.6 Chapter summary
• References may be used to create complex data structures, pass multiple

arrays and hashes to subroutines, and to create anonymous data structures
• References are created by prefixing the name of a variable with a backslash
• References are dereferenced by using the name of a reference (including the

dollar sign) where we would usually use the alphanumeric name of a
variable, or by using the arrow notation.

• References can be included in Perl data structures anywhere you might
ordinarily find scalars.

• References to anonymous arrays may be created by initialising an array using
square brackets instead of round ones.

• References to anonymous hashes may be created by initialising an hash using
curly brackets instead of round ones.

286 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 22: Chapter 22: What isWhat is
CGI?CGI?

In this chapter...

In this section we will define the term CGI and learn how web
servers use CGI to provide dynamic and interactive material. We ex
plore the Hypertext Transfer Protocol as it applies to both static and
CGI-generated content, and examine raw HTTP requests and re
sponses by telnetting to a web server.

22 What is CGI?

22.1 Definition of CGI
CGI is the Common Gateway Interface, a standard for programs to interface
with information servers such as HTTP (web) servers. CGI allows the HTTP
server to run an executable program or script in response to a user request, and
generate output on the fly. This allows web developers to create dynamic and
interactive web pages.
CGI programs can be written in any language. Perl is a very common language
for CGI programming as it is largely platform independent and the language's
features make it very easy to write powerful applications. However, some CGI
programs are written in C, shell script, or other languages.
It is important to remember that CGI is not a language in itself. CGI is merely a
type of program which can be written in any language.

288 PerlClass.com for ACT Students 20-23 Feb 2007

What is CGI? 22

22.2 Introduction to HTTP
To understand how CGI works, you need some understanding of how HTTP
works.
HTTP stands for HyperText Transfer Protocol, and (not very surprisingly) is
the protocol used for transferring hypertext documents such as HTML pages on
the World Wide Web.
For the purposes of this course, we will only be looking at HTTP version The
current version, 1.1, is specified in RFC 2068 and contains many more features,
but none of them are necessary for a basic understanding of CGI programming.
An HTTP cheat-sheet, containing some common terminology and a table of sta
tus codes, appears in Appendix E.

A simple HTTP transaction, such as a request for a static HTML page, works as
follows:

1. The user types a URL into his or her browser, or specifies a web address by
some other means such as clicking on a link, choosing a bookmark, etc

2. The user agent connects to port 80 of the HTTP server
3. The user agent sends a request such as GET /index.html
4. The user agent may also send other headers
5. The HTTP server receives the request and finds the requested file in its

filesystem
6. The HTTP server sends back some HTTP headers, followed by the contents

of the requested file
7. The HTTP server closes the connection

PerlClass.com for ACT Students 20-23 Feb 2007 289

RTFM!
RFCs, or "Request For Comment" documents, can be
obtained from the Internet Engineering Task Force (IETF)
website (http://www.ietf.org/) or from mirrors such as the
RFC mirror at Monash University
(ftp://ftp.monash.edu.au/pub/rfc/).

ftp://ftp.monash.edu.au/pub/rfc/

22 What is CGI?

When a user requests a CGI program, however, the process changes slightly:
1. The user agent sends a request as above
2. The HTTP server receives the request as above
3. The HTTP server finds the requested CGI program in its file system
4. The HTTP server executes the program
5. The program produces output
6. The output includes HTTP headers
7. The HTTP server sends back the output of the program
8. The HTTP server closes the connection

290 PerlClass.com for ACT Students 20-23 Feb 2007

What is CGI? 22

22.3 Terminology
authentication
 The process by which a client sends username and password information to

the server, in an attempt to become authorized to view a restricted resource.

client
 An application program that establishes connections for the purpose of

sending requests.

Content-type
 The media type of the body of the response, as given in the Content-type:

header. Examples include text/html, text/plain, image/gif, etc.

method
 Indicates what the server should do with a resource. Case sensitive. Valid

methods include: GET, HEAD, POST

request
 An HTTP request message sent by a client to a server

resource
 A network data object or service which can be identified by a URI.

response
 An HTTP response message sent by a server to a client

server
 An application program that accepts connections in order to service

requests by sending back responses.

status code
 A 3-digit integer indicating the result of the server's attempt to understand

and satisfy the request. A table of status codes and their meanings appears
below.

PerlClass.com for ACT Students 20-23 Feb 2007 291

22 What is CGI?

Uniform Resource Identifier (URI)
 URIs are formatted strings which identify - via name, location, or any other

characteristic - a network resource.

Uniform Resource Locator (URL)
 A web address. May be expressed absolutely (eg

http://www.example.com/services/index.html) or in relation to a base
URI (eg ../index.html) See also URI.

user agent
 The client which initiates a request. These are often browsers, editors,

spiders (web-traversing robots) or other end-user tools.

292 PerlClass.com for ACT Students 20-23 Feb 2007

What is CGI? 22

22.4 HTTP status codes
Table 22-1. HTTP status codes
Code Meaning
200 OK
201 Created
202 Accepted
204 No Content
301 Moved Permanently
302 Moved Temporarily
304 Not Modified
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
500 Internal Server Error
501 Not Implemented
502 Bad Gateway
503 Service Unavailable

PerlClass.com for ACT Students 20-23 Feb 2007 293

22 What is CGI?

22.5 HTTP Methods

22.5.1.1 GET
The GET method means retrieve whatever information is identified by the re
quest URI. If the request URI refers to a data-producing process (eg a CGI pro
gram), it is the produced data which is returned, and not the source text of the
process.

22.5.1.2 HEAD
The HEAD method is identical to GET except that the server will only return
the headers, not the body of the resource. The meta-information contained in
the HTTP headers in response to a HEAD request should be identical to the in
formation sent in response to a GET request. This method can be used to obtain
meta-information about the resource without transferring the body itself.

22.5.1.3 POST
The POST method is used to request that the server use the information encod
ed in the request URI and use it to modify a resource such as:
• Annotation of an existing resource
• Posting a message to a bulletin board, newsgroup, mailing list, or similar

group of articles
• Providing data {such as the result of submitting a form} to a data-handling

process
• Updating a database

294 PerlClass.com for ACT Students 20-23 Feb 2007

What is CGI? 22

22.6 Exercises
The HTTP request/response process is usually transparent to the user. To see
what's going on, let's connect directly to the web server and see what happens.
Login to the system as for the Introduction to Perl course:

1. Open the telnet program, TeraTerm
2. Connect to the training server (your instructor will give you the hostname

or IP number)
3. Login using the username and password you were given
4. From the UNIX command line, type telnet localhost 80 -- this connects to

port 80 of the server, where the HTTP daemon (aka the web server) is
listening. You should see something like this:
training:~> telnet localhost 80
Trying 1.2.3.4
Connected to training.netizen.com.au.
Escape character is '^]'.

5. Ask the web server for a static document by typing: GET /index.html
HTTP/1.0 then press enter twice to send the request. Note that this command
is case sensitive.

6. Look at the response that comes back. Do you see the headers? They should
look something like this:
HTTP/1.1 200 OK
Date: Tue, 28 Mar 2000 02:42:37 GMT
Server: Apache/1.3.6 (UNIX)
Connection: close
Content-Type: text/html
This will be followed by a blank line, then the content of the file you asked
for. Then you will see "Connection closed by foreign host", indicating that
the HTTP server has closed the connection.

If you miss seeing the headers because the body is too long, try using the HEAD
method instead of GET.

7. Telnet to port 80 again and ask the web server for a CGI script's output by
typing GET /cgi-bin/localtime.cgi HTTP/1.0

8. Now let's get some status codes other than 200 OK from the web server:

PerlClass.com for ACT Students 20-23 Feb 2007 295

22 What is CGI?

• GET /not_here.html HTTP/1.0 (a file which doesn't exist)
• GET /unreadable.html HTTP/1.0 (a file with the permissions set wrong)
• GET /protected.html HTTP/1.0 (a file protected by HTTP authentication

- we cover this later on today)
• GET /redirected.html HTTP/1.0 (a file which is redirected to a different

URL)
• ENCRYPT /index.html HTTP/1.0 (a method which isn't known to our serv

er)

296 PerlClass.com for ACT Students 20-23 Feb 2007

What is CGI? 22

22.7 What is needed to run CGI programs?
There are several things you need in order to create and run Perl CGI programs.
• a web server
• web server configuration which gives you permission to run CGI
• a Perl interpreter
• appropriate Perl modules, such as CGI.pm
• a shell account is extremely useful but not essential
Most of the above requirements will need your system administrator or ISP to
set them up for you. Some will be wary of allowing users to run CGI programs,
and may require you to obey certain security regulations or pay extra for the
privilege. The most common security requirement is that CGI programs must
run under cgiwrap. This is discussed later, in the section on security.

PerlClass.com for ACT Students 20-23 Feb 2007 297

22 What is CGI?

22.8 Chapter summary
• CGI stands for Common Gateway Interface
• HTTP stands for Hypertext Transfer Protocol. This is the protocol used for

transferring documents and other files via the World Wide Web.
• HTTP clients (web browsers) send requests to HTTP (web) servers, which

are answered with HTTP responses
• The request/response can be examined by telnetting to the appropriate port of

a web server and typing in requests by hand.

298 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 23: Chapter 23: GeneGene
rating web pages withrating web pages with

PerlPerl

In this chapter...

In this section, we will create a simple "Hello world" CGI program
and run it, then extend upon that to integrate parts of Perl taught in
previous modules. Alternative quoting mechanisms are briefly cov
ered, and we also discuss debugging techniques for CGI programs.

23 Generating web pages with Perl

23.1 Your public_html directory
The training server has been set up so that each user has their own web space
underneath their home directory. All files which will be accessible via the web
should be placed in the directory named public_html. This is common for most
personal home pages.
The directory ~username/public_html on the UNIX file system maps to the
URL http://hostname/~username/ via the web. So if your login name is stu03
and you are using the PerlClass.com training server at perlclass.fini.net, you
can access your web pages at http://perlclass.fini.net/~sty03. Of course,
you will need to replace both the hostname and username to match your specif
ic setup.

300 PerlClass.com for ACT Students 20-23 Feb 2007

Generating web pages with Perl 23

23.2 The CGI directory
CGI scripts are usually kept in a separate directory from plain HTML files. This
directory is most commonly called cgi-bin (the "bin" stands for "binary" but
really just means "executable files", whether compiled binaries or interpreted
scripts such as Perl programs). The web server is usually set up so that you only
have permission to run CGI programs from the cgi-bin directory, for security
reasons.

1. Change to your public_html directory
2. If you type ls to get a directory listing, you will see that you have several

HTML files here, as well as a cgi-bin directory.
3. Change to your cgi-bin directory and type ls, and you will see that the

example scripts for this course are already installed here.
If you were setting this up for yourself, you would need to be sure of the fol
lowing:

1. That your home directory is world executable
2. That your public_html directory is world executable
3. That all your HTML files are world readable
4. That your cgi-bin directory is world executable - note that it is not

compulsory to have a cgi-bin directory - some server configurations allow
you to execute a CGI script from any directory.

5. That all your CGI scripts are world readable and executable

PerlClass.com for ACT Students 20-23 Feb 2007 301

23 Generating web pages with Perl

23.3 The HTTP headers
Every CGI script must output an HTTP header giving a MIME content type,
such as Content-type: text/html, with a blank line after it:

print "Content-type: text/html\n\n";

Put this at the top of every CGI script, as the first thing that's printed.

302 PerlClass.com for ACT Students 20-23 Feb 2007

Advanced
If your output is of another MIME type, you should print out
the appropriate Content-type: header - for instance, a CGI
program which outputs a random GIF image would use Con
tent-type: image/gif

Generating web pages with Perl 23

23.4 HTML output
Any other output of your script will be sent back to the web browser just as you
specify. Since we're outputting content of the type text/html we should make
our scripts output HTML:

print "<h1>Hello, world!</h1>\n";

The above example is already in your cgi-bin directory as hello.cgi.

PerlClass.com for ACT Students 20-23 Feb 2007 303

23 Generating web pages with Perl

23.5 Running and debugging CGI programs
When writing CGI programs, there are many problems which may affect their
execution. Since these will not always be easily understood by examining the
web browser output, there are other ways to check how your program is run
ning:

1. First, check that your program runs by running it from the command line. It
may be that you've made a syntax error, or that your program has the wrong
permissions

2. Second, try opening it in a browser. If your program runs on the command
line but does not output content to the browser, you may have forgotten to
print out the Content-type: text/html header, or forgotten to leave a blank
line between the header and the body, or may have made an error in your
HTML output.

3. Thirdly, check the web server's log files. Where these are will vary from
system to system. On our system, they're in /var/log/apache, and you can
check them using cat, less, tail, or any other tool of your choice. If you
don't know what these commands do, check their manual pages by typing
man cat, man less, etc.

23.5.1 Exercises
1. Look at the output of the hello.cgi script by pointing a web browser (such

as Netscape) at http://hostname/~trainXX/cgi-bin/hello.cgi (replace
hostname with the hostname or IP address of the training server, and XX
with your number)

2. Modify hello.cgi to set a variable $name and include that name in the
greeting. (Don't forget to use strict;)

3. Run your modified hello.cgi from the command line to ensure that it runs.
4. Press the Reload button in your browser to see if your modifications worked

correctly.

304 PerlClass.com for ACT Students 20-23 Feb 2007

Generating web pages with Perl 23

23.6 Quoting made easy
It can be annoying to output HTML using double quotes. You may find your
self doing things like this:

print "\n";

print "A hypertext link\n";

Escaping all those quotes with backslashes can get tedious and unreadable.
Luckily, there are a couple of ways around it.

23.6.1 Here documents
“Here”' documents allow you to print everything until a certain marker is
found:

print <<"END";

A hypertext link

END

You can specify what end marker you want on in the print statement.
The fact that the marker is in double quotes means that the material up until the
end marker is found will undergo interpolation in the same way as any double-
quoted string. If you use single quotes, it'll act like a single-quoted string, and
no interpolation will occur.

The end marker must be on a line by itself, at the very start of the line. Note
also that the print statement has a semi-colon on the end.

PerlClass.com for ACT Students 20-23 Feb 2007 305

Advanced
If you use backticks, it will execute each line via the shell.

23 Generating web pages with Perl

23.7 Pick your own quotes
Another way of avoiding excessive backslashes in your code is to use the qq()
or q() operators/functions.

print qq(\n);

print qq(A hypertext link\n);

Like the matching and substitution operators m// and s///, the quoting opera
tors can use just about any character as a delimiter:

print qq(A hypertext link\n);

print qq!A hypertext link\n!;

print qq[A hypertext link\n];

print qq#A hypertext link\n#;

If the opening delimiter is a bracket type character, the closing delimiter will be
the matching bracket.
Always choose a delimiter that isn't likely to be found in your quoted text. A
slash, while common in non-HTML uses of the function, is not very useful for
quoting anything containing HTML closing tags like </p>.

306 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 4 46

Camel 2nd 2 41

Camel 3rd 2 63 - 64

perldoc perlop

Cookbook 2nd 1 3

Learning 3rd 3 43 - 44 qw()

Learning 4th

Generating web pages with Perl 23

23.8 Exercises
The following exercises practice using CGI to output different Perl data types
(as taught in Introduction to Perl) such as arrays and hashes. You may use plain
double quotes, ``here'' documents, or the quoting operators as you see fit.

1. Write a CGI program which creates an array then outputs the items in an
unordered list (HTML's element) using a foreach loop. If you need
help with HTML, there's a cheat sheet in Appendix D.

2. Modify your program to print out the keys and values in a hash, like this:
• Name is Fred
• Sex is male
• Favorite colour is blue

3. Change your CGI program so that you output a table instead of an
unordered list, with the keys in one column and the values in another. An
example of how this could be done is in cgi-bin/hashtable.cgi

PerlClass.com for ACT Students 20-23 Feb 2007 307

23 Generating web pages with Perl

23.9 Environment variables
In Perl, there is a special variable called %ENV which contains all the environ
ment variables which are set.
When a web server runs a CGI program, certain environment variables are set
to provide information about the web server, the request made by the user
agent, and other pertinent information.
Examples of environment variables available to your CGI script include
HTTP_USER_AGENT which describes the user agent or browser used to make
the request, and HTTP_REFERER, which indicates the referring page (if any).

23.9.1 Exercises
1. Modify your table-printing script from the previous exercise to print out the

hash %ENV.
2. The HTTP_USER_AGENT environment variable contains the type of browser

used to request the CGI script.
• Write a script which prints out the user agent string for the requesting

browser
• Take a look at what various browsers report themselves as -- try

Netscape, Internet Explorer, or Lynx from the UNIX command line. You
will note that Microsoft browsers purport to be "Mozilla compatible" (i.e.
compatible with Netscape).

• Use a regular expression to determine when a certain browser (for
instance, Microsoft Internet Explorer) is being used, and output a
message to the user.

3. The HTTP_REFERER (yes, it's spelt incorrectly in the protocol definition)
environment variable contains the URL of the page from which the user
followed a link to your CGI program. If you call up your CGI program by
typing its URL straight into the browser, the HTTP_REFERER will be an empty
string. Create an HTML page that points to your CGI program and see what
the REFERER environment variable says.

308 PerlClass.com for ACT Students 20-23 Feb 2007

Generating web pages with Perl 23

23.10 Chapter summary
• CGI scripts are programs written in Perl or any other language that output

web content such as HTML pages
• CGI scripts must output a Content-type header and a blank line before

anything else
• Debugging techniques for CGI:

• Run the script from the command line
• Try opening it in the browser
• Check the logs

• Various techniques are available for quoting text, including "here" documents
and Perl quoting functions such as qq().

• The %ENV special variable can be used to access environment variables via
CGI scripts, including such variables as HTTP_USER_AGENT and
HTTP_REFERER

PerlClass.com for ACT Students 20-23 Feb 2007 309

Chapter 24: Chapter 24: ProcessProcess
ing form inputing form input

In this chapter...

CGI programs are often used to accept and process data from HTML
forms. In this section, we take a quick look at HTML forms and use
the CGI module to parse form data.

24 Processing form input

24.1 A quick look at HTML forms
To be able to use CGI to accept user input, you will probably need to under
stand HTML forms. There's an HTML cheat-sheet in Appendix D of these
notes, but here's a brief run-down of the major parts of HTML forms:

312 PerlClass.com for ACT Students 20-23 Feb 2007

Processing form input 24

24.2 The FORM element
The FORM element is a block level element - that means that the browser will
present it on a new line, like it does with headings and paragraphs.
The FORM element's attributes include:

Table 24-1. FORM element attributes
Attribute Example Description
METHOD METHOD="POST" The HTTP method to use to send

the form's contents back to the web
server. It can be POST or GET -- the
differences are explained the the
HTTP cheat sheet appendix.

ACTION ACTION="../cgi-
bin/myscript.cgi"

The relative or absolute URL of the
CGI program which is to process
the form's data

Other attributes exist, but will not be used in this course.

PerlClass.com for ACT Students 20-23 Feb 2007 313

24 Processing form input

24.3 Input fields
Some of the input fields you can use in your form include:

24.3.1 TEXT
A text input field <INPUT TYPE="TEXT" NAME="email_address">

24.3.2 CHECKBOX
Creates a yes/no checkbox. Saying CHECKED will make it checked by default.

<INPUT TYPE="CHECKBOX" NAME="send_email" CHECKED>

24.3.3 SELECT
Creates a drop-down list of items. Saying SELECT MULTIPLE will allow for multi
ple choices to be made.

<SELECT NAME="hobbies">

 <OPTION VALUE="philately">Philately</OPTION>

 <OPTION VALUE="gardening">Gardening</OPTION>

 <OPTION VALUE="programming">Programming</OPTION>

 <OPTION VALUE="cookery">Cookery</OPTION>

 <OPTION VALUE="reading">Reading</OPTION>

 <OPTION VALUE="bushwalking">Bushwalking</OPTION>

</SELECT>

24.3.4 SUBMIT
Creates a button which, when pressed, will submit the form.

<INPUT TYPE="SUBMIT" VALUE="Press me!">

314 PerlClass.com for ACT Students 20-23 Feb 2007

Processing form input 24

24.4 The CGI module

24.4.1 What is a module?
A module is a collection of useful functions which you can use in your pro
grams. They are written by Perl people worldwide, and distributed mostly
through CPAN, the Comprehensive Perl Archive Network.
Perl modules save you heaps of time - by using a module, you save yourself
from "reinventing the wheel". Perl modules also tend to save you from making
silly mistakes again and again while you try to figure out how to do a given
task.
One common (but fiddly) task in CGI programming is taking the parameters
given in an HTML form and turning them into variables that you can use.
The parameters from an HTML form are encoded in this "percent-encoded" for
mat:

name=Kirrily&company=Netizen%20Pty.%20Ltd.

If you use the POST method, these parameters are passed via STDIN to the
CGI script, whereas GET passes them via the environment variable
QUERY_STRING. This means that as well as simply parsing the character string,
you need to know where to look for it as well.
The easiest way to parse this parameter line is to use CGI module.

PerlClass.com for ACT Students 20-23 Feb 2007 315

24 Processing form input

24.4.2 Using the CGI module
To use the CGI module, simply put the statement use CGI; at the top of your
script, thus:

#!/usr/bin/perl -w

use strict;

use CGI;

24.4.3 Accepting parameters with CGI
To accept form parameters into our CGI script as variables, we can say that we
specifically want to use the params part of the CGI module:

#!/usr/bin/perl -w

use strict;

use CGI 'param';

This provides us with a new subroutine, param, which we can use to extract the
value of the HTML form's fields.

316 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 10 376 - 398

Camel 2nd

Camel 3rd

perldoc CGI

Cookbook 2nd 756 - 791

Learning 3rd

Learning 4th

Processing form input 24

#!/usr/bin/perl -w

use strict;

use CGI 'param';

my $name = param('name');

print "Content-type: text/html\n\n";

print "Hello, $name!";

24.4.4 Debugging with the CGI module's offline mode
When you run a CGI script from the command line, you will see a prompt like
this:

(offline mode: enter name=value pairs on standard input)

This allows you to enter parameters in the form name=value for testing and de
bugging purposes. Use CTRL-D (the UNIX end-of-file character) to indicate
that you are finished.

(offline mode: enter name=value pairs on standard input)

name=fred

age=40

^D

24.4.5 Exercises
1. Write a simple form to ask the user for their name. Type in the above script

and see if it works.
2. Add some fields to your form, including a checkbox and a drop down

menu, and print out their values. What are the default true/false values for a
checkbox?

3. What happens if you use the SELECT MULTIPLE form functionality? Try
assigning that field's parameters from it to an array instead of a scalar, and
you will see that the data is handled smoothly by the CGI module. Print
them out using a foreach loop, as in earlier exercises.

PerlClass.com for ACT Students 20-23 Feb 2007 317

24 Processing form input

24.5 Practical Exercise: Data validation
Your trainer will now demonstrate and discuss the use of CGI for validation of
data entered into a web form. An example form is in your public_html directo
ry as validate.html and the validation CGI script is available in your cgi-bin
directory as validate.cgi.

#!/usr/bin/perl -w

use strict;

use CGI 'param';

print "Content-type: text/html\n\n";

my @errors;

push (@errors, "Year must be numeric") if param('year') =~ /\D/;

push (@errors, "You must fill in your name") if param('name') eq "";

push (@errors, "URL must begin with http://")

if param('url') !~ m!^http://!;

if (@errors) {

 print "<h2>Errors</h2>\n";

 print "\n";

 foreach (@errors) {

 print "$_\n";

 }

 print "\n";

} else {

 print "<p>Congratulations, no errors!</p>\n";

}

24.5.1 Exercises
1. Open the form for the validation program in your browser. Try submitting

the form with various inputs.

318 PerlClass.com for ACT Students 20-23 Feb 2007

Processing form input 24

24.6 Practical Exercise: Multi-form "Wizard"
interface

Your trainer will now demonstrate and discuss how you can use what you've
just learned to create a multi-form "wizard" interface, where values are remem
bered from one form to the next and passed using hidden fields.

<INPUT TYPE="HIDDEN" VALUE="..." NAME="...">

Source code for this example is available as cgi-bin/wizard.cgi.
First, we print some headers and pick up the "step" parameter to see what step
of the wizard interface we're up to. We have four subroutines, named step1
through step4, which do the actual work for each step.

#!/usr/bin/perl -w

use strict;

use CGI 'param';

print <<"END";

Content-type: text/html

<html>

<body>

<h1>Wizard interface</h1>

END

my $step = param('step') || 0;

step1() unless $step;

step2() if $step == 2;

step3() if $step == 3;

step4() if $step == 4;

print <<"END";

</body>

PerlClass.com for ACT Students 20-23 Feb 2007 319

24 Processing form input

</html>

END

Here are the subroutines. The first one is fairly straightforward, just printing out
a form:

#

Step 1 -- Name

#

sub step1 {

 print qq(

 <h2>Step 1: Name</h2>

 <p>

 What is your name?

 </p>

 <form method="POST" action="wizard.cgi">

 <input type="hidden" name="step" value="2">

 <input type="text" name="name">

 <input type="submit">

 </form>

);

}

Steps 2 through 4 require us to pick up the CGI parameters for each field that's
been filled in so far, and print them out again as hidden fields:

#

Step 2 -- Quest

#

sub step2 {

 my $name = param('name');

 print qq(

 <h2>Step 2: Quest</h2>

 <p>

 What is your quest?

 </p>

320 PerlClass.com for ACT Students 20-23 Feb 2007

Processing form input 24

 <form method="POST" action="wizard.cgi">

 <input type="hidden" name="step" value="3">

 <input type="hidden" name="name" value="$name">

 <input type="text" name="quest">

 <input type="submit">

 </form>

);

}

#

Step 3 -- favorite colour

#

sub step3 {

 my $name = param('name');

 my $quest = param('quest');

 print qq(

 <h2>Step 3: Silly Question</h2>

 <p>

 What is the airspeed velocity of an unladen swallow?

 </p>

 <form method="POST" action="wizard.cgi">

 <input type="hidden" name="step" value="4">

 <input type="hidden" name="name" value="$name">

 <input type="hidden" name="quest" value="$quest">

 <input type="text" name="swallow">

 <input type="submit">

 </form>

);

}

Step 4 simply prints out the values that the user entered in the previous steps:

#

Step 4 -- finish up

PerlClass.com for ACT Students 20-23 Feb 2007 321

24 Processing form input

#

sub step4 {

 my $name = param('name');

 my $quest = param('quest');

 my $swallow = param('swallow');

 print qq(

 <h2>Step 4: Done!</h2>

 <p>

 Thank you!

 </p>

 <p>

 Your name is $name. Your quest is $quest. The

airspeed

 velocity of an unladen swallow is $swallow.

 </p>

);

}

24.6.1 Exercises
1. Add another question to the wizard.cgi script.

322 PerlClass.com for ACT Students 20-23 Feb 2007

Processing form input 24

24.7 Practical Exercise: File upload
CGI can also be used to allow users to upload files. Your trainer will demon
strate and discuss this. Source code for this example is available in your cgi-
bin directory as upload.cgi
First off, you need to specify an encoding type in your form element. The at
tribute to set is ENCTYPE="multipart/form-data".

<html>

<head>

<title>Upload a file</title>

</head>

<body>

<h1>Upload a file</h1>

Please choose a file to upload:

<form action="upload.cgi" method="POST" enctype="multipart/form-

data">

<input type="file" name="filename">

<input type="submit" value="OK">

</form>

</body>

</html>

CGI handles file uploads quite easily. Just use param() as usual. The value re
turned is special -- in a scalar context, it gives you the filename of the file up
loaded, but you can also use it in a filehandle.

#!/usr/bin/perl -w

use strict;

use CGI 'param';

my $filename = param('filename');

my $outfile = "outputfile";

PerlClass.com for ACT Students 20-23 Feb 2007 323

24 Processing form input

print "Content-type: text/html\n\n";

There will probably be permission problems with this open

statement unless you're running under cgiwrap, or your script

is setuid, or $outfile is world writable. But let's not worry

about that for now.

open (OUTFILE, ">$outfile") || die "Can't open output file: $!";

This bit is taken straight from the CGI.pm documentation --

you could also just use "while (<$filename>)" if you wanted

my ($buffer, $bytesread);

while ($bytesread=read($filename,$buffer,1024)) {

 print OUTFILE $buffer;

}

close OUTFILE || die "Can't close OUTFILE: $!";

print "<p>Uploaded file and saved as $outfile</p>\n";

print "</body></html>";

324 PerlClass.com for ACT Students 20-23 Feb 2007

Processing form input 24

24.8 Chapter summary
• The CGI module can be used to parse data from HTML forms
• Its most common use is parameter parsing; other functions are also available
• To use it, type use CGI 'param'; at the top of your script
• Obtain each item of data using the param() function
• CGI can be used to implement web applications of any complexity, including

data validation, multi-form wizards, file upload, and more

PerlClass.com for ACT Students 20-23 Feb 2007 325

Chapter 25: Chapter 25: SecuritySecurity
issuesissues

In this chapter...

In this section we examine some security issues arising from the use
of CGI scripts, including authentication and access control, and the
risk of tainted data and how to avoid it.

25 Security issues

25.1 Authentication and access control for CGI
scripts

A common question asked by new CGI programmers is "How do I protect my
web site with a CGI script?" There are various ways to use CGI programs to
ask for usernames and passwords and perform authentication, but in fact the
best way to perform authentication and access control comes with your web
server and doesn't require any programming at all.
The reason that password protection is often connected with CGI programs is
that CGI programs are more likely to interact with the web server's underlying
file system, backend databases, or other things which need to be kept secure.
Many programmers assume that because CGI can be used for password protec
tion, it is the right choice for the job. This is not necessarily true.
One of the best ways to password protect web pages is by using the web
server's own authentication and access control mechanisms. Since we're using
the Apache web server, we'll look at how to do it with that.

25.1.1 Why is CGI authentication a bad idea?
Authentication (i.e. username and password checking) is hard to do correctly in
CGI. Some common pitfalls include:
• Username and password strings are sent as parameters in a GET query, and

end up in the URL (eg
http://example.com/my.cgi?username=fred&password=secret). These details
can then end up in peoples' bookmark files, other sites' referer logs, and so
on.

• Sometimes username and password details are passed back and forth using
"cookies". Many users choose to have cookies disabled due to privacy
concerns, and the website will therefore be unusable to them. No such
problem exists with HTTP authentication via the web server

On the other hand, the main disadvantage of HTTP authentication is that the au
thentication tokens remain active until the user shuts their browser down. This
can be a problem in public computer labs and other locations where users may
share PCs.

328 PerlClass.com for ACT Students 20-23 Feb 2007

Security issues 25

25.2 HTTP authentication
If a web page or CGI script requires a username and password to view it, the
HTTP conversation between the client and the server goes like this:

1. The user specifies a URL
2. The user agent connects to port 80 of the HTTP server
3. The user agent sends a request such as GET /index.html
4. The user agent may also send other headers
5. The HTTP server realises that authentication must be performed {usually

by looking up configuration files}
6. The HTTP server returns a status code 401, meaning "Unauthorized", and

also a header saying WWW-Authenticate: and the name of the authentication
domain, for instance "Acme Widget Co. Staff". This usually appears in the
browser's dialog box as "Please provide a username and password for Acme
Widget Co. Staff".

7. The browser presents a dialog box or other means by which the user can
enter their username and password, which the user fills in then clicks "OK"

8. The browser sends a new request, this time including an extra header saying
Authorization: and the appropriate credentials

9. If the HTTP server finds that the credentials are valid, it sends back the
resource requested and closes the connection

10. Otherwise, it sends back another response with status code 401 (and
probably a body containing an error message), which the user agent should
recognise as meaning that the authentication failed, and display the body.

PerlClass.com for ACT Students 20-23 Feb 2007 329

25 Security issues

25.3 Access control
The way access control is handled varies from one web server to another. If
your web server is not Apache, you will need to contact your web server ad
ministrator or read the documentation it came with, as only Apache is covered
in this course.
 Apache implements HTTP authentication with the use of a password file and
either server configurations or a .htaccess file in the web directory, which con
tains server configuration directives. Our server has been set up to allow you to
use the .htaccess file.
 A password file has already been set up for your use. It's /etc/apache/train
ing.passwd and uses the same usernames and passwords as your login accounts.
You can look at it by typing cat /etc/apache/training.passwd
 To use this password file, create a file in your public_html directory called
.htaccess, containing the following text:

AuthType Basic
AuthName "Secret stuff"
AuthUserFile /etc/apache/training.passwd
require valid-user

This authentication will apply to the directory in which the .htaccess file is
placed and any subdirectories.

25.3.1 Exercises
1. Create a .htaccess file in your public_html directory, as above
2. Use your web browser to request one of your HTML files or CGI scripts,

and observe the authentication process
3. Why would it be a bad idea to put the password file in the same directory as

the web pages or CGI scripts?

330 PerlClass.com for ACT Students 20-23 Feb 2007

Security issues 25

25.4 Tainted data
Sometimes you will want to write a CGI script which interacts with the system.
This can result in major security risks if the commands executed on the system
are based on user input. Consider the example of a finger program which asked
the user who they wanted to finger.

#!/usr/bin/perl -w

use strict;

print "Who do you want to finger? ";

my $username = <STDIN>;

print `finger $username`; # backticks execute shell command

Imagine if the user's input had been skud; cat /etc/passwd, or worse yet,
skud; rm -rf / The system would perform both commands as though they had
been entered into the shell one after the other.
Luckily, Perl's -T flag can be used to check for unsafe user inputs.

#!/usr/bin/perl -wT

PerlClass.com for ACT Students 20-23 Feb 2007 331

RTFM!
Src Chap Pgs #

Nutshell 2nd

Camel 2nd 6 356 - 360

Camel 3rd 23 557 - 566

perldoc perlsec

Cookbook 2nd 19 767 - 770

Learning 3rd B 294 light

Learning 4th

25 Security issues

-T stands for "taint checking". Data input by the user, either via the command
line or an HTML form, is considered "tainted", and until it has been modified
by the script, may not be used to perform shell commands or system interac
tions of any kind.
The only thing that will clear tainting is referencing substrings from a regexp
match. perldoc perlsec contains a simple example of how to do this, about 7
pages down. Read it now, and use it to complete the following exercises.
Note that you'll also have to explicitly set $ENV{'PATH'} to something safe (like
/bin) as well.

25.4.1 Exercises
1. The HTML file finger.html asks the user for an account name about which

to obtain information {using the UNIX system's finger command}. It calls
the CGI script cgi-bin/finger.cgi which uses taint checking.

2. Why is the data input by the user tainted?
3. Add a -T flag to the shebang line of finger.cgi so that the script performs

taint checking
4. Try re-submitting the form - it should fail
5. To untaint the data, you need to clean up any unwanted characters. Use

some code similar to that in perldoc perlsec to remove anything other than
alphanumeric characters and assign the valid part of the user input to a new
variable.

332 PerlClass.com for ACT Students 20-23 Feb 2007

Security issues 25

25.5 cgiwrap
Many large sites, such as ISPs and educational institutions, require users to run
their CGI scripts using a program called cgiwrap. This program causes the CGI
script to execute as if being run by the owner, instead of the web server's user
ID. What this means is that the script will have permission to read and write the
user's files, and will not be able to cause any damage on the system that the user
could not cause.

PerlClass.com for ACT Students 20-23 Feb 2007 333

25 Security issues

25.6 Secure HTTP
Another somewhat related topic is secure HTTP, which uses the HTTPS proto
col to open a secure connection and encrypts all data between the web client
and server. This is often used to make online credit card transactions more se
cure.
CGI scripts can be run on a secure server exactly as they would run on any oth
er server.

334 PerlClass.com for ACT Students 20-23 Feb 2007

Security issues 25

25.7 Chapter summary
• HTTP authentication can be used to password protect web pages
• The Apache web server implements HTTP authentication. This can be

configured via a .htaccess file
• There is a security risk from tainted data --- data entered by a user which is

used for subsequent system interaction
• Perl has built-in checking for tainted data, which can be turned on my using

the -T command line switch
• Data can be untainted by referencing a substring in a match, as shown in

perldoc perlsec.
• Some web servers use cgiwrap to run CGI scripts under their owner's user

ID.
• Secure HTTP can be used to provide an encrypted channel of communication

between the web client and server.

PerlClass.com for ACT Students 20-23 Feb 2007 335

Chapter 26: Chapter 26: OtherOther
related Perl modulesrelated Perl modules

In this chapter...

In this section we are briefly introduced to Perl modules which may
be useful to us in developing CGI applications, including modules for
failing gracefully, encoding and decoding URLS, and filling in tem
plates.

26 Other related Perl modules

26.1 Useful Perl modules
There are several common problems faced by CGI programmers: failing grace
fully, creating valid URLs from any text, using a template to insert variables
into HTML, sending email based on CGI parameters, et cetera. Since these
problems are so common, people have written modules to solve them. This sec
tion explains some of the most useful modules to save you from having to re-in
vent the wheel.
Each of these modules can be downloaded from CPAN (the Comprehensive
Perl Archive Network) (http://www.perl.com/CPAN) and installed either using
the CPAN module distributed with Perl, or by following the steps described in
the README file distributed with each module.

338 PerlClass.com for ACT Students 20-23 Feb 2007

Other related Perl modules 26

26.2 Failing gracefully with CGI::Carp
The errors given in the web server's error logs are not always easy to read and
understand. To make life easier, we can use a Perl module called CGI::Carp to
add timestamps and other handy information to the logs.

use CGI::Carp;

We can also make our errors go to a separate log, by using the carpout part of
the module. This needs to be done inside a BEGIN block in order to catch com
piler errors as well as ones which occur at the interpretation stage.

BEGIN {

 use CGI::Carp qw(carpout);

 open(LOG, ">>cgi-logs/mycgi-log") ||

 die("Unable to open mycgi-log: $!\n");

 carpout(LOG);

}

Lastly, we can cause any fatal errors to have their error messages and diagnos
tic information output directly to the browser:

use CGI::Carp 'fatalsToBrowser';

PerlClass.com for ACT Students 20-23 Feb 2007 339

26 Other related Perl modules

26.2.1 Exercise
1. Use the CGI::Carp module in one of your scripts
2. Deliberately cause a syntax error, for instance by removing a semi-colon or

quote mark, or inserting a die ("Argh!"); statement, and see what happens

340 PerlClass.com for ACT Students 20-23 Feb 2007

RTFM!
Src Chap Pgs #

Nutshell 2nd 8 192

Camel 2nd 7 385

Camel 3rd 32 878

perldoc Carp

Cookbook 2nd 12 473 - 475

Learning 3rd

Learning 4th

Other related Perl modules 26

26.3 Encoding URIs with URI::Escape
Sometimes we want to output anchor tags referring to another
CGI script, and pass parameters along with it, thus:

O'Reilly's Programming Perl

However, spaces and apostrophes aren't allowed in URIs, so we have to encode
them into the "percent-encoded" format. This format replaces most non-al
phanumeric characters with two hexadecimal digits. For instance, a space be
comes %20 and a tilde becomes %7E.
The Perl module we use to encode URIs in this manner is URI::Escape. Its doc
umentation is available by typing perldoc URI::Escape.
Use it as follows:

#!/usr/bin/perl -w

use strict;
use URI::Escape;

my $book_lookup =
"lookup.cgi?title=Programming Perl&publisher=O'Reilly";

my $encoded_url = uri_escape($address);
my $original_url = uri_unescape($encoded_url);

26.3.1 Exercise
1. Try out the above script cgi-bin/escape.cgi you'll need to print out the

values of $encoded_url and $original_url

PerlClass.com for ACT Students 20-23 Feb 2007 341

26 Other related Perl modules

26.4 Creating templates with Text::Template
By this stage in the day you have probably spent a great deal of time outputting
HTML either via a long list of print statements or by using a "here document"
or other shortcut. What if you wanted to have a template HTML output file
which was filled in with the appropriate variables?
Luckily, there is a Perl module to do this, called Text::Template. Unluckily, it
uses a concept we haven't covered yet, but which we will now explain.
Text::Template is different to the other modules we have used so far today, in
that it is an object oriented module. Object oriented Perl modules can be very
powerful, but require some background knowledge to understand how they
work.

26.4.1 Introduction to object oriented modules
Before embarking on this task, we need to have an understanding of how Perl's
object-oriented modules work. Not all modules are object oriented (URI::Es
cape, for example, is not), and some can be used either way (CGI is one of
these), but some require us to work with them in this way.
A software object, like a real-life object, has attributes (things that describe the
object) and methods (things you can do with, or to, the object). Consider the
real-life example of a cup:

Table 26-1. Attributes and Methods of a cup
Object Attributes Methods
Cup • colour

• handle (does it have one?)
• contents (water, coffee, etc)
• fullness

• drink from it
• fill it up
• smash it

Note that when you smash a cup, you aren't smashing the generic class of cups,
but rather a specific instance - this cup, not "cups in general". This is what we
call an instance of a class -- remember that, as we'll use it later.

26.4.2 Using the Text::Template module

Like the cup, our text template has attributes and methods.

342 PerlClass.com for ACT Students 20-23 Feb 2007

Other related Perl modules 26

Table 26-2. Attributes and Methods of Text::Template
Text::Template • TYPE - the type of

template it is, eg a
file, a string you
created earlier, etc

• SOURCE - the
filehandle or
variable name in
which the template
can be found

• fill_in() - fill in
the template

Before we can actually use these attributes and methods in any useful way, we
have to create a new instance of the class. This is the same as how we needed a
specific cup, rather than the general class of cups.

using the class in general
use Text::Template;

instantiating the class and setting some attributes for the new
instance
my $letter = new Text::Template{'TYPE' => 'FILE', 'SOURCE' =>
'letter.tmpl'};

We can then perform a method on it, thus:

my $finished_letter = $letter->fill_in();

This will fill in any variables found in the template file.

26.4.3 Exercise
1. Type perldoc Text::Template and look at the documentation for this

module
2. cgi-bin/letter.cgi implements the example above. Examine the source

code.
3. Make some changes to the letter template and see if they work.

PerlClass.com for ACT Students 20-23 Feb 2007 343

26 Other related Perl modules

26.5 Sending email with Mail::Mailer
The Mail::Mailer module can be used to send email from a CGI script (or, for
that matter, any script). Like Text::Template, it is an Object Oriented module.
The object it creates is a "mailer" object, which can be opened and then printed
to as if it were a filehandle.

#!/usr/bin/perl -w

use strict;
use Mail::Mailer;

my $mailer = new Mail::Mailer;

the open() method takes a hash reference with keys which are mail
header names and values which are the values of those mail headers

$mailer->open({
 From => 'fred@example.com',
 To => 'barney@example.com',
 Subject => 'Web form submission'
});

we can print to $mailer just as we would print to STDOUT or any
other file handle...

print $mailer qq(
Dear Barney,

Here is a form submission from your website:

Name: $name
Email: $email
Comments: $comments

Love, Fred.
);

$mailer->close();

344 PerlClass.com for ACT Students 20-23 Feb 2007

Other related Perl modules 26

26.5.1 Exercises
1. Create an HTML form with fields for name, email and comment
2. Use the above script (cgi-bin/mail.cgi) to mail the results of the script to

yourself. You will need to edit it to work fully:
• Use CGI.pm to pick up the parameters
• Change the email address to your own address
• Print out a "thank you" page once the form has been submitted -- don't

forget the Content-type header

PerlClass.com for ACT Students 20-23 Feb 2007 345

Advanced
You can also open a pipe to sendmail directly, but doing this
correctly can be difficult. This is why we recommend
Mail::Mailer to avoid re-inventing the wheel.

26 Other related Perl modules

26.6 Chapter Summary
• The CGI::Carp module can be used to help CGI programs fail gracefully
• The URI::Escape module can be used to encode and decode percent-encoded

URLs
• The Text::Template module can be used to easily fill in text templates,

including HTML templates.
• The Mail::Mailer module can be used to send email based on the information

entered in an HTML form
• All these modules can be downloaded from CPAN, the Comprehensive Perl

Archive Network

346 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 27: Chapter 27: Con-Con-
clusionclusion

In the conclusion...
Summing up and various paths for further study.

27 Con-clusion

27.1 Day 1: What you've learned
Now you've completed PerlClass.com's Introduction to Perl module, you should
be confident in your knowledge of the following fields:
• What is Perl? Perl's features; Perl's main uses; where to find information

about Perl online
• Creating Perl scripts and running them from the UNIX command line,

including the use of the -w flag to enable warnings
• Perl's three main variable types: scalars, arrays and hashes
• The strict pragma, lexical scoping, and their benefits
• Perl's most common operators and functions, and their use
• Perl's concept of truth; existence and definedness of variables
• Conditional and looping constructs: if, while, foreach and others.
• Regular expressions: the matching and substitution operators; simple

metacharacters; quantifiers; alternation and grouping

348 PerlClass.com for ACT Students 20-23 Feb 2007

Con-clusion 27

27.2 Day 2: What you've learned
Now you've completed PerlClass.com's Intermediate Perl module, you should
be confident in your knowledge of the following fields:
• File I/O, including opening files and directories, opening pipes, finding

information about files, recursing down directories, file locking, and handling
binary data

• How to use advanced regular expression techniques such as multiline
matching and backreferences

• The use of various Perl functions
• System interaction, including: system calls, the backtick operator, interacting

with the file system, dealing with users and groups, dealing with processes,
network communications, and security considerations

• Advanced Perl data structures and references

PerlClass.com for ACT Students 20-23 Feb 2007 349

27 Con-clusion

27.3 Day 3: What you've learned
Now you've completed PerlClass.com's CGI Programming in Perl module, you
should be confident in your knowledge of the following fields:
• What CGI is
• How HTTP allows web user agents (browsers) to communicate with web

servers and retreive documents
• How to perform HTTP requests by using telnet to connect to the web server
• How to generate simple web pages using Perl
• How to access environment variables from CGI scripts
• Various methods of quoting text, including "here" documents and the qq()

type functions
• How to process data from HTML forms using the CGI module
• How to use the CGI module for applications such as data validation, simple

"wizard" interfaces, and file uploads
• Security issues related to CGI programming, including authentication and

access control, dealing with tainted data, secure web servers, etc.
• The use of various Perl modules related to CGI programming, including

CGI::Carp, URI::Escape, Text::Template, and Mail::Mailer
• A basic understanding of object oriented Perl modules

350 PerlClass.com for ACT Students 20-23 Feb 2007

Con-clusion 27

27.4 Day 4: What you've learned
Now you've completed PerlClass.com's Database Programming with Perl mod
ule, you should be confident in your knowledge of the following fields:
• Database terminology, including tables and relationships, fields and records,

etc
• Flat file database manipulation including delimited and CSV text files
• Basic SQL queries, including SELECT, INSERT, DELETE, and UPDATE queries
• Features of MySQL, where to get MySQL from, and how to set up MySQL

databases
• Using the MySQL command line client to perform SQL queries
• Using Perl's DBI module to interact with databases
• Applying Perl skills from previous training modules to create database

applications

PerlClass.com for ACT Students 20-23 Feb 2007 351

27 Con-clusion

27.5 Where to now?
To further extend your knowledge of Perl, you may like to:
• Borrow or purchase the books listed in our "Further Reading" section (below)
• Follow some of the URLs given throughout these course notes, especially the

ones marked "Readme"
• Install Perl on your home or work computer
• Practice using Perl from day to day
• Install Perl and MySQL (or other database servers) on your home or work

computer
• Install Perl and a web server such as Apache on your home or work computer
• Practice using Perl for CGI programming on a daily basis
• Practice using Perl to interact with databases
• Join a Perl user group such as Perl Mongers (http://www.pm.org/)

• Richmond Perl Mongers (http://richmond.pm.org/)
• Hampton Roads Perl Mongers (http://norfolk.pm.org/)

352 PerlClass.com for ACT Students 20-23 Feb 2007

Con-clusion 27

27.6 Further reading

27.6.1 Books
• Alligator Descartes & Tim Bunce, "Programming the Perl DBI", O'Reilly and

Associates, 2000
• Randy Jay Yarger, George Reese & Tim King, "mSQL and MySQL",

O'Reilly and Associates, 1999

• Tom Christiansen and Nathan Torkington, The Perl Cookbook, O'Reilly and
Associates, 1998. ISBN 1-56592-243-3.

• Jeffrey Friedl, Mastering Regular Expressions, O'Reilly and Associates,
1997. ISBN 1-56592-257-3.

• Joseph N. Hall and Randal L. SchwartzEffective Perl Programming,
Addison-Wesley, 1997. ISBN 0-20141-975-0.

27.6.2 Online
• The Perl homepage (http://www.perl.com/)
• The Perl Journal (http://www.tpj.com/)
• Perlmonth (http://www.perlmonth.com/) (online journal)
• Perl Mongers Perl user groups (http://www.pm.org/)
• comp.lang.perl.announce newsgroup
• comp.lang.perl.moderated newsgroup
• comp.lang.perl.misc newsgroup

PerlClass.com for ACT Students 20-23 Feb 2007 353

Chapter 28: Chapter 28: Win32::Win32::
EventLogEventLog

In this chapter...

We will show how to use Win32::EventLog to derive various kinds of
informatoin from the Windows Event Log. You will also see how to
use Perl to backup your EventLog and create your own events.

CH, 02/14/07
add intro to windows event logs

28 Win32::EventLog

28.1 Win32::EventLog Examples

The following example illustrates the way in which the Win32::EventLog
module can be used. It opens the System Event Log and reads through it from
oldest to newest. For each record from the source event log it extracts the full
text of the entry and prints out the event log message text.

use Win32::EventLog;

my $handle = Win32::EventLog->new("System", $ENV{ComputerName})

or die "Can't open System EventLog";

$handle->GetNumber($recs) or die "can't get number of recs";

$handle->GetOldest($base) or die "can't get index of oldest rec";

while ($x < $recs) {

$handle->Read(EVENTLOG_FORWARDS_READ|EVENTLOG_SEEK_READ,

$base + $x, $hashRef

) or die "Can't read EventLog entry #$x";

if ($hashRef->{Source} eq "EventLog") {

Win32::EventLog::GetMessageText($hashRef);

print "Entry $x: $hashRef->{Message}\n";

}

$x++:

}

To backup and clear the event logs on a remote machine do the following:

use Win32::EventLog;

my $my_server = '\\my-server'; # your server name here

my ($date) = join('-',

(

(split /\s+/, scalar localtime)[0,1,2,4]

)

356 PerlClass.com for ACT Students 20-23 Feb 2007

Win32::EventLog 28

);

my $dest;

for my $event_log (qw(Application System Security)) {

$handle = Win32::EventLog-new($event_log, $my_server)

or die "Can't open $event_log event log on $my_server";

$dest = 'C:\BackupEventLogs\$event_log\' . $date . '.evt';

$handle->Backup($dest) or warn "Could not backup and clear" .

" the $event_log event log on \\\\$my_server ($^E)\n";

$handle->Close;

}

PerlClass.com for ACT Students 20-23 Feb 2007 357

28 Win32::EventLog

28.2 Win32::EventLog Reference

This module implements most of the functionality available from the Win32
API for accessing and manipulating Win32 Event Logs. The access to the
EventLog routines is divided into those that relate to an EventLog object and its
associated methods and those that relate other EventLog tasks (like adding an
EventLog record).

28.2.1 The EventLog Object and its Methods

The following methods are available to open, read, close and backup EventLogs.

Win32::EventLog->new(SOURCENAME [,SERVERNAME]);

The new() method creates a new EventLog object and returns a handle to it.
This hande is then used to call the methods below.

The method is overloaded in that if the supplied SOURCENAME argument
contains one or more literal '\' characters (an illegal character in a
SOURCENAME), it assumes that you are trying to open a backup eventlog
and uses SOURCENAME as the backup eventlog to open. Note that when
opening a backup eventlog, the SERVERNAME argument is ignored (as it
is in the underlying Win32 API). For EventLogs on remote machines, the
SOURCENAME parameter must therefore be specified as a UNC path.

$handle->Backup(FILENAME);

The Backup() method backs up the EventLog represented by $handle. It
takes a single arguemt, FILENAME. When $handle represents an
EventLog on a remote machine, FILENAME is filename on the remote
machine and cannot be a UNC path (i.e you must use C:\TEMP\App.EVT).
The method will fail if the log file already exists.

$handle->Read(FLAGS, OFFSET, HASHREF);

358 PerlClass.com for ACT Students 20-23 Feb 2007

Win32::EventLog 28

The Read() method read an EventLog entry from the EventLog represented
by $handle.

$handle->Close();

The Close() method closes the EventLog represented by $handle. After
Close() has been called, any further attempt to use the EventLog
represented by $handle will fail.

$handle->GetOldest(SCALARREF);

The GetOldest() method number of the the oldest EventLog record in the
EventLog represented by $handle. This is required to correctly compute the
OFFSET required by the Read() method.

$handle->GetNumber(SCALARREF);

The GetNumber() method returns the number of EventLog records in the
EventLog represented by $handle. The number of the most recent record in
the EventLog is therefore computed by

 $handle->GetOldest($oldest);

 $handle->GetNumber($lastRec);

 $lastRecOffset=$oldest+$lastRec;

$handle->Clear(FILENAME);

The Clear() method clears the EventLog represented by $handle. If you
provide a non-null FILENAME, the EventLog will be backed up into
FILENAME before the EventLog is cleared. The method will fail if
FILENAME is specified and the file refered to exists. Note also that
FILENAME specifies a file local to the machine on which the EventLog
resides and cannot be specified as a UNC name.

PerlClass.com for ACT Students 20-23 Feb 2007 359

28 Win32::EventLog

$handle->Report(HASHREF);

The Report() method generates an EventLog entry. The HASHREF should
contain the following keys:

Computer

The Computer field specfies which computer you want the
EventLog entry recorded. If this key doesn't exist, the server name
used to create the $handle is used.

Source

The Source field specifies the source that generated the EventLog
entry. If this key doesn't exist, the source name used to create the
$handle is used.

EventType

The EventType field should be one of the constants

EVENTLOG_ERROR_TYPE = An Error event is being logged.

EVENTLOG_WARNING_TYPE = A Warning event is being
logged.

EVENTLOG_INFORMATION_TYPE = An Information event is
being logged.

EVENTLOG_AUDIT_SUCCESS = A Success Audit event is
being logged (typically in the Security EventLog).

360 PerlClass.com for ACT Students 20-23 Feb 2007

Win32::EventLog 28

EVENTLOG_AUDIT_FAILURE = A Failure Audit event is
being logged (typically in the Security EventLog).

These constants are exported into the main namespace by default.

Category = The Category field can have any value you want. It is
specific to the particular Source.

EventID = The EventID field should contain the ID of the message
that this event pertains too. This assumes that you have an associated
message file (indirectly referenced by the field Source).

Data = The Data field contains raw data associated with this event.

Strings = The Strings field contains the single string that itself
contains NUL terminated sub-strings. This are used with the EventID to
generate the message as seen from (for example) the Event Viewer
application.

28.2.2 Other Win32::EventLog functions

The following functions are part of the Win32::EventLog package but are not
callable from an EventLog object.

GetMessageText(HASHREF);

The GetMessageText() function assumes that HASHREF was obtained by
a call to $handle->Read(). It returns the formatted string that
represents the fully resolved text of the EventLog message (such as would
be seen in the Windows NT Event Viewer). For convenience, the key
'Message' in the supplied HASHREF is also set to the return value of this
function.

If you set the variable $Win32::EventLog::GetMessageText to 1 then each
call to $handle->Read() will call this function automatically.

PerlClass.com for ACT Students 20-23 Feb 2007 361

Chapter 29: Chapter 29: Win32::NeWin32::Ne
tAdmintAdmin

In this chapter...

You will learn how to manage Windows network groups and users in
Perl.

The Win32::NetAdmin module offers control over the administratoin
of Windows groups and user over a Windows network.

29 Win32::NetAdmin

29.1 Example
Simple script using Win32::NetAdmin to set the login script for

all members of the NT group "Domain Users". Only works if you

run it on the PDC. (From Robert Spier <rspier@seas.upenn.edu>)

#

FILTER_TEMP_DUPLICATE_ACCOUNTS

Enumerates local user account data on a domain controller.

#

FILTER_NORMAL_ACCOUNT

Enumerates global user account data on a computer.

#

FILTER_INTERDOMAIN_TRUST_ACCOUNT

Enumerates domain trust account data on a domain controller.

#

FILTER_WORKSTATION_TRUST_ACCOUNT

Enumerates workstation or member server account data on a domain

controller.

#

FILTER_SERVER_TRUST_ACCOUNT

Enumerates domain controller account data on domain controller.

use Win32::NetAdmin qw(GetUsers GroupIsMember

 UserGetAttributes UserSetAttributes);

my %hash;

GetUsers("", FILTER_NORMAL_ACCOUNT , \%hash)

 or die "GetUsers() failed: $^E";

foreach (keys %hash) {

 my ($password, $passwordAge, $privilege,

 $homeDir, $comment, $flags, $scriptPath);

 if (GroupIsMember("", "Domain Users", $_)) {

 print "Updating $_ ($hash{$_})\n";

 UserGetAttributes("", $_, $password, $passwordAge,

 $privilege, $homeDir, $comment,

 $flags, $scriptPath)

364 PerlClass.com for ACT Students 20-23 Feb 2007

Win32::NetAdmin 29

 or die "UserGetAttributes() failed: $^E";

 $scriptPath = "dnx_login.bat"; # the new login script

 UserSetAttributes("", $_, $password, $passwordAge,

 $privilege, $homeDir, $comment, $flags, $scriptPath)

 or die "UserSetAttributes() failed: $^E";

 }

}

PerlClass.com for ACT Students 20-23 Feb 2007 365

29 Win32::NetAdmin

29.2 Win32::NetAdmin provided functions

Note: All of the functions return false if they fail, unless otherwise noted. When
a function fails call Win32::NetAdmin::GetError() rather than GetLastError() or
$^E to retrieve the error code.

server is optional for all the calls below. If not given the local machine is
assumed.

GetError()

Returns the error code of the last call to this module.

GetDomainController(server, domain, returnedName)

Returns the name of the domain controller for server.

GetAnyDomainController(server, domain, returnedName)

Returns the name of any domain controller for a domain that is directly
trusted by the server.

UserCreate(server, userName, password, passwordAge, privilege,

homeDir, comment, flags, scriptPath)

Creates a user on server with password, passwordAge, privilege, homeDir,
comment, flags, and scriptPath.

UserDelete(server, user)

Deletes a user from server.

UserGetAttributes(server, userName, password, passwordAge,

privilege, homeDir, comment, flags, scriptPath)

Gets password, passwordAge, privilege, homeDir, comment, flags, and

366 PerlClass.com for ACT Students 20-23 Feb 2007

Win32::NetAdmin 29

scriptPath for user.

UserSetAttributes(server, userName, password, passwordAge,

privilege, homeDir, comment, flags, scriptPath)

Sets password, passwordAge, privilege, homeDir, comment, flags, and
scriptPath for user.

UserChangePassword(domainname, username, oldpassword, newpassword)

Changes a users password. Can be run under any account.

UsersExist(server, userName)

Checks if a user exists.

GetUsers(server, filter, userRef)

Fills userRef with user names if it is an array reference and with the user
names and the full names if it is a hash reference.

GroupCreate(server, group, comment)

Creates a group.

GroupDelete(server, group)

Deletes a group.

GroupGetAttributes(server, groupName, comment)

Gets the comment.

GroupSetAttributes(server, groupName, comment)

Sets the comment.

PerlClass.com for ACT Students 20-23 Feb 2007 367

29 Win32::NetAdmin

GroupAddUsers(server, groupName, users)

Adds a user to a group.

GroupDeleteUsers(server, groupName, users)

Deletes a users from a group.

GroupIsMember(server, groupName, user)

Returns TRUE if user is a member of groupName.

GroupGetMembers(server, groupName, userArrayRef)

Fills userArrayRef with the members of groupName.

LocalGroupCreate(server, group, comment)

Creates a local group.

LocalGroupDelete(server, group)

Deletes a local group.

LocalGroupGetAttributes(server, groupName, comment)

Gets the comment.

LocalGroupSetAttributes(server, groupName, comment)

Sets the comment.

LocalGroupIsMember(server, groupName, user)

Returns TRUE if user is a member of groupName.

368 PerlClass.com for ACT Students 20-23 Feb 2007

Win32::NetAdmin 29

LocalGroupGetMembers(server, groupName, userArrayRef)

Fills userArrayRef with the members of groupName.

LocalGroupGetMembersWithDomain(server, groupName, userRef)

This function is similar LocalGroupGetMembers but accepts an array or a
hash reference. Unlike LocalGroupGetMembers it returns each user name
as DOMAIN\USERNAME. If a hash reference is given, the function returns
to each user or group name the type (group, user, alias etc.). The possible
types are as follows:

 $SidTypeUser = 1;

 $SidTypeGroup = 2;

 $SidTypeDomain = 3;

 $SidTypeAlias = 4;

 $SidTypeWellKnownGroup = 5;

 $SidTypeDeletedAccount = 6;

 $SidTypeInvalid = 7;

 $SidTypeUnknown = 8;

LocalGroupAddUsers(server, groupName, users)

Adds a user to a group.

LocalGroupDeleteUsers(server, groupName, users)

Deletes a users from a group.

GetServers(server, domain, flags, serverRef)

Gets an array of server names or an hash with the server names and the
comments as seen in the Network Neighborhood or the server manager. For
flags, see SV_TYPE_* constants.

GetTransports(server, transportRef)

Enumerates the network transports of a computer. If transportRef is an
array reference, it is filled with the transport names. If transportRef is a

PerlClass.com for ACT Students 20-23 Feb 2007 369

29 Win32::NetAdmin

hash reference then a hash of hashes is filled with the data for the
transports.

LoggedOnUsers(server, userRef)

Gets an array or hash with the users logged on at the specified computer. If
userRef is a hash reference, the value is a semikolon separated string of
username, logon domain and logon server.

GetAliasFromRID(server, RID, returnedName)

GetUserGroupFromRID(server, RID, returnedName)

Retrieves the name of an alias (i.e local group) or a user group for a RID
from the specified server. These functions can be used for example to get
the account name for the administrator account if it is renamed or localized.

Possible values for RID:
 DOMAIN_ALIAS_RID_ACCOUNT_OPS

 DOMAIN_ALIAS_RID_ADMINS

 DOMAIN_ALIAS_RID_BACKUP_OPS

 DOMAIN_ALIAS_RID_GUESTS

 DOMAIN_ALIAS_RID_POWER_USERS

 DOMAIN_ALIAS_RID_PRINT_OPS

 DOMAIN_ALIAS_RID_REPLICATOR

 DOMAIN_ALIAS_RID_SYSTEM_OPS

 DOMAIN_ALIAS_RID_USERS

 DOMAIN_GROUP_RID_ADMINS

 DOMAIN_GROUP_RID_GUESTS

 DOMAIN_GROUP_RID_USERS

 DOMAIN_USER_RID_ADMIN

 DOMAIN_USER_RID_GUEST

GetServerDisks(server, arrayRef)

Returns an array with the disk drives of the specified server. The array
contains two-character strings (drive letter followed by a colon).

370 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 30: Chapter 30: Other PerlOther Perl
Win32 ModulesWin32 Modules

In this chapter...

This section documents three other modules that are useful for
Windows NT administration.

30 Other Perl Win32 Modules

30.1 Win32::NetResource
This module offers control over the network resources of Win32.Disks, printers etc can
be shared over a network.

30.1.1 Examples

Enumerating all resources on the network
 #

 # This example displays all the share points in the entire

 # visible part of the network.

 #

 use strict;

 use Win32::NetResource qw(:DEFAULT GetSharedResources GetError);

 my $resources = [];

 unless(GetSharedResources($resources, RESOURCETYPE_ANY)) {

 my $err;

 GetError($err);

 warn Win32::FormatMessage($err);

 }

 foreach my $href (@$resources) {

 next if ($$href{DisplayType} != RESOURCEDISPLAYTYPE_SHARE);

 print "-----\n";

 foreach(keys %$href){

 print "$_: $href->{$_}\n";

 }

 }

Enumerating all resources on a particular host

 #

 # This example displays all the share points exported by the

 # local host.

 #

 use strict;

372 PerlClass.com for ACT Students 20-23 Feb 2007

Other Perl Win32 Modules 30

 use Win32::NetResource qw(:DEFAULT GetSharedResources GetError);

 if (GetSharedResources(my $resources, RESOURCETYPE_ANY,

 { RemoteName => "\\\\" .

 Win32::NodeName() }

)) {

 foreach my $href (@$resources) {

 print "-----\n";

 foreach(keys %$href) { print "$_: $href->{$_}\n"; }

 }

 }

30.1.2 Data Types
There are two main data types required to control network resources. In Perl these are
represented by hash types.

30.1.2.1 %NETRESOURCE

Key Value
Scope Scope of an Enumeration:

RESOURCE_CONNECTED,
RESOURCE_GLOBALNET,
RESOURCE_REMEMBERED.

Type The type of resource to Enum:

RESOURCETYPE_ANY All resources

RESOURCETYPE_DISK Disk resources

RESOURCETYPE_PRINT Print resources

DisplayType The way the resource should be displayed.

RESOURCEDISPLAYTYPE_DOMAIN

 The object should be displayed as a domain.

RESOURCEDISPLAYTYPE_GENERIC

 The method used to display the object does not matter.

RESOURCEDISPLAYTYPE_SERVER

 The object should be displayed as a server.

PerlClass.com for ACT Students 20-23 Feb 2007 373

30 Other Perl Win32 Modules

Key Value
RESOURCEDISPLAYTYPE_SHARE

 The object should be displayed as a sharepoint.

Usage Specifies the Resources usage:
RESOURCEUSAGE_CONNECTABLE,
RESOURCEUSAGE_CONTAINER.

LocalName Name of the local device the resource is connected to.

RemoteName The network name of the resource.

Comment A string comment.

Provider Name of the provider of the resource

30.1.2.2 %SHARE_INFO
This hash represents the SHARE_INFO_502 struct.

Key Value
netname Name of the share.
type type of share.
remark A string comment.
permissions Permissions value
maxusers the max # of users.
current-users the current # of users.
path The path of the share.
passwd A password if one is req'd

30.1.3 Functions
Note: All of the functions return false if they fail.

GetSharedResources(\@Resources,dwType,\%NetResource = NULL)

374 PerlClass.com for ACT Students 20-23 Feb 2007

Other Perl Win32 Modules 30

Creates a list in @Resources of %NETRESOURCE hash references.

The return value indicates whether there was an error in accessing any of
the shared resources. All the shared resources that were encountered (until
the point of an error, if any) are pushed into @Resources as references to
%NETRESOURCE hashes. See example below. The \%NetResource
argument is optional. If it is not supplied, the root (that is, the topmost
container) of the network is assumed, and all network resources available
from the toplevel container will be enumerated.

AddConnection(\%NETRESOURCE,$Password,$UserName,$Connection)

Makes a connection to a network resource specified by %NETRESOURCE

CancelConnection($Name,$Connection,$Force)

Cancels a connection to a network resource connected to local device
$name.$Connection is either 1 - persistent connection or 0, non-persistent.

WNetGetLastError($ErrorCode,$Description,$Name)

Gets the Extended Network Error.

GetError($ErrorCode)

Gets the last Error for a Win32::NetResource call.

GetUNCName($UNCName, $LocalPath);

Returns the UNC name of the disk share connected to $LocalPath in
$UNCName. $LocalPath should be a drive based path. e.g.
"C:\\share\\subdir"

Note: $servername is optional for all the calls below. (if not given the local
machine is assumed.)

NetShareAdd(\%SHARE,$parm_err,$servername = NULL)

PerlClass.com for ACT Students 20-23 Feb 2007 375

file://share//subdir

30 Other Perl Win32 Modules

Add a share for sharing.

NetShareCheck($device,$type,$servername = NULL)

Check if a directory or a device is available for connection from the
network through a share. This includes all directories that are reachable
through a shared directory or device, meaning that if C:\foo is shared,
C:\foo\bar is also available for sharing. This means that this function is
pretty useless, given that by default every disk volume has an
administrative share such as "C$" associated with its root directory.

$device must be a drive name, directory, or a device. For example, "C:",
"C:\dir", "LPT1", "D$", "IPC$" are all valid as the $device argument. $type
is an output argument that will be set to one of the following constants that
describe the type of share:

STYPE_DISKTREE Disk drive

STYPE_PRINTQ Print queue

STYPE_DEVICE Communication device

STYPE_IPC Interprocess communication (IPC)

STYPE_SPECIAL Special share reserved for interprocess
communication (IPC$) or remote
administration of the server (ADMIN$).
Can also refer to administrative shares
such as C$, D$, etc.

NetShareDel($netname, $servername = NULL)

Remove a share from a machines list of shares.

NetShareGetInfo($netname, \%SHARE,$servername=NULL)

Get the %SHARE_INFO information about the share $netname on the
server $servername.

376 PerlClass.com for ACT Students 20-23 Feb 2007

Other Perl Win32 Modules 30

NetShareSetInfo($netname,\%SHARE,$parm_err,$servername=NULL)

Set the information for share $netname.

PerlClass.com for ACT Students 20-23 Feb 2007 377

30 Other Perl Win32 Modules

30.2 Win32::Service
30.2.1 Examples

The first script gets a hashref that contains information about all of the services
on the current host. It then retrieves status information for each of those into
another hashref.

use Win32::Service;

my (%service, %status);

Win32::Service::GetServices('',\%services);

foreach my $key (sort keys %services) {

print "Display Name\t: $key, $services{$key}\n";

Win32::Service::GetStatus('', $sercices{$key}, \%status);

foreach my $part (keys %status) {

print "\t$part : $status{$part}\n";

}

}

The next script checks the status of NetDDE. If it's already running, it dies with
an error. Otherwise, it tries to start it.

use Win32::Service;

use Win32;

my %status;

Win32::Service::GetStatus('','NetDDE', \%status);

die "service is already started\n"

if ($status{CurrentState} == 4); # running

Win32::Service::StartService(Win32::NodeName(),'NetDDE')

or die "can't start service\n";

378 PerlClass.com for ACT Students 20-23 Feb 2007

Other Perl Win32 Modules 30

print "Service started\n";

30.2.2 Functoins
Note: All of the functions return false if they fail, unless otherwise noted. If

hostName is an empty string, the local machine is assumed.

StartService(hostName, serviceName)

Start the service serviceName on machine hostName.

StopService(hostName, serviceName)

Stop the service serviceName on the machine hostName.

GetStatus(hostName, serviceName, status)

Get the status of a service. The third argument must be a hash reference
that will be populated with entries corresponding to the
SERVICE_STATUS structure of the Win32 API. See the Win32 Platform
SDK documentation for details of this structure.

PauseService(hostName, serviceName)

ResumeService(hostName, serviceName)

GetServices(hostName, hashref)

Enumerates both active and inactive Win32 services at the specified host.
The hashref is populated with the descriptive service names as keys and the
short names as the values.

PerlClass.com for ACT Students 20-23 Feb 2007 379

30 Other Perl Win32 Modules

30.3 Win32::Sound
30.3.1 Quick Sample

A sampling of Perl playing sounds and adjusting the volume:

use Win32::Sound;

Win32::Sound::Volume('50%');

set volume for left and right seperately

Win32::Sound::Volume('100%','50%');

($left,$right) = Win32::Sound::Volume();

Win32::Sound::Volume(0); # mute

Win32::Sound::Volume($left,$right); # restore prior values

Win32::Sound::Play("example.wav") # arbitrary

Win32::Sound::Play("SystemQuestion"); # symbolic

Win32::Sound::Stop();

380 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 31: Chapter 31: *NIX*NIX
cheat sheetcheat sheet

31 *NIX cheat sheet

31.1 Some UNIX commands
A brief run-down for those whose UNIX skills are rusty:

Table 31-1. Simple UNIX commands
Action Command
Change to home directory cd
Change to directory cd directory
Change to directory above current
directory

cd ..

Show current directory pwd
Directory listing ls
Wide directory listing, showing
hidden files

ls -al

Showing file permissions ls -al
Making a file executable chmod +x filename
Printing a long file a screenful at a
time

more filename or less
filename

Getting help for command man command
ddddddddd

382 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 32: Chapter 32: EditorEditor
cheat sheetcheat sheet

In this chapter...

you will find an editor summary which is laid out as follows:

Table 32-1. Layout of editor cheat sheets
Running Recommended command line for

starting it.
Using Really basic howto. This is not even

an attempt at a detailed howto.
Exiting How to quit.
Gotchas Oddities to watch for.

32 Editor cheat sheet

32.1 vi
vi is the classic UNIX editor. It is strange but beautiful. It is very powerful in
educated hands and is universally available in the UNIX world.

A version of vi known as vim is available that can esaily be installed in
Windows and many other strange operating systems. Check out
http://www.vim.org/ for more information.

32.1.1 Running
% vi filename

32.1.2 Using
• i to enter insert mode, then type text, press ESC to leave insert mode.
• x to delete character below cursor.
• dd to delete the current line
• Cursor keys should move the cursor while not in insert mode.
• If not, try hjkl, h = left, l = right, j = down, k = up.
• /, then a string, then ENTER to search for text.
• :w then ENTER to save.

32.1.3 Exiting
• Press ESC if necessary to leave insert mode.
• :q then ENTER to exit.
• :q! ENTER to exit without saving.
• :wq to exit with save.

32.1.4 Gotchas
vi has an insert mode and a command mode. Text entry only works in insert
mode, and cursor motion only works in command mode. If you get confused
about what mode you are in, pressing ESC twice is guaranteed to get you back
to command mode (from where you press i to insert text, etc).

384 PerlClass.com for ACT Students 20-23 Feb 2007

http://www.vim.org/

Editor cheat sheet 32

32.1.5 Help
:help ENTER might work. If not, then see the man page.

PerlClass.com for ACT Students 20-23 Feb 2007 385

32 Editor cheat sheet

32.2 pico
pico is the editor from pine turned into an external command. pine is no longer
supported by some Linux distributions so you may have to type "nano" to get
"pico", but you can always make an alias.

32.2.1 Running
% pico -w filename

32.2.2 Using
• Cursor keys should work to move the cursor.
• Type to insert text under the cursor.
• The menu bar has ^X commands listed. This means hold down CTRL and

press the letter involved, eg CTRL-W to search for text.
• CTRL-Oto save.

32.2.3 Exiting
Follow the menu bar, if you are in the midst of a command. Use CTRL-X from
the main menu.

32.2.4 Gotchas
Line wraps are automatically inserted unless the -w flag is given on the com
mand line. This often causes problems when strings are wrapped in the middle
of code and similar. \\ \hline

32.2.5 Help
CTRL-G from the main menu, or just read the menu bar.

386 PerlClass.com for ACT Students 20-23 Feb 2007

Editor cheat sheet 32

32.3 joe

32.3.1 Running
% joe filename

32.3.2 Using
• Cursor keys to move the cursor.
• Type to insert text under the cursor.
• CTRL-K then S to save.

32.3.3 Exiting
• CTRL-C to exit without save.
• CTRL-K then X to save and exit.

32.3.4 Gotchas
Nothing in particular.

32.3.5 Help
CTRL-K then H.

PerlClass.com for ACT Students 20-23 Feb 2007 387

32 Editor cheat sheet

32.4 jed

32.4.1 Running
% jed

32.4.2 Using
• Defaults to the emacs emulation mode.
• Cursor keys to move the cursor.
• Type to insert text under the cursor.
• CTRL-X then S to save.

32.4.3 Exiting
CTRL-X then CTRL-C to exit.

32.4.4 Gotchas
Nothing in particular.

32.4.5 Help
• Read the menu bar at the top.
• Press ESC then ? then H from the main menu.

388 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 33: Chapter 33: ASCIIASCII
Pronunciation GuidePronunciation Guide

In this chapter...

It is widely recognized that speaking about computing topics requires
some common set of terms for communications, so computerese or
technobabble describe this dialect. But it is less widely recognized
that a dialect is necessary for unambiguously communicating about
individual characters.

33 ASCII Pronunciation Guide

Table 33-1. ASCII Pronunciation Guide
Character Pronunciation
! bang, exlamation
* star, asterisk
$ dollar
@ at
% percent
& ampersand
" double quote
' single quote, tick, or forward quote
() open/close bracket, parentheses
< less than, left angle bracket
> greater than, right angle bracket
- dash, hyphen, n-dash
. dot, period
, comma
/ slash, forward slash
\ backslash
: colon
; semicolon
= equals
? question mark
^ caret (pron. "carrot")
_ underscore
[] open/close square bracket
{ } open/close curly brackets, brace,

squigglies, or squiggly brackets
| pipe, bar, or vertical bar
~ tilde (pron."til-duh"), wiggle
` backtick, backquote (below ~)

390 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 34: Chapter 34: HTMLHTML
Cheat SheetCheat Sheet

In this chapter....

The following table outlines a few HTML elements which may be
useful to you. For more detail or for information about elements
which are not listed here, consult one of the references listed below.

34 HTML Cheat Sheet

Table D-1. Basic HTML elements
Type of information Markup
Paragraph <P> ... </P>
Heading level 1 <H1>This is a level 1 heading</H1>
Heading level 2 <H2>This is a level 2 heading</H2>
Heading level 3 <H3>This is a level 3 heading</H3>
Heading level 4 <H4>This is a level 4 heading</H4>
Unordered (bulleted) list

 List item 1
 List item 2
 List item 3

Ordered (numbered) list
 List item 1
 List item 2
 List item 3

Table <TABLE BORDER>
 <TR> <-- "table row" -- >
 <TH>Heading column 1</TH>
 <TH>Heading column 2</TH>
 <TH>Heading column 3</TH>
 </TR>
 <TR> <-- "table row" -- >
 <TD>row 1, column 1</TD>
 <TD>row 1, column 2</TD>
 <TD>row 1, column 3</TD>
 </TR>
 <TR> <-- "table row" -- >
 <TD>row 2, column 1</TD>
 <TD>row 2, column 2</TD>
 <TD>row 2, column 3</TD>
 </TR>
</TABLE>

Horizontal rule <HR>
Anchor tag (hypertext link) <A HREF="http://example.com/"

>Descriptive text

For more information...

392 PerlClass.com for ACT Students 20-23 Feb 2007

HTML Cheat Sheet 34

• HTMLhelp.org (http://htmlhelp.org/)
• The World Wide Web Consortium (W3C) (http://w3.org/)

PerlClass.com for ACT Students 20-23 Feb 2007 393

http://w3.org/

Chapter 35: Chapter 35: AckAck
nowledgementsnowledgements

In this section...

I will try to thank a few of the folks and projects that made this
possible

35 Acknowledgements

35.1 Folks

First and foremost my wife, Cynthia Manuel has been an able and fun
companion in life and work for years. Nothing would be possible without her.

Thanks to John Lundin for vast contriutions of systems administration, content
comments, and wonderful stir fries.

Thanks to Stephen Johnson for supporting my instruction and content creation
efforts for many years now. If it weren't for Stephen I would never have taught
this course for US News & World Report, Circuit City, or a lot of other folks.

Thanks to all of the folks who have survived my instruction of this course and
others. Your ideas, comments, complaints, and foolishness have all helped
make this class what it is.

Thanks to Mark Whittington for automotive wisdom and other random
surprises.

Thanks to Kirrily "skud" Robert for creating the DocBook version of this conent
and sharing it with the world. If only DocBook weren't such a pain. (Writing
LISP to make style sheets? Ick.)

Thanks to Carl Hicks, Thomas St. Jacques, Buffy Boke, and Jonathan Collie for
varied non-technical contributions.

396 PerlClass.com for ACT Students 20-23 Feb 2007

Acknowledgements 35

35.2 Projects

OpenOffice.org for providing a nice free word processor.

dia for easy ERD editing.

Fedora for a damn fine desktop Linux.

CentOS and Red Hat for a damn fine server Linux.

TWiki for a mighty fine wiki. Written in Perl naturally.

Perl for being there to teach. Larry, Randal, and a cast of thousands work
together to produce art and technology that looks less like a committee product
than most geeks would expect.

PerlClass.com for ACT Students 20-23 Feb 2007 397

	Chapter 1: Introduction
	1.1 Assumed knowledge
	1.2 Day 1 rough outline
	1.3 Day 1 objectives
	1.4 Day 2 outline
	1.5 Day 2 objectives
	1.6 Day 3 outline
	1.7 Day 3 objectives
	1.8 Day 4 outline
	1.9 Day 4 objectives
	1.10 Other topics we can discuss
	1.11 Platform and version details
	1.12 The course notes
	1.13 Other materials

	Chapter 2: What is Perl
	2.1 Perl's name
	2.2 Typical uses of Perl
	2.2.1 Text processing
	2.2.2 System administration tasks
	2.2.3 CGI and web programming
	2.2.4 Database interaction
	2.2.5 Other Internet programming
	2.2.6 Less typical uses of Perl

	2.3 What is Perl like?
	2.4 The Perl Philosophy
	2.4.1 There's more than one way to do it
	2.4.2 A correct Perl program...
	2.4.3 Three virtues of a programmer
	2.4.3.1 Laziness
	2.4.3.2 Impatience
	2.4.3.3 Hubris

	2.4.4 Three more virtues
	2.4.5 Share and enjoy!

	2.5 Parts of Perl
	2.5.1 The Perl interpreter
	2.5.2 Manuals
	2.5.3 Perl Modules

	2.6 Chapter summary

	Chapter 3: Creating and running a Perl program
	3.1 Logging into your account
	3.2 Using perldoc
	3.3 Using the editor
	3.4 Our first Perl program
	3.5 Running a Perl program from the command line
	3.6 The "shebang" line
	3.7 Comments
	3.8 Command line options
	3.9 Chapter summary

	Chapter 4: Perl variables
	4.1 What is a variable?
	4.2 Variable names
	4.3 Variable scoping and the strict pragma
	4.3.1 Arguments in favour of strictness
	4.3.2 Arguments against strictness

	4.4 Using the strict pragma
	4.5 Scalars
	4.6 Double and single quotes
	4.6.1 Exercises

	4.7 Arrays
	4.7.1 A quick look at context
	4.7.2 What's the difference between a list and an array?
	4.7.3 Exercises
	4.7.4 Advanced exercises

	4.8 Hashes
	4.8.1 Initialising a hash
	4.8.2 Reading hash values
	4.8.3 Adding new hash elements
	4.8.4 Other things about hashes
	4.8.5 What's the difference between a hash and an associative array?
	4.8.6 Exercises

	4.9 Special variables
	4.10 The first special variable, $_
	4.10.1.1 Exercises

	4.11 @ARGV - a special array
	4.11.1.1 Exercises

	4.12 %ENV - a special hash
	4.12.1.1 Exercises

	4.13 Chapter summary

	Chapter 5: Operators and functions
	5.1 What are operators and functions?
	5.2 Arithmetic operators
	5.3 String operators
	5.3.1 Exercises

	5.4 File operators
	5.5 Other operators
	5.6 Functions
	5.6.1 Types of arguments
	5.6.2 Return values

	5.7 More about context
	5.8 String manipulation
	5.8.1.1 Finding the length of a string
	5.8.1.2 Case conversion
	5.8.1.3 chop() and chomp()
	5.8.1.4 String substitutions with substr()

	5.9 Numeric functions
	5.10 Type conversions
	5.11 Manipulating lists and arrays
	5.11.1 Stacks and queues
	5.11.2 Sorting lists
	5.11.3 Converting lists to strings, and vice versa

	5.12 Hash processing
	5.13 Reading and writing files
	5.14 Time
	5.15 Exercises
	5.16 Chapter summary

	Chapter 6: Conditional constructs
	6.1 What is a block?
	6.2 Scope
	6.3 What is a conditional statement?
	6.4 What is truth?
	6.5 Comparison operators
	6.5.1 Existence and Defined-ness
	6.5.2 Boolean logic operators
	6.5.3 Using boolean logic operators as short circuit operators

	6.6 Types of conditional constructs
	6.6.1 if statements
	6.6.2 while loops
	6.6.3 for and foreach
	6.6.4 Exercises

	6.7 Practical uses of while loops: taking input from STDIN
	6.8 Best practices template for file manipulation
	6.9 Named blocks
	6.10 Breaking out of loops
	6.11 Chapter summary

	Chapter 7: Subroutines
	7.1 Introducing subroutines
	7.2 Calling a subroutine
	7.3 Passing arguments to a subroutine
	7.4 Returning values from a subroutine
	7.5 Exercises
	7.6 Chapter summary

	Chapter 8: Regular expressions
	8.1 What are regular expressions?
	8.2 Regular expression operators and functions
	8.2.1 m/PATTERN/ - the match operator
	8.2.2 s/PATTERN/REPLACEMENT/ - the substitution operator

	8.3 Binding operators
	8.4 Metacharacters
	8.4.1 Some easy metacharacters

	8.5 Quantifiers
	8.6 Greediness
	8.7 Exercises
	8.8 Character classes
	8.8.1 Exercises as a group

	8.9 Alternation
	8.10 The concept of atoms
	8.11 Exercises
	8.12 split() function
	8.13 Exercises
	8.14 Chapter summary

	Chapter 9: Practical exercises
	9.1 Exercises

	Chapter 10: File I/O
	10.1 Assumed knowledge
	10.2 Angle brackets - the line input and globbing operators
	10.2.1 Exercises
	10.2.1.1 Advanced exercises

	10.3 open() and friends - the gory details
	10.3.1 Opening a file for reading, writing or appending
	10.3.1.1 Exercises

	10.3.2 Reading directories
	10.3.2.1 Exercises

	10.3.3 Opening files for simultaneous read/write
	10.3.3.1 Exercises

	10.3.4 Opening pipes
	10.3.4.1 Exercises

	10.4 Finding information about files
	10.4.1 Exercises

	10.5 Recursing down directories
	10.5.1 Exercises

	10.6 File locking
	10.7 Handling binary data
	10.8 Chapter summary

	Chapter 11: Advanced regular expressions
	11.1 Assumed knowledge
	11.2 Review exercises
	11.3 More metacharacters
	11.4 Working with multiline strings
	11.4.1 Exercises

	11.5 Regexp modifiers for multiline data
	11.6 Backreferences
	11.6.1 Special variables

	11.7 Exercises
	11.7.1 Advanced

	11.8 Section summary

	Chapter 12: More functions
	12.1 The grep() function
	12.1.1 Exercises

	12.2 The map() function
	12.2.1 Exercises

	12.3 Chapter summary

	Chapter 13: System interaction
	13.1 system() and exec()
	13.1.1 Exercises

	13.2 Using backticks
	13.2.1 Exercises

	13.3 Platform dependency issues
	13.4 Security considerations
	13.4.1 Exercises

	13.5 Section summary

	Chapter 14: References and data structures
	14.1 Assumed knowledge
	14.2 Introduction to references
	14.3 Uses for references
	14.3.1 Creating complex data structures
	14.3.2 Passing arrays and hashes to subroutines and functions
	14.3.3 Object oriented Perl

	14.4 Creating and dereferencing references
	14.5 Passing multiple arrays/hashes as arguments
	14.6 Complex data structures
	14.7 Anonymous data structures
	14.8 Exercises
	14.9 Section summary

	Chapter 15: About databases
	15.1 What is a database?
	15.2 Types of databases
	15.3 Database management systems
	15.4 Uses of databases
	15.5 Chapter summary

	Chapter 16: Textfiles as databases
	16.1 Delimited text files
	16.1.1 Reading delimited text files
	16.1.2 Searching for records
	16.1.3 Sorting records
	16.1.4 Writing to delimited text files

	16.2 Comma-separated variable (CSV) files
	16.3 Problems with flat file databases
	16.3.1 Locking
	16.3.2 Complex data
	16.3.3 Efficiency

	16.4 Chapter summary

	Chapter 17: Relational databases
	17.1 Tables and relationships
	17.2 Structured Query Language
	17.2.1 General syntax
	17.2.1.1 SELECT
	17.2.1.2 INSERT
	17.2.1.3 DELETE
	17.2.1.4 UPDATE
	17.2.1.5 CREATE
	17.2.1.6 DROP

	17.3 Chapter summary

	Chapter 18: MySQL
	18.1 MySQL features
	18.1.1 General features
	18.1.2 Cross-platform compatibility

	18.2 Comparisions with other popular DBMSs
	18.2.1 PostgreSQL
	18.2.2 Oracle, Sybase, etc

	18.3 Getting MySQL
	18.3.1 Red Hat Linux
	18.3.2 Debian Linux
	18.3.3 Compiling from source
	18.3.4 Binaries for other platforms

	18.4 Setting up MySQL databases
	18.4.1 Creating the Acme inventory database
	18.4.2 Setting up permissions
	18.4.3 Creating tables

	18.5 The MySQL client
	18.6 Understanding the MySQL client prompts
	18.7 Exercises
	18.8 Chapter summary

	Chapter 19: The DBI and DBD modules
	19.1 What is DBI?
	19.2 Supported database types
	19.3 How does DBI work?
	19.4 DBI/DBD syntax
	19.4.1 Variable name conventions

	19.5 Connecting to the database
	19.6 Executing an SQL query
	19.7 Doing useful things with the data
	19.8 An easier way to execute non-SELECT queries
	19.9 Quoting special characters in SQL
	19.10 Exercises
	19.10.1 Advanced exercises

	19.11 Chapter summary

	Chapter 20: Acme Widget Co. Exercises
	20.1 The Acme inventory application
	20.2 Listing stock items
	20.2.1 Advanced exercises:

	20.3 Adding new stock items
	20.3.1 Advanced exercises

	20.4 Entering a sale into the system
	20.5 Creating sales reports
	20.5.1 Advanced exercises

	20.6 Searching for stock items
	20.6.1 Advanced exercises

	Chapter 21: References
	21.1 Uses for Perl references
	21.2 Creating and deferencing
	21.3 Complex data structures
	21.4 Passing multiple arrays/hashes as arguments
	21.5 Anonymous data structures
	21.6 Chapter summary

	Chapter 22: What is CGI?
	22.1 Definition of CGI
	22.2 Introduction to HTTP
	22.3 Terminology
	22.4 HTTP status codes
	22.5 HTTP Methods
	22.5.1.1 GET
	22.5.1.2 HEAD
	22.5.1.3 POST

	22.6 Exercises
	22.7 What is needed to run CGI programs?
	22.8 Chapter summary

	Chapter 23: Generating web pages with Perl
	23.1 Your public_html directory
	23.2 The CGI directory
	23.3 The HTTP headers
	23.4 HTML output
	23.5 Running and debugging CGI programs
	23.5.1 Exercises

	23.6 Quoting made easy
	23.6.1 Here documents

	23.7 Pick your own quotes
	23.8 Exercises
	23.9 Environment variables
	23.9.1 Exercises

	23.10 Chapter summary

	Chapter 24: Processing form input
	24.1 A quick look at HTML forms
	24.2 The FORM element
	24.3 Input fields
	24.3.1 TEXT
	24.3.2 CHECKBOX
	24.3.3 SELECT
	24.3.4 SUBMIT

	24.4 The CGI module
	24.4.1 What is a module?
	24.4.2 Using the CGI module
	24.4.3 Accepting parameters with CGI
	24.4.4 Debugging with the CGI module's offline mode
	24.4.5 Exercises

	24.5 Practical Exercise: Data validation
	24.5.1 Exercises

	24.6 Practical Exercise: Multi-form "Wizard" interface
	24.6.1 Exercises

	24.7 Practical Exercise: File upload
	24.8 Chapter summary

	Chapter 25: Security issues
	25.1 Authentication and access control for CGI scripts
	25.1.1 Why is CGI authentication a bad idea?

	25.2 HTTP authentication
	25.3 Access control
	25.3.1 Exercises

	25.4 Tainted data
	25.4.1 Exercises

	25.5 cgiwrap
	25.6 Secure HTTP
	25.7 Chapter summary

	Chapter 26: Other related Perl modules
	26.1 Useful Perl modules
	26.2 Failing gracefully with CGI::Carp
	26.2.1 Exercise

	26.3 Encoding URIs with URI::Escape
	26.3.1 Exercise

	26.4 Creating templates with Text::Template
	26.4.1 Introduction to object oriented modules
	26.4.2 Using the Text::Template module
	26.4.3 Exercise

	26.5 Sending email with Mail::Mailer
	26.5.1 Exercises

	26.6 Chapter Summary

	Chapter 27: Con-clusion
	27.1 Day 1: What you've learned
	27.2 Day 2: What you've learned
	27.3 Day 3: What you've learned
	27.4 Day 4: What you've learned
	27.5 Where to now?
	27.6 Further reading
	27.6.1 Books
	27.6.2 Online

	Chapter 28: Win32::EventLog
	28.1 Win32::EventLog Examples
	28.2 Win32::EventLog Reference
	28.2.1 The EventLog Object and its Methods
	28.2.2 Other Win32::EventLog functions

	Chapter 29: Win32::NetAdmin
	29.1 Example
	29.2 Win32::NetAdmin provided functions

	Chapter 30: Other Perl Win32 Modules
	30.1 Win32::NetResource
	30.1.1 Examples
	30.1.2 Data Types
	30.1.2.1 %NETRESOURCE
	30.1.2.2 %SHARE_INFO

	30.1.3 Functions

	30.2 Win32::Service
	30.2.1 Examples
	30.2.2 Functoins

	30.3 Win32::Sound
	30.3.1 Quick Sample

	Chapter 31: *NIX cheat sheet
	31.1 Some UNIX commands

	Chapter 32: Editor cheat sheet
	32.1 vi
	32.1.1 Running
	32.1.2 Using
	32.1.3 Exiting
	32.1.4 Gotchas
	32.1.5 Help

	32.2 pico
	32.2.1 Running
	32.2.2 Using
	32.2.3 Exiting
	32.2.4 Gotchas
	32.2.5 Help

	32.3 joe
	32.3.1 Running
	32.3.2 Using
	32.3.3 Exiting
	32.3.4 Gotchas
	32.3.5 Help

	32.4 jed
	32.4.1 Running
	32.4.2 Using
	32.4.3 Exiting
	32.4.4 Gotchas
	32.4.5 Help

	Chapter 33: ASCII Pronunciation Guide
	Chapter 34: HTML Cheat Sheet
	Chapter 35: Acknowledgements
	35.1 Folks
	35.2 Projects

