PeriClass.com's

Perl Training
Materials

Christopher Hicks
and
Kirrily Robert

Perl Training Materials
by Christopher Hicks

Copyright ©

1999-2000, Netizen Pty Ltd
2000 by Kirrily Robert
2001-2007 by Christopher Hicks

License

This book is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License version 2 as published by the Free Software..

This book is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with this
book; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
Boston, MA 02110-1301 USA or go to http://www.gnu.org/ .

This book was based on material under the Open Publications License available at
http://www.content.org/openpub/ .

File and Version Info

02/15/07 12:10:35 PM 479 pages

C:\Documents and Settings\Administrator\My Documents\perlcClass\perlClass-0.61.odt

2 PerlClass.com for ACT Students 20-23 Feb 2007

Table of Contents

Chapter 1: INtrodUCHION.ee e 19
1.1 Assumed KnOWIEAEE.cccviiieriiiiiieiiie e e 20
1.2 Day 1 rough OULHNE........cooooiiiiiiiiieeeee et e e e 21
LR B 0] o) [T 5 A7 SRR 22
1.4 DAY 2 OULIING. ..ccoiiiiieeiieeecee ettt e e e et e e e e tae e e esnraeeeesaneeeeneneeas 23
1.5 DAY 2 ODJECHIVES. .. uuviiieeiiieeeciiee ettt ettt e et e e ettt e e e v e e e eneraeeeesaseeesnaeeeeensnes 25
1.6 DAY 3 OULIING. ..ccciiiiieeiiee ettt et e e e e aae e e e sara e e e etaaeeeeneneeas 26
1.7 DAY 3 ODJECHIVES. .ecuetieeiiieeiieeeiie ettt ettt e ettt e st e et e e st e e snbeeesbeeenbaeeenbeeennneas 27
1.8 DAY 4 OULIINE. ...ccuviiieeiiiee ettt et e e e e abe e e et ee e eareeeeenereeas 28
1.9 DAY 4 ODJECTIVES. .. .uviieiciiieeeciiee ettt ettt et e et e e e tva e e e eera e e e naseeeenaeeeeennnes 29
1.10 Other tOpics We Can AISCUSS.......vviieiiiieeeiiieeeeiieeeeeieeeeeireeeeereeeesreeeeeeaaeeeeereeas 30
1.11 Platform and version detailS...........c.ccecvueeriieeiiieeiieeciie et 31
1.12 THE COUISE NOLES...cccuvvieeeiiiieeeiiieeeriteeeeriteeeeerreeesereeeesbeeeessseeeenssneeesnnsneesensseens 32
L.13 Other Materials.......ccccvvieeeiiiieeiiie et ee e e e e e e et e e e aseeeeeneaeees 34

Chapter 2: What is Perl........ooeeee e 35
B B o R T34 TSP 36
2.2 Typical USES OF PeTL.....cccuiiiieiiiiieeeee et 37

2.2.1 TEXt PIOCESSINE. .. eeeeierieeeriieeeeiteeeesiteeeesrreeesssseeeessseeeessseesassseesessseessssseseanns 37
2.2.2 System administration tasks..........cccoceerriieriiieeriie s 37
2.2.3 CGI and web programming............cc.eeeeueeeriueeenieeniiieenieesseeesneeesreessneeesveeens 37
2.2.4 Database INTETACTION.eerrurreriieeiieeeiieesteeesireeeteeesereeeteeesereeesneesseeensseennns 37
2.2.5 Other Internet programming..............ceeevveeeeeeuereesireeeesirreeeeereeeeerreeeesereeeesnns 37
2.2.6 Less typical uses of Perl.......ccccooviiiiiiiiiiiiciiccie e 37
2.3 What 1S Perl TTKE?.......oooiiiiiiiieeie ettt e 38

PerlClass.com for ACT Students 20-23 Feb 2007 3

2.4 The Per]l PhiloSOPRY......ccoouiiiiiiiieceeeeee e e 39

2.4.1 There's more than one Way t0 dO 1t........cceeeiieriiieiriieiiieeriee e esvee e 39
2.4.2 A correct Perl program...........ccceeeecuiieiiieeiiicciie et 39
2.4.3 Three virtues of @ ProgrammeT..........cceeevieeeriiieeeriieeeeieeeesiieeeereeeeseeeeeenene 39
2.4.3.]1 LAZINESS.cuutieiiiieeiieeeiite ettt ettt ettt ettt e e e st e et 39

B 3 B 0 11 1218 <) 1 Lo USSR 40
2.4.3.3 HUDTIS. ceteeeieeteie ettt ettt st ettt e e et esneeenes 40
2.4.4 TRICE MOTE VITLULS.....eeerueieeiieeritieeniteeeiteeeiteeeiteestteesiteesbeeesabeesbeeesnseeennseeenee 40
2.4.5 Share and €NJOY!.....ccciiiieiiiieceeee e et e e e e araaeens 40
2.5 Parts OF PEIL....ccooeeiiieeiee ettt et et a e e as 42
2.5.1 The Per] INterPreter....ccc.uieeiieeiiieeiieeeiie ettt ettt et seee e e 42
2.5.2 MANUALS.c..ceoitiiiiieiiee ettt et 42
2.5.3 Perl MOAUIES.coiuiiiiiiiiiiitece et 42
2.0 CPAN ...ttt ettt et ettt et e b e b e et ate et 43
2.7 SIASRAOL. ...t ettt e 44
2.8 Chapter SUMMATY.......ccccciieeeiiieeeeiieeeeeireeeeeteeeesateeeessseeeessseeeessseeesasseessssseesensees 45
Chapter 3: Creating a a Perl program...........oouuoiiiiiiiiiiiie e 47
3.1 LoggINg INtO YOUT ACCOUNL......ccciuviireeiiieeeiieeeeiteeeestteeeeereeeesareeessseeeeessseeeenssneens 48
3.2 USINE PEILAOC. ..ceiiiiieeiiiee ettt ettt e et e et e e et e e e esseaeeensnaeeennaeeas 50
3.3 USING the @dILOT.....cccciiiieiiiie ettt e e e e e e e e seaaeeeessraeens 61
3.4 Our first Per]l programi............cceeeeeiiieieiiiee ettt 62
3.5 Running a Perl program from the command line.............c.cccceeeviiiiieniiececneeeee, 63
3.6 The "shebang" lINe..........coooiiiiiiiiiiiecie e e 64
3.7 COMMENLS.eiiiiiiiiieeitee ettt ettt et ettt e st e st e s bt e e st e e sabeesebteesabeeennseesanee 65
3.8 Command NG OPLIONS.uuiiiiiiiiieeiiiieeeieee e ettt eete e e e v e e e earee e earaeeeeaseeeens 66
3.9 Chapter SUIMMATY......ccccveeeiiieeriieeiieeeiieeerteesteeeteeeebeeessseesseeessseessseesssneesssesenssens 67
Chapter 4: Perl variables............uuuiieiiiiii e 69
4.1 What 1S @ variable?.........cooiiiiiiii s 70
4.2 Variable NAMES.ccouiiiiiiiiieeieete ettt et 71
4.3 Variable scoping and the Strict pragma...........ccceeeveeeeecieeeeriiiee e eeeee e 72
4.3.1 Arguments in favour of StriCtNESS......cvveeeeciiieieiiie e 72
4.3.2 Arguments a@ainst SEIICHNESS.ccccurieeeiiieeeeiiieeeriieeeeeieeeeereeeesrreeeeereeeeenes 72
4.4 UsSINgG the StrICt PraMa......cc.vveeeeiiieeeiiieeeeireeeeeieeeeeireeeesareeesaseeeesssseeeenssseeesseseens 74
4.5 SCALATS......eviie ettt e e e e e et e e e e ara e e e eaaaeeenaaeeeennaes 75
4.6 Double and SINGLE QUOLES.cccuieeriieeiiieeiie ettt e 77
4.7 BXCICISES.c.uteutteniieeiteenite et e sttt et e sttt et e sat e et esat e e bt e sut e e bt e sabeeabeesabeebeesateenbeesabeenbeeas 79
A8 ATISWETS. ..ttt ettt ettt ettt sttt e sttt s bt e sab e e ba e sane e et eens 80
T N 4t | 4 TSP 81

4 PerlClass.com for ACT Students 20-23 Feb 2007

4.9.1 A quick 100K @t CONEEXL....ceeruriiieeiiiieeeiiieeeeeee et ee e e e e e e 83

4.9.2 What's the difference between a list and an array?...........cccceeevvieeeiiieeeennnenn. 84
410 EXCICISES...uviieiiiriieeeiiiieeeeiieeeestteeesseteeeestreeeassseeeesssseesasssseesasssaeeessssseeasssseessssseeeans 85
4.10.1 AdVancCed EXEICISES......ueeerurereeirieeeeiirreesrieeeerrreeesereeeessreeeesssreesssseeessssees 85
o B N T T USSP 86
4.11.1 AAVANCEA ANSWET....ccuuiiiiiieeiiieeiieeeite ettt e et e st e sbeesseaeeeneeeenseeeneee 86
412 HASRES. ..ottt 88
4.12.1 Initialising @ hash..........cccoeiiiiiiiii e 88
4.12.2 Reading hash values...........cccuvieiiiiiiiieiiiccecce e 89
4.12.3 Adding new hash elements............cccccevieriiiiieniiiiiee e, 89
4.12.4 Other things about hashes.............cccviiiiiiiiiiiiie e 89
4.12.5 What's the difference between a hash and an associative array?.................. 90
413 EXEICISES. .eeeuutieeuiieeetieeeitteeeitee ettt e eatteesateesatteesabeeeateesabteesabeeesbeesaseeeanseeenseesnseeens 91
A1 ADISWETS. ...ttt ettt ettt e e et e et e e et e e et e e s abt e e e e aabeee s 92
4.15 Special variabIes.........cccueiieeiiieiciiee e 93
4.16 The first special variable, $cccooveiieiiiieiiceeeceee e 94
4160, 1 EXOTCISES..ueeeiuriiieeiirieeeitieeeeitteeeesteeeeesibeeeestaeeessssaeeessseeeesnssseeasssseseasseeesnnsns 94
AU17 ADNSWET ...ttt ettt ettt sttt ettt e st e s 95
4.18 @WARGYV - @ SPECIAL AITAY.....ccciiiiiieiiiieeciiee ettt e e e e e eaereees 96
418 1.1 EXOICISES. cuveeiutiiiieiiieiieeittesite ettt et ettt ettt ettt e sete s e s aeeeneee e 96

A1 ANSWETS ..ttt ettt ettt e sttt e et e e st e e e e s eareee s 97
4.20 %ENV -a special hash.........ccooooiiiiiiiii e 98
4.20.1.1 EXCICISES...eeeuurienuiieiitieeiite ettt eeitte ettt e et e ettt e ettt e st e e sibeeebbeesnbeeesaseeennees 98

A.2] ADSWET ...ttt ettt e et e e et e st e e s aae e e e eaneeeas 99
4.22 Chapter SUMIMATYcccvveeeeierreeerereeeesrreeesssseeesssereeeassseeessssseessssseessssssesesssseessns 100
Chapter 5: Operators and fuNCLIONS............oovviiiiiiiii e 103
5.1 What are operators and funcCtions?...........cccceeeeevereerciieeeniiiee e eeveee e 104
5.2 ATTtRMELIC OPEIALOTS.....uviiiiiiiieieiiieeeeiiee e et ee et e e et e e et e e e etrae e e araeeeeasaeeeenens 105
5.3 SHIING OPETALOTS. ...eeeuviieitieeiieeetieeeteeeite e et ee et e e st e e st e e taeesabeeetaeesnseeennseesnseeennee 106
5.3.1 BXEICISES . cuuteutteiieiiieeite ettt ettt ettt ettt et et et e bt st esate et esine et 106
54 ADSWETS. ...ttt et ettt et et e st esare e s aaee s 107
5.4.1 EXEICISE Luuuiiiiiiiiiiiieiiieie ettt ettt ettt et st naee s 107
5.4.2 EXEICISE 2..uvieuieiuiieiiieettesite et e sttt et et st e st e st e st essbe e s bt e eabeesbtesateenatesaneenseens 107
5.4.3 Source to OPerate.pl......c..eeieeeiiieeeiiee e 107
IR S (S0 o) 21101 TSP 108
5.6 Other OPETALOTS. ...ccueviieeeiiiieeeiiee e ettt e eetee e e tee e ettt eeeeeaeeeessaseeeessaeesessseeeenssneeeans 109
5.7 FUNCHONS. ..ottt ettt ettt e ettt e st e et e st e e s abeeeaeeas 110
5.7.1 Types Of argUMENTS..........eeeeiiiiiieiiieeeeiiee et e eeitee et e e e e e e sraeeeeeaeeeeenes 110
5.7.2 REIUIMN VAIUES.....eeiiiiiiieeiiiie ettt eette e ettt e e rvee e e st e e eeaaeeeeavaeeeensaeaeenns 111

PerlClass.com for ACT Students 20-23 Feb 2007 5

5.8 MOTE ADOUL COMEEXL. ... eeeeeneeeeeeee et e e e e e e e e eee e e e e eeeeeeeaaeeeeeeaaeeeeeaaaeeeenaaens 112

5.9 String ManIPUIAtION........ccvviieeriieeiie ettt ettt seaeeebae e e e e 113
5.9.1.1 Finding the length of @ String...........cccceeviiiiniieeiiieeie e 113
5.9.1.2 CaSE CONVETSION. ...cccuurireeuirireeirreeeaereeeesareeeesssreesaeseeeessseessssseeesssnseesens 113
5.9.1.3 chop() and chOmMP().......eeeeeiiieieiiie e 113
5.9.1.4 String substitutions with SUbSII().........ceeeieiiriiiiiieriie e 114

5.10 NUMETIC fUNCLIONS.uviiieiiiieeeiiieeeieee et te et e e e e e et e e e e ereeeesnsaeeeennsaeeenanneas 115

S5.11 TYPE CONVETSIONS....eeeieuerieeeriirieeeiiieeesiereeeessreeeesssreeeassseeessssesessssseeesssssesssssseeeans 116

5.12 Manipulating lists and arrays...........ccceeeeeciieeeeiiiiee e e eeree e e e e 117

5.12.1 Stacks and QUEUES.cceuiieriiieiiie ettt 117
5.12.2 SOTHNG TISTS...eiieuiiieeiie ettt ettt et e et e et e e e eereeeaeees 118
5.12.3 Converting lists to strings, and VICE VEISa.........ccueeeevuvreeeirreeeeiiieeeeeineeeenns 118

5.13 HaSh PIOCESSING.eciiiuiiiieciiieeecieee ettt ettt e et e et e e e e saraeeesaseeeeasaeeeans 119

5.14 Reading and Writing filles.........ccccueeeiiiiiiiiiiiiiciiece e 120

S IS TIMIC...eei et ettt ettt e et e et e e etaeessbee e sbeeestaeesnseeesseeensseesnseeenseas 121

5160 EXOTCISES. ceeeeiirieeeiiiieeeiieeeeitte e ettt e e et e e e s teeeeenteeesenssaee e nsseeeennseeeennsseeesnnsseeeans 122

S 17 ADISWETS....eeeiiieeeeiiet ettt e ettt e e e ettt e e s e sttt e e e s esatbeeeeeeeennnbbaeeeeeennnneeeeas 123

S B B 2 G (o3 1] SRS PRP 123
S.T7.2 EXEICISE 3uinnniiiiiieiiiie ettt eeeetee ettt e e et e e e st e e e essaaeesssseeeessneeeesnneeennnnns 123

R B 2 G (o3 1 SRS 123
S.017. 4 EXCICISE S.nnniiiiiieiiee ettt ettt e et e e et e e e eta e e e s ssee e e ssaaeeesnnaeeeennns 124
S.07.5 EXEICISE Ottt ettt e ettt e e iaa e e e e tteeeesraeeeesnnaeeeennns 124

5.18 Chapter SUMIMATYceeriiieiiieeiieerieeeiteesteeeiteeeieeesbeestaeesbeeesnseesseeesnseesnneas 125
Chapter 6: Conditional CONStrUCES.........ccooiiiiiiiiii e, 127

6.1 What 1S @ BIOCK?......coiiiiiiiieie et 128

0.2 SCOPC...ueeieieeeiiiieieeeeeeitt et eeeeeetreeeeeeeearrteeeeaaasarteeeaeeaasssaeeeeeaasnsseaaeeeasssrraaeeeeannsrrees 129

6.3 What is a conditional statement?............ccceeecuiieriieeiiieniie e 130

6.4 What 18 trUh?.....cooiiiiiie et e s e e snneeeens 131

6.5 COMPATISON OPETALOTS. ..eecuevieeeeiiieeerrrieeesitreeeaereeeessreeeassreeesssseeesssseessssseesenssseens 132

6.5.1 Existence and Defined-ness...........cccceeeviiiiiiiiieieiiiie et 133
6.5.2 Boolean 10@IiC OPETatOrS........ceeeciiieeeciiieeeeiieeeeieeeeereeeesereeessereeeeeereeeeeneeas 135
6.5.3 Using boolean logic operators as short circuit operators...........cccccvveeennneee.. 136
6.6 Types of conditional CONSLIUCES.........cccvviiiiiiiiiieiiee et 138
6.0.1 11 StALEMENLS. .. .eeiiiiiiieeiiiee et e e e e e et e e e e ebaeeeenaaeeeenens 138
6.6.2 WHILE LOOPS...ciutiiiiiiieiiieee ettt et 139
6.6.3 for and fOTEACK.eoiviiiiiiie e 139
0.0.4 EXCTCISES.ceeuuviieiiieiiieeitieeeite et e eiteesteeeteeeeteeestseeeteeenaseeesseesnseessseesnseeennns 140
0.7 ATISWETuiiiieieitiee ettt ettt e e ettt e et ee e st e e s sttt e e ettt e e eateeeeetbeeeeanteeeennbeeeennnaaeas 141
6.8 Practical uses of while loops: taking input from STDIN............cccceevirriirnnnennne. 142

6 PerlClass.com for ACT Students 20-23 Feb 2007

6.9 Best practices template for file manipulation............cccceeeecieiiiiiiiiiniieeeeeee, 144

6.10 NaAmMed DIOCKS. ...ccueviiiiiiieeeee et e e e aee e 145
6.11 Breaking out 0f 100PS.......uviiiiiiieieiie e 146
0.12 Chapter SUMIMATYceeriieeiiieeiieeniee et etee et e steeesebeessaeesebeeesneeesseeesaseesneas 147
Chapter 7: SUDIOULINES........ccooeieeeee e 149
7.1 Introducing SUDTOULINES........cccccuiiieiiiiee et ettt e e e e e eaaee e eereeas 150
7.2 Calling @ SUDTOULINE........ccviiiiiiiiee et e e e e 151
7.3 Passing arguments t0 @ SUDTOULINE.ceeeueeerieeriiieeriieeiieeeieeeiveeeeeeesereeenenee e 152
7.4 Returning values from a SUDTOULINE..........cceevvieeiiiieriieeieeeiie e 153
7.5 B XOTCISES . ueeeeiuerieeeiiieeeieeeeettteeestteeeeaaeeeesaaeeeesseeesanssaeeesnssaesannseeesansseeesnssseeeans 154
To0 ADISWETS......eviiieeeeeiiiieeeeeeit e e e e ettt e e e e e sttt eeeesesnntaeeeeesenassaeeeeseannssaaeeessnnnsneeeeas 155
T.0.1 EXETCISE L.uuiiiiiiiiieieiiiee ettt ettt e e et e e e st e e e entae e e ensaeeeenssaeeenssneeeans 155
T.0.2 EXETCISE 2..vvieeeiiieeeeiiieeeeiieeeesitteeesseteeeesaaeeeessseeeesssseesesssseesansssaesssssessnssseeenns 155
T.0.3 EXETCISE 3..riiiieiiiieeeiiieeeeiiee e ettt e e e itee e e ste e e e ettt e e e sstseaeesssaeeeessaaessnssaeesnssseeeans 155
7.7 CRAPLer SUMIMATYccciviieeeirieeeeerteeesitteeeesrreeeesseeeessseeessssseeessssseessssssesssssseeeannns 157
Chapter 8: Regular eXpresSsions..........coviiiiiiiiiiie e 159
8.1 What are regular @XpreSSiONS?.........eeeveeeeiieeriiieenieeeeeeeieeesieeeieeesreeesneeeeaeeenne 160
8.2 Regular expression operators and functions.............ccoveeeeeiieeeeciiee e, 161
8.2.1 m/PATTERNY/ - the match operator..........cccccceeevieiieciiieeccieeeeceee e, 161
8.2.2 s’sPATTERN/REPLACEMENTY/ - the substitution operator........................ 161
8.3 BINAING OPETALOTS.viiieiiieeiiieeiieeeieeeieesieeesteeetteeeteeestaeesaaeessseeessseesseeensseeans 163
I\ [Te] 1 . 2 Lo 1<) o USSR 164
8.4.1 Some easy MetaCharaCterS..........eeeeeviereriiiirieiieeerieeeeree e e e eareeeeaaeeeens 164
8.5 QUANTITIETS. ..eei it e e e et e e e e e etta e e e e e e eaataeeeeeeenansaeeeeeens 166
B0 GTEEAINESS. . eeeiuerieeeeiiieeesiiee e et teeeete e e e e trteeestaee e e saeeeessseeeessseeesnsseeesassseesassseeenns 167
I B S () LSRR 168
B8 AMISWETS....uveieeeeeiiiiiieeeeeriiteeeeeeesttraeeeeessstrtaeeeeesssnssreeeeessssssaeaesansssssnaeesesssssseeesanns 169
B.8.1 EXEICISE L.uiiiiiiiiiieiiiie ettt ettt e et e e et e e e e araee e e nnaeeeenens 169
B.8.2 EXCICISE 2..eeeiiiiiieeiiieeeeiiee e ettt e e ettt e e ettt e e ettt e e e sataeeeessaaeeeeassaeeensaeeesnseeeennnns 169
B.8.3 EXETCISE 3.ttt ettt ettt et et e e 169
8.9 Character CLASSES.eeeuieiiiieeiiie et eeiee ettt et e et e et e e e e e snbeeessbeeensaee e 170
8.9.1 EXCTCISES @S @ ZIOUP..ccuvieeriieirieeiieerieeesiteeeireesseeeareessseeensseessneessseeensseennns 170

8. 10 AITCTNALION. ... vveeeiiiieiiie ettt et et ete e ettt e et e e eer e e etaeeeabeeesssaeesaeesnsaeensseeennnas 171
8.11 The concCept OF AtOIMS.c.uviiieiiiiieeiiie et e eeree e e 172
B 12 EXICISES. ceeuuvireeiiiieeeiiieeesiteeeestteeeettteeesstteesenseeesassseesansseesanssaeeanssneesnnnseessnnnns 173
B 13 ANISWETS...eeiiieiiiiiiiiee e ettt e ettt e e e ettt e e e e e abt et e e e esabbtaeeeeeennbaaaeeeeennnbaaeeeeenns 174
T R T B 25 G (o3 1 PSSR 174

B 13.2 EXCICISE 2.ueeiiiiiiiiiieee e et e ettt e e e e eate e e e e e e ataae e e e e eennnes 174

PerlClass.com for ACT Students 20-23 Feb 2007 7

B 133 EXOICISE 3ottt e e e e e e e e e e e e e aeee e e eaeaeeeeaaaeeeeanans 174

8.14 SPIIt() TUNCHION.eeiiiiiiiiieiiee ettt e e e eereeeeeareeas 176
I I B S (01 1L SRR 177
Bl ATISWETS. ..cvviueeeeeeeeeeetee et e e e e e e et e e e e e e e e ee e e eeeeeeraaeeeeeeeerareeeeeeenraas 178
BL1O. T EXCICISE et e e e e e e e e e eees 178
BL10.2 EXCICISE 2.ttt e e e e e e e e e e e e e e e eeeaes 178
8.17 Chapter SUMIMATYoeeieiiieeeeiiiieeesiieeeesreeeeeereeeesstreeesseseeeesssseeeesssseessssseeesnssnees 179
Chapter 9: Practical EXErCiSES........couvviiiiiiii e 181
0.1 EXEICISES.c.ceeittteeeeieeeeee e e et e e e e e e et e e e e e e e e e e et ettt et e et e et e e e e e seeeeeesaeaaeeeeeees 182
Chapter 10: File /O .. eeaa 183
10.1 Assumed KNOWIEAEE........cccoueiiriiiiiiieiieeee e 184
10.2 Angle brackets - the line input and globbing operators.............cccccveeeeeveeeennnee. 185
JO.2.1 EXEICISES. .. cieieieieieeeeieeee oottt e e e e e e e e e e e e aaarereeeeeeeeeeeeseannnnes 187
10.2.1.1 AdVAnCed EXEICTISES.....cceveeuureeriiiiieiieeeeeeeeeeeeeeeeeeeeaeeeereeeeeeeeeeeeeeennnns 187

LR AN s) o USRI 188
JO.3.T EXEICISE 2o e e e e e e e e e e e e e e e e e eeeaees 188
JO.3.2 EXCICISE 3o e e e e e e e e e e e e e e e e eeaees 188
10.3.3 Advanced EXEICISE L....ciiiiiiiiiiiiiiiiiiiieeee e 189
10.4 open() and friends - the gory details...........ccoerrriiiiieriiiiieeeee e 190
10.4.1 Opening a file for reading, writing or appending.............ccccveeeeevreeeenvennns 190
JO.4.2 EXEICISES..uuueuuueeeeeeeeeeeeeeeee e e e e e e e e e e e e e e e et ettt ettt eseeeeeeeeeaaeeeees 192
L AN s <) o PR 193
JO.5.1 EXEICISE 3o e e e e e e e e e e e e e e e eeeeeees 193
JO.5.2 EXEICISE Q..o eeeaee e 193
JO.5.3 EXEICISE 5.t e e e e et eeeeeee s 193
10.6 Reading dir€COTICS. . cuvieeiiieeiieeciiieeiieeeieeeiteeette e e eteeeeeeesebeeetaeesaseeennseeenns 195
JO.7 EXEICISES. ...cciiieeeeeeeeeeeeeee ettt et e e e e e e e e e e e e saaeeeeeeeeeeeeeeeseennnnns 196
JO.8 ANSWET 10 H2. .ottt e e e e et e e e e e e e et eeeeeeeeesesaaneeeeeeennees 197
10.9 Opening files for simultaneous read/Write..........cccveeeveiiieeeriieeeniiie e 198
JO.9.1 EXEICISES...uuuuuuueueueieeeeeeeeeee et e e e e et e e e e e e e ettt ettt eeeeeeeeeaeaeeaeens 198

| NN 41537 SOt 199
LO. 1T OPENING PIPES..uurrireerrrireeirrreeairreeasereeeessrreesassseeessssseseasssseessssseesssssseesassssessans 200
| L O O B B) 55 (o) 1] F 201

JO. 12 ADSWETS. ..ttt e e e ettt e e e e e e e ea e e e e e e e eaaaa e eeeeeraaaaannes 202
JO T2, EXEICISE 2ottt e e e e e e e e e e e e e e e eeeaeees 202
TO.12.2 EXEICISE 3.ttt e e e e e e e e e e et eeeeeeeeeeeas 202
10.13 Finding information about files............ccccoeeeviiiiiiiiiiiieeeeee e, 203
JO. T4 EXCICISES...cciiiiieeeeeeieeeeeeeee et et ettt e e e e e e e e e e e e s aaaaaeeeeeeeeeaeeeeseeeannnnes 205

8 PerlClass.com for ACT Students 20-23 Feb 2007

L0, 1S A ST S ettt e e e e e e e e e e e e e e e e e e a e e r e e naaaaaaaa 206

TO.15.1 EXCICISE Luuuiiiiiiiiiiiiee ettt ettt eeatae e e e e eeaabaeeeeeeans 206
TO.15.2 EXCICISE 2.uuviiieiieiiiieee ettt ettt e e ettt e e e e et e e e e e eeabaaaeeeeeeansaaeeeeeanns 206
LO.15.3 EXCICISE 3.ttt e e et e e e e eeatae e e e e e eearaaeeeeaeans 206
10.16 Recursing dOWn dIr€CLOTIES.ceeuueerrieeriiieeiieeeiieerteeeiteesieeeireesieeesaeeeeeee e 208
JO.16.1 EXCICISES....uviieiiiiiieeiiiieeeiee e eeitee e ettt e e et e e et e e e eavaeeeeataeeeenssaeeeessseeeennnes 209
10.17 ANSWET t0 EXETCISE H2...eiiiiiii ettt e e e e eaaee e 210
1018 File 10CKING.iiiiiiieiiieeiie ettt et eaaeessaeesaseeens 211
10.19 Handling binary data..........c.cceeiieriiieeriieeiieeciee et 212
10.20 Chapter SUIMMATY........ceiieiiieeeeiiieeeriieeeeireeeesteeeeesereeesssreeesssseeeeessseessssseesennns 214
Chapter 11: Advanced regular eXpreSSiONS........ocovvevveeiiieeeeeeiicee e 215
11.1 Assumed KNOWIEd@e.......ccuvevieeiiiiieiiieeee e 216
L1.2 REVIEW ©XCICISES. .uuiiiieeiuiiiieeeeeeiiireeeeeeeettreeeeeeeetreeeeeeesessseaeaeeaaensssaeeeeeaassseeaeeans 217
11.3 MoOre metaCharaCterS.......cuuviiiiiieeiiieee ettt ettt eett e e e e 218
11.4 Working with multiling StriNgS........cceeeeeiiiieeiiiie e e e e 219
L1.4. 1 EXCICISES. uuuieeieieiiieieeeeeeeitieee e e e eeeete e e e e ettt e e e e e et e e e e e eeaaaaeeeeeeeasaeeaeeeeennnes 221
L1.5 ANSWET ..ot e e e e e e e e e e e e e a e e e e e aeeeeeeeeeennnnnns 222
11.6 Regexp modifiers for multiline data..............cccooeviieeiiiiiieiiiieee e 223
11.7 BaCKI@TRI@NCES. ...c..eviiieeiiiieecee ettt et e e e e eaaaeeeen 225
11.7.1 Special variables............ccovuiiiiiiiiiiiciiic e e 225

L 1.8 EXOTCISES . ueeiiutrieeeiiieeeeitee e ettt e ettt e ettt e e ettt e e e eateeeesareeeesaseeeesaraeeeenaseeeesanneeeans 227
T1.8.1 AdVANCEA........oviiiiiieeeee e e aaae e 227
L1.9 ANSWETS .ottt e e e e e e e e e e e e e e st aaaabaraeeeeaaeaeeeeeaaannns 228
L1.9.1 EXEICISE L..uuiiiiiiiiiiiiiiee ettt e e e e e e tar e e e e e eeaataaeeaeeenns 228
L1.9.2 EXEICISE 2..uuviiieiieeiiiiiee ettt eeettt e e ettt e e e et e e e e e e ataaaeeeeeennsaneeaeaanns 228
11.9.3 Advanced EXercise 1......ooiiiiiiiiiiiiiiiiieee e 228
11.10 SECtION SUMIMATYccuviiieieiiieeeiiiieeesireeeereeeeetreeesereeesseseeeesssaeeessseeessssseeennnns 230
Chapter 12: More fuNCLIONS.........coovuiiii e 231
12.1 The grep() fUNCHION. ...c...eieiiiieiiieeiie et e eiae e ens 232
L2, 1.1 EXICISES.ceciutiieeiiiieeeciiee e ettt e e ettt e e ettt e e et e e e ettt e e e easaeeesasaaeeesssaeeeessseeeennnns 233
I2.2 ADISWETS. .. .utiiiieeeeeiiieee e e ettt e e e e ettt e e e e e e s tbeeeeeeestaaaeeaeeessssbaeeeeeesnnssseeeeeennnsseeeas 234
12.2.1 EXEICISE Luuiiiieiiiieeiiiee ettt ettt e e e e e e e e eareeeeeanaeeeens 234
12.2.2 EXEICISE 2. .uuuuiiiiieieiiiieeeeeeciiieeeeeeeiite e e e e e e ivteeeeeeeatvaaeeeeesanaaaeeeesennssaeeaens 234
12.2.3 EXEICISE 2D..uiiiiiieiiiiiiiee ettt et e e e e tar e e e e e enanraeeeeeenes 234
12.3 The Map() fUNCHON.cceiiiieeeiiee et et e e e e e eneree e e 235
12.3.] EXCICISES. ouuiiiieieiiiiieee e ettt e e e ettt e e e e et e e e e e etae e e e e eeeataaeeaeeeanbaeeaeeeennnns 235
12.4 Chapter SUIMIMATYcuveeeeiiieeeeiieeeesireeesereeeessreeesssseeeessssesessssseeesssseesesssseeesnns 236

PerlClass.com for ACT Students 20-23 Feb 2007 9

Chapter 13: System interaction................oeuueiiiiiiii e 237

13.1 SyStem() and €XEC()..eeeuveeerureeriireriieeiieeeieeerteeesteeesteeestreeeseeessaeeesreesnseeensseeanns 238
N B B 25) (o3 1 USSR 238

L T N 1 1 S PSPPI 239
13.3 USING DACKLICKS.eviiiieiiiieeciiie ettt ettt e e e e e essnaeeen 240
13.3.] EXOICISES.ceeeuriieeeirieeeiiieeeeiiteeestteeeeateeeesereeeesssaeeeessaeeeessseeeesssneesasnseesnnssns 241
L34 ADSWETS.....eiiiiieeeeeiiieee e e ettt e e e ettt e e e ettt e e e e e e s atbeeeeesesnsbaeeeessesnnsseeeesesnnsseeeas 242
13.4.1 EXEICISE L.uiiiiiiiiiieiiiie ettt ettt e e e et e e et e e e e eraeeesnnseaeensnsaeeens 242
13.4.2 EXEICISE 2.eiecueviieeeiiieeeeiiieeeeiteeeetteeeesntreeeseaaeeesssseaeesssseeessssseeesnsseeeenssseeeans 242
13.4.3 EXEICISE 3.eiiieiiiieeeiiiee ettt ettt e e ettt e e et e e e eabe e e e s asaeeeenssaeesnsseeeennsseeeans 242
13.5 Platform dependency 1SSUES........cccueieruiieriieeniieeiieeeiieeeteeeireesieeeereeeneeeeeieeens 243
13.6 Security CONSIACTAtIONS.eeeccuiiieeiiiieeeeiieeeeiieeeeeireeeeereeeeeereeeesarreeeeneaneeeenenas 244
13.6.1 EXETCISES..uviiiiiieeiiieeiieeeieeetee ettt e etee et e e eteeesnteeesbeessaeeesseeessaeensaeennseaens 245
I3.7 ANISWETS......eiiiiiiie ettt ettt e e ettt e et e e sttt e e ettt e e esnsbeeeenbaeeennsseeesnnneeens 246
L3.7.1 EXEICISE L.uiieeuiiiiiieiiiee ettt ettt et e et e e et e e et eesennneeeens 246
13.7.2 BXEICISE 2.eeeeueriieeeiiieeeeiiieeeeiteeeeiteeeeeareeesnsaeeeesaseaeesnnseeesnssaesssseessnnssnesans 246
13.8 SECHION SUMIMATYccccuviireeiiieeeeiiieeesiteeeeeieeeestreeeeserreeesareeessssaeessssseesssnsseesnnnns 248
Chapter 14: References and data structures.............cooooeiiiiiiiiiiiieieeee 249
14.1 Assumed KNOWIEd@E.........veeeiiiiiiieiiiieeee et 250
14.2 Introduction tO TefEIENCES.......ueiieiiiieeeiiie ettt e eeaee e 251
14.3 UsSes fOr 1efRIENCES.uiiieiiiiieciiee et e 252
14.3.1 Creating complex data StruCtures..........cocueervierrieeniiieeriie e 252
14.3.2 Passing arrays and hashes to subroutines and functions...............cccc......... 252
14.3.3 Object oriented Perl.........c.ooiieiiiiiiiiiii e 252
14.4 Creating and dereferencing references..........ceeeevvveeeeciiieeeeiiiee e 253
14.5 Passing multiple arrays/hashes as arguments...........cccceeeveerierieenicniieeneennenne. 256
14.6 Complex data SEUCTUIES......cccviieriieeiieeeiee et e et et eeeee e et e sbeeeereesnseeeesee e 257
14.7 Anonymous data STIUCTUTES.eveeririreeriieeeeiieeeeireeeesieeeeeereeeesnreeesnnneesenens 258
L4.8 EXOTCISES. . uueeeeuurieeeriieeeeiiieeeetteeeeeteeeeestteeeesseeeeesnseeeessssaeessseeeanssseesasseessnssseeeans 260
T4.9 ADSWETS.....eeiiiiieeeiieeee ettt ettt e e e ettt e e e e ettt e e e s e s abtaeeeesennnsaaeeeseennnsseeeas 261
14.9.1 EXEICISE L.uiiiiiiiiiieiiiie ettt et eee e ettt e et e e et e e e e naa e e e ennneeesnnnneeeens 261
14.9.2 EXEICISE 2..eeeeueviieeeiiieeeeieieeesiteeeeateeesssnaeeeesaseeesssseeeesssseeeasssseeesssseesnsssenenns 262
14.10 SECHION SUMIMATYccuviiieiiiiieeeiiiieeestreeeesreeeestreeesssseeesssseeeesssaeessssseeessssseeesnnns 264
Chapter 15: PerIStYle...... oo e 265
15,1 PEIISEYLE 5.8.8 ettt e e 266

10 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 16: About databases...........coovviiiiiiiiiiiii e 271

16.1 What is @ database?..........cceeeuiiiieiiiieeeiie ettt eeee et e e e e e e e e ereeeeeasaaee e 272
16.2 Types 0f databases.........ccccuviiiiiiiiieiiieeeiee et eree e et e e e e e 273
16.3 Database management SYStEIMIS.ccuueieeerieeeeeiiieeeeiieeeesrieeeeereeeesreeeeeereeeeenens 274
16.4 Uses 0f databases.........ccccuviiieiiiiieciiie ettt e e e eaaeee s 275
16.5 Chapter SUMIMATY.....ccccvveieeiiiieeeeiieeeeeiieeeeireeeeeerreeeeseseeeessreeessssseeeesseeesssseeesnnns 276
Chapter 17: Textfiles as databases.............ooiiiiiiiii 277
17.1 Delimited teXt fIleS....ccuiiiiiiieiieiiieeie et e 278
17.1.1 Reading delimited text files........cccoeviiiiriiiiiiieeie e 278
17.1.2 Searching for r€COTAS........ccooiuiiiiiiiiieeeiie e e 279
17.1.3 SOTtING TECOTAS....eeeieeiiieeeiiiee ettt eetee e eeeee e ette e e ete e e eseeeeeenseeeeesnaeeeenneeas 280
17.1.4 Writing to delimited text files.........cceerrreiiiiiiiiie e, 281
17.2 Comma-separated variable (CSV) fileS.......ccoevviiiiieriiiiieiieeeee e 283
17.3 Problems with flat file databases...........ccecviiiieciiiiiciiieeeee e, 284
17.3.1 LOCKING...ciiiiiiieeeiiie ettt e et e e e tae e e esva e e e esnneeeenenns 284
17.3.2 CompPlexX data.......c..oeeuiiiiiieiiieeiie et 284
17.3.3 EffICIONCY ..ttt ettt ettt e et e e etae e naeeenes 284
17.4 Chapter SUMIMATY.....ccccvveieeiiieeeeiieeeeeieeeeeireeeesrteeeessseeeessseeessssseeeasssesessssesesnnns 285
Chapter 18: Relational databases.............cccoooriiiiiii e, 287
18.1 Tables and relationShIPS..........coecuiiiiiiiiie e e 288
18.2 Structured Query Language..........cccvieriieiiiiieiiie et eree e 291
18.2.1 GENETAl SYNTAX....ccuviieeeiiiieeeiiieeeeiieeeriteeeerteeeesiteeeereeeseaaeeessnreeeesnnneeeenns 291
18.2.1.1 SELECT ...ttt ettt ettt et e e e e e 292
I8.2. 1.2 INSERT ..ottt ettt et e e etae e snnae e 292
I18.2. 1.3 DELETE. ...ttt e en 293
18.2.1.4 UPDATE ...ttt e 293
I18.2.1.5 CREATE ...ttt et 293
I18.2. 1.6 DROP......ooeiieiieeie ettt ettt ettt et e st eenaaeenseensne s 294

18.3 Chapter SUMMATY.........eeiuiieiiieeiieeeiie et eiee et et e esebeesiteesbeeesnbeesssaeesnseesnnnas 295
Chapter 19: MySQL........eiii et raneeeees 297
19.1 MYSQL fRATUIES. ...cccuviiieiiiiee ettt e et e e e e e err e e e eenaeeeeaens 298
19.1.1 General fRAtUIES.ccvieeiiieiiieeiee ettt et tee e seeeenes 298
19.1.2 Cross-platform compatibility.........cccceevvveeriieriiiiinieeeieeciee e 298
19.2 Comparisions with other popular DBMSS.........ccccviiiiiiiiiiiiiecieeeeee e 299
19.2.1 POStEIESQLin ...t e e et e e e s e iaaaeee s 299
19.2.2 Oracle, Sybase, €LC.......uuiiiiiiieiiiieeeiiiee ettt eetee e e et e e e eeaee e e ssaee e e 299

PerlClass.com for ACT Students 20-23 Feb 2007 11

19.3 GEHNE MYSQL....-vveoeeeeeeeeeeee oo e e ee s eeeeseees e s e eeee s eesseeeees 300

19.3.1 Red Hat LINUX....ccooiiiiiiiiiiiecieeciee ettt e 300
19.3.2 Debian LINUX.......cccouveiiiiiiiiieeiiiesiie et eeiee et eiee e teeeiaeesseeesnaeeennneas 300
19.3.3 Compiling from SOUICE........eeeieriiieeeiiiieeeieeeereee e ee e eeree e e 300
19.3.4 Binaries for other platforms...........cccceeeeeiiiiiiiiieeiieeeee e 300
19.4 Setting up MySQL databases..........cccceeeeriiieieiiiie et 301
19.4.1 Creating the Acme inventory database............cccveeevviieeerciireeiiiee e 301
19.4.2 Setting UP PEIMISSIONS.ceeerurrieereirireerrieeessrreeesssreeesssreesasseesessseeesssseeeens 302
19.4.3 Creating tables.........viiieiiiieeeiieeeeiie et e e e e e e eeree e 302
19.5 The MySQL CHENL....c..eiiiiiiieiiieiie ettt 305
19.6 Understanding the MySQL client prompts.........ccocceeeveieeinieeriieiniieeieesiee e 307
1.7 EXEICISES. .cuveeitteiieeiieeiie ettt ettt ettt ettt ettt ettt et e sat e e e st e ebeesanes 308
19.8 Chapter SUMIMATY......cccuveieiiiiieeeeiiieeeeeiieeeeireeeeeteeeeeeeaeeeestseeeessseeeesseeeesnsseeennnns 309
Chapter 20: The DBl and DBD modules............ooovvuviiiiiiiiiieiiee e 311
20.1 What 1S DBI?.....ooiiiieeeeee et 312
20.2 DBI documentation SEt..........cceccuuieieriieeeniiieeeiieeeeireeeesereeesereeeeenneeesnseeesenens 313
20.3 Supported database tYPeS......cccvuereerrireeriiieeeriieeeerreeeeriree e rereeeeereeeesreee e ereeas 314
20.4 How does DBI WOTK?........ooiiiiiiieiieeeee ettt 315
20.5 DBI/DBD SYNEAX......cccciiiieieiiiieeriiieeesiieeessteeeesereeeesssreeeesseeesssseeesssssesssssseeesns 316
20.5.1 Variable Nname CONVENTIONS........ccccuveeeerrieeeriiiieeeriieeeesereeeesereeesssreeeessseeeans 316
20.6 Connecting to the database..........ccceeeeriuiiiieiiiieiciiee e 317
20.7 Executing an SQL qUETY......cooiiiiiiiieiie ettt ettt st e 318
20.8 Doing useful things with the data............c.cooooiieiiiiniiii e, 319
20.9 An easier way to execute non-SELECT queries.........cccvveeveviieeecieee e, 320
20.10 Quoting special characters in SQL............ccoeiiiiiiiiiiiecieeeee e 321
20. 1T EXCICISES.ceeutieiuiieeiieeiiieeiieeeitteeeteeetteeeteeessseeesseesseeesssaeasseesssaesssseesnsseennses 322
20.11.1 AdVAnCed EXEICISES....ccuvrierurreeirireriieeiieeeieeesteeeereesseeensseeesreesseeeseeennns 322
20.12 Chapter SUIMIMATYc.vuttireiieeeriiereesiteeeesereeeesareeessseeeessssneessssseeessssseessssseesens 323
Chapter 21: Acme Widget Co. EXErcCiSes........ccuuuiiiiiiiiiiiiiiiieeieeecee e 325
21.1 The Acme INVentory appliCation.........cccveeeeeiieeeeeiieeeiieeeeieeeeereeeeaeeeeeereeeeas 326
21.2 LiSting StOCK TLEIMS......uviiieiiiiieeiiiieeeciieeeeiee e ette e e sree e e tee e e sereeeesneaeeeenseaeeenens 327
21.2.1 AdVancCed EXEICISES: . .cuurirerruriieeriiiereerrreeeeireeeesereeeessreeessseeeessseeeesssseeenns 328
21.3 Adding new StOCK TLEIMS........cccieuiiiiiiiieeeiiieeeciiee et e e e e esaaee e e 329
21.3.1 AdVancCed EXEICISES......cceerrurrreeiiiieeeiiieeeeireeeestreeessreeeessseeeesssaeeeessseeeennnns 329
21.4 Entering a sale into the SYSteM........cccvuiiriiiiiiiiiiiiiieeiie et 330
21.5 Creating SAleS TEPOTLS......veiieeiiieeeiiiieeeeiiee e et e e eeire e e et e e e e ereeeesarreeeeereeeesanaeaeans 331
21.5.1 AdVANCed EXEICISES.....cecuvirerureeeiiieriieeriieeeieeesteeeteeesseeensseesseeesnseeeseeennns 331
21.6 Searching fOr StOCK ITEMS.eeerviiiiiiieiiie ettt e 332

12 PerlClass.com for ACT Students 20-23 Feb 2007

21.6.1 AQVANCEA EXETCISES. ..nnneeeeee e e e e e e e e e e e e e eaaaeaees 332

Chapter 22: REfErENCES........oovveiiiieeeee e 333
22.1 Uses for Per]l 1eferenCes.cceiviiiieiiie ettt 334
22.2 Creating and deferencCing...........ceevuieeriieriiiieiiie ettt 335
22.3 Complex data SEIUCTUIES.ceevuvieeiiiieeiieeriee ettt ettt eaee et e e e b e eneeeeenes 337
22.4 Passing multiple arrays/hashes as arguments............ccceeeveeeeriieeeecciieeeeeveee e, 338
22.5 Anonymous data STIUCTUIES.veeeeeriieeeiieeeeeireeeeeteeeeeteeeeeeerreeeerreeeeeaeeeeenenas 339
22.6 Chapter SUIMMATY......cccvteeireerireeeiieenteeeieeesreeensreesseeessseesssseessseeessseesssesessseennes 340

Chapter 23: What is CGl7. ..o e e 341
23.1 Definition Of CGl......oooiiiiiiieiieeeee e 342
23.2 Introduction to HTTP.......oooiiiiiiiie ettt 343
23.3 TeIMINOIOZYeiieiiiieeeiiiie et eetee et e e tee e e eree e e ttree e eebeeeesnssaeeesnneeeannseeeens 345
23.4 HTTP Status COU@S. . eeeiiriiieeiiiieeeiiieeerieteeeteeeesiteeeeereeeeseeeeessseeeseseseeeesseaeenns 347
23.5 HTTP MEhOAS......cocuviieiiieciie et et et tae e 348

23.5. 1.1 GET oottt et et et a e aaaea 348
235 1.2 HEAD ...ttt et et 348
23.5. 1.3 POST ..ot ettt e 348
23,6 EXEICISES..eeeuvieeiieeeiiieeiieeeitteeeteeetteesteeetteeebeeesaseeesteesnseeensseesnsseennseeensseesseeens 349
23.7 What is needed to run CGI programs?............ceeeveeeeeiiiieeeiiiieeeeireeeeeireeeeeveee e 351
23.8 Chapter SUMMATY......cccuieeiieeriiieeitieenieeenieeesteeestreesseeessseesssseessseeensseesseesnsseeenes 352

Chapter 24: Generating web pages with Perl............ooooiiiiiiiiiieeeeeee 353
24.1 Your public_html dir€Ctory........ccccciiiieiiiiiieeiiee e 354
24.2 The CGI dIT@CLOTY...eeiiiiiiieeeiieeeeiiee e erttee ettt e eeire e e e e e e e ebaeeeseaeeeessnneesenseeeens 355
24.3 The HTTP headers........ccooiviiiieiiiie ettt e e e 356
24,4 HTML OUEPUL.....oiiiiieeiieeciee ettt ete et e et e e sve e e sebeeeaaeessseeensseesnsaeesseeenns 357
24.5 Running and debugging CGI programs...........ccccceevviveerciieeeniiee e eeevee e 358

24.5. 1 EXOTCISES..ueeeiuuriieeeiiieeeitreeesitreeeestteeeeeseeeessseasasssseseessssaeesssseeasssseesanssseeenns 358
24.6 QUOtING MAAEC CASY....cuviieeeiiiieeiiiieeeiieeeeeitee e e eeeertreeeesbaeeessasaeeessseeeessnseeeannns 359
24.6.1 Here dOCUMENTS.eiiiiiiiieeiiee ettt e e e e e e e e eeearaeeeenreee s 359
24.7 PiCK YOUT OWN QUOTES. ...ccuvviieeieiiieeeiiieeeeiteeeeeiieeeeeireeeeevteeeeareeeeseaaeeeeereeeenaseeeas 360
24,8 EXCICISES. . ueeiurieeuieeeiteeeriteeesiteeestteeasteeesseeanseeessseeesseeenseeessseeasseesnsnesnsseesnsseenses 361
24.9 Environment Variables.........coeeciieriiieeniieeiiieeeiee e 362
24.9. T EXOTCISES..eeeeeuuriieeeiiieeeiiieeeeititeeestteeeenasteesssseesesnnseeessnsteessnseesassseesssnseeesans 362
24.10 Chapter SUIMIMATYc.vveeereirieeerereeeesrteeeesaeeessareeessseessasssaesssssseesssssseessssseesens 363

PerlClass.com for ACT Students 20-23 Feb 2007 13

Chapter 25: Processing form input............ccoooiriiiiiiiiiice e 365

25.1 A quick look at HTML fOIrmS........ccccviiiiiiiiieiiiie e 366
25.2 The FORM €I@MENL.......ccciiiiiiiiieiiiieiiie et eeiee et et esreeeeve e e eseveesseeesnveaens 367
253 INPUL FILAS. ..eeeiiieeeeeee e e e 368
2531 TEXT ettt ettt st e et e e et e e s abeeetbeeenneeessseeesaeennns 368
25.3. 2 CHECKBOX......cottiiiiieeie ettt ettt etee s ve e e saae e ssvaeessvaeenaeesnnaaens 368
25.3.3 SELECT ...ttt ettt et s e e e aae e eesabeeesaeesnneeans 368
25.3.4 SUBMIT ...ttt et et e e eeaaeas 368
254 The CGIMOAUIC.......ccevviiiiiieeeee e e et 369
25.4.1 What1s amodule?...........oooiiiiiiiiiiiiiceee e 369
25.4.2 Using the CGI module.........cccooeiiiiiiiiiiiiiiiieceee e 370
25.4.3 Accepting parameters With CGlL..........c.cccooooiiiiiiiiiiii e, 370
25.4.4 Debugging with the CGI module's offline mode...........cccccoevvveeeenieeennen. 371
25.4.5 EXOTCISES. ccuuviiierieeiieeeieeeiteesieeesiteeetaeesaeeesaseessseeessseessseesnseeensseessseesnseeens 371
25.5 Practical Exercise: Data validation............ccceeeevieriiieniieiieeciee e 372
25.5. 1 EXOTCISES..eeeeeuuriieeeiiieeeiiieeeeititeeestteeeeatteeeesaeeeesssseeeennsseesanseesesnsseesannseeesnns 372
25.6 Practical Exercise: Multi-form "Wizard" interface............ccccoevveiivenicierennnnnnns 373
25.0. 1 EXOTCISES..eeeeeuuriieeriiieeesiieeesitteeestteeeestreeessseeeessnseeeesssseeessseesesnsseesessseeesans 376
25.7 Practical Exercise: File upload..........ccoccvvieeeiiiiiiiiiie e 377
25.8 Chapter SUMMATY........cccvvireeieiieeeeiiereestteeeesreeeeeereeeessseeesssaeesssseesssssseeesssseeeans 379
Chapter 26: SECUILY ISSUES.......cccuieiii i eeeeans 381
26.1 Authentication and access control for CGI SCTipts........coocverevvieriieenieeniieenen. 382
26.1.1 Why is CGI authentication a bad idea?..........ccccceeviiiieiiieniiienieeieeeieee 382
26.2 HTTP authentiCation.........cc.eeeeuiieiiuieeniieeiieeeiieeeieeeiteeeieeeeteesieeesveeennneesnnaeens 383
26.3 ACCESS CONIOL...uuiiiiiiiieiiiecieecie ettt re et e e e e ebeeesnneas 384
20.3.1 EXOTCISES..uuviiiiiiieiieeeiie et e eieeesteesiteesteeeseteesteeesaeeesseesnseeensseessseennseeens 384
26.4 TaINEd datA.....c.veeeeiieeiieeeiie et e e b e e e naeeenes 385
260.4. 1 EXETCISES...eeeeuuriieeeiiieeaiiieeeeitteeentteeeeesreeessseesesssseeeesssseeessnseessssseesannseeesnns 386
20.5 CEIWTAP. . .ueieeeiiieeeeiiieeesiteeeetteeestteeeesseeeessssaeesasssaeessssaaesansseeeesssaeessssseessnsseessnn 387
26.6 SECUIE HT TPt e e e s e aaee e 388
26.7 Chapter SUMMATYcccvvereeiiieeeritiereesrreeeessseeessereeeessseeessssaeessssseeesssssesssssseessns 389
Chapter 27: Other related Perl modules............ccoooiiiiiiiiiiiiiiiice e 391
27.1 Useful Perl Modules.........coocuviiiiiiiec e 392
27.2 Failing gracefully with CGL::Carp.......coocveeviiiiiiiiieeeieeeee e 393
27. 2.1 EX@TCISC...uuviiieiriieeeiiieeeciteeeeeitteeeetveeeeeireeeestseeessssaeeesssseeeessssseesssseeesssseeaans 394
27.3 Encoding URIs with URI::ESCAPe.....ccvviiieciiiiieiiiieeee e 395
27.3.1 EXOTCISE. . eeeuviieiiieeiieeeiiee ettt eeiteeiteeeteeeebeestee e tbeesssaeesnseeensseesnseeensseesnsaeens 395

14 PerlClass.com for ACT Students 20-23 Feb 2007

27.4 Creating templates with Text::Template.........c.cccvvveeieiieieciiiieeeieeeeee e 396

27.4.1 Introduction to object oriented modules.............ccceeeeriiiiiniiiiieeeiiiee e 396
27.4.2 Using the Text::Template module............cccovviiieriiiieeniieeciee e, 396
27.4.3 EXCICISC....uveieeeiieeeeitiieeeciieeeeitteeestaeeeesesteeessseeessssaeeessseeeesssssessnsseeeeassseeeans 397
27.5 Sending email with Mail::Mailer..........ccccveeiiiiiiiiiiiiicieee e 398
27.5.1 EXEICISES. uveeuutiruiieniieeitesite ettt ettt et sit e et e sbt e et esatesbeesateebeesieeebeesanes 399
27.6 Chapter SUMIMATY.......cccuveieiiiieeeeiieeeeeieeeeeereeeesireeeeseraeeessaseeeessseeessssseeeesseeeans 400
Chapter 28: CON-CIUSION.........ccoiiiieeeeeeeer e 401
28.1 Day 1: What you've 1€arned............cceevveieiiieniieeieecie et 402
28.2 Day 2: What you've learned............ccoeeeiiiiiiiiiieeeiieeeeee e 403
28.3 Day 3: What you've learned...........ccceeveiiiiiiiiiiieeiieeeeieeeeee e 404
28.4 Day 4: What you've learned...........ccceeeviiiieiiiiieieiiieeeee e 405
28.5 WHREIE 10 OW? ...ttt ettt ettt sttt e et e s e e e e e 406
28.6 Further reading == BOOKS........ccuuiiiiiiiiieiieeeee e 407
28. T ONIINE......viiieeiiiie ettt e et e e e et e e e eaeaeeeestaeeeesseeeeasssaeeassseeeansseeeann 408
28.8 The Perl home page (http://Www.perl.com/).........cccvveeviiiiieiiiiieeiee e, 409
28.9 Perl Monks (http://www.perlmonks.Com/)..........cceevuieriiiiniieiiiieeiieeiee e 410
28.9.1 The Perl Monks Guide to the Monastery..........ccceeeeeveeeeiiiieeeiiiee e, 410
28.9.1.1 Finding Your Way Around............cccccoveieeiiiiieeiiiee e 411
28.9. 1. 1. 1SECHIONS. ...eoueieiiieiieeiieeite ettt ettt ettt ettt et e s e 411
28.9.1.1.2INf0TMAION.ceoueieiieeiiieiie et 412
28.9.1.1.3Find Interesting NOAES.........cccccuerrrriiieiiiiiieeriee e 412
28.9.1.1.4Additional Miscellany..........ccccoeevvieiiiiiiiriniie e 413

28.10 * The Perl Journal (http://WWW.tP].COMY/).....vvvieeiiiieeiiieeeiie e 415
28.11 « Perl Mongers Perl user groups (http://Www.pm.org/)........ccccvveeverveeencneennns 416
28.12 The Richmond Perl Mongers (http://wiki.fini.net/bin/view/RichmondPM) .. 417
28.13 O'Reilly's Perl DOOKS........ciieiiiiieeiiiieeeiie ettt 418
28.14 NEWSZIOUPS. .eeeeeeuerriiieeeeeiriteeeeesettreeeeeassetraeeeeeasssssreeesessssssseeessssssssseeesesssssseees 420
Chapter 29: WIin32::EvVentLog.......ccoovuuiiiiiiie e, 421
29.1 Win32::EventLog EXamples........ccoeiieiiiiiiiiiieicieeeeee et 422
29.2 Win32::EventLog Reference..........ccceeeeiiiiieiiiiieee e 424
29.2.1 The EventLog Object and its Methods...........ccceeerieenciieiniieeiicciee e, 424
29.2.2 Other Win32::EventLog functions...........cccceevveeeriieeniiieeniieeiie e 427
Chapter 30: WIN32::NetAdMIN.... oo e 429
30.1 EXAMPLC..cniiiiiieiiiieeeie ettt e e e e et e et e e e naa e e e nraeeenens 430
30.2 Win32::NetAdmin provided functions...........cccceeevveeerciireeniiieeeiiee e, 432

PerlClass.com for ACT Students 20-23 Feb 2007 15

Chapter 31: Other Perl WIin32 ModUIES..........ccooviiiiieiiiieiee e 437

31.1 WIN32::NEtRESOUICE.vvieeiiieeiiieeiiieeieeestee et erte e e saee e e esaeesbeeennees 438
R B B B¢ 11 01) (LR USPPPRURUSRRPPI 438

R B BN B 1 2 Tl) o1 PRSP 439
31.1.2.1 %NETRESOURCE.........cooiiiiiiiiiiieeeeecee ettt 439
31.1.2.2 %SHARE INFO ...ttt 440
31.1.3 FUNCHONS. ..ceiiitiieeeiiee ettt et te e ettt e et e e et e e e eetaeesennseeeesseaeeansseeeanes 440
31.2 WIN3 21 iSCIVICE .o cieiiiiiee ettt e e ettt e e e ettt e e e e e e aaae e e e e e e naaeeaaeeeennnns 444
31.2.1 EXAMPIES..eiiiiiriieieiiiie ittt e esiieeeette e ettt e e et e e e st ee e e sstaeeeesssaeeesnssaeesnssseeeans 444
31.2.2 FUNCHONS.uviiiiie ettt e et e e e e e e e etaaeeeeeeeennaaaaaeeas 445
31.3 WIN32::SOUNA.....cuviiiiiieeeee et e 446
31.3.1 QUICK SAMPIC...ooiiiiiiiiiiiie e e 446
Chapter 32: *NIX cheat sheet...........ooormiiiiiii e, 447
32.1 Some UNIX COMMANGS........eeeriiiiiiiieiieeriie et eeieeeeree e eieeesaee e e eseeeneneas 448
Chapter 33: Editor cheat sheet..............uiiiiiiiii e, 449
R 0 V4 DO USRS 450
33.1.1 RUNDING....ciiiiiiiiieeiiee ettt e et e e e ee e esbaeesessaeeeenneeeennsseeeanns 450
33 1.2 USINE..utiieeiiiieeeiiee ettt e ettt e e et e e et e e s e ateeeeeateeesensseee e ssaeeeenssaeeenssseessnnnnens 450
33 1.3 EXIEINE..uvieiiiieiiee et eeiee ettt e et e et e et e e et e eeeaeesabeeesssaeesseeesssesesseesnsaeesnseeans 450
33,14 GOLCRAS ... 450

R T B (51§ PSP SRRURUUSRRRPRR 451
33,10 VIt ettt et ettt e e eab e e aa e e eara e e treeeaanas 451

R 00) (oo SRS STRPRR 452
33.2.1 RUNNING....oiiiiiiiiieeiiiee ettt e e e st e e e e ebae e e e taeeeensaeeesanseeaanes 452
33.2.2 USINE..utiieeiiiieeeeiieeeete ettt e et e e et e e e tae e e etbeeeeeabaeee e araeeeessaeeennsseeesnneeas 452
33.2.3 EXIEINE.c.uteeeiieeeiiie ettt eeite et e et e eete e et e esbeeeaaeesnbeeeassaesssaeessseeenssessnseeensseeans 452
33.2.4 GOCRAS....ceiiiieiiieeiie ettt ettt e et eebee e et e e et e e et e e enbeeeaaeas 452
33,25 HelP it esbeeenbeeeraeans 452
R 0 I o TSRS 453
33.3.1 RUNDNING.....oiiiiiiieeiiiee ettt et e et e et e e e saeeeeeebeeesessneeeessneesensseeennns 453
33.3.2 USINE..utiiieiiiieeetieeeeite e e ettt e e et e e e e eaeee e ntaeeesssaeesensseaeensaeeeenssseeenssseeennssses 453
33.3.3 EXIEINE...utieiiiieeiiie ettt eeiee ettt eie et e et e e et e e e aaeesateeessaeeesaaeessseeenseesnseeennsaeans 453
33.3.4 GOLCRAS. ... 453

R T B I = (511 PSPPSR UUSRRRPRP 453
3314 JOA i et et e e ae e et e e eaa e e eareeeneas 454
33.4.1 RUNNING.....oiiiiiiiieeiiee ettt ettt e et e e e s e e e e e ebaeeseaaeeeensaeeesnsseeaanes 454
3342 USINE..uiiieeeiiiee e e ettt eette e et e e ettt e e e eata e e e e tbee e e etaeee e araeeeessaeeeenrseeesnneeas 454

16 PerlClass.com for ACT Students 20-23 Feb 2007

33143 EXItIE o rvveoeveereeeeeeeeeeeeeeeeeeeseeeeseeeeeesseeses e eesseeseseeeeeesesees e ess s eeeseeeesseeee 454

33.4.4 GOLCRAS....uiii ettt e e e e e ara e e e e naaaeenes 454

R R S N (51§ o PSP URRURUUSRRRPRS 454
Chapter 34: ASCII Pronunciation Guide.............cooeiiiiiiiiiiiiiieiiceeeeeeeeeee 455
Chapter 35: HTML Cheat Shee€t..........cooomiiiiieee e 457
Chapter 36: The Regex COacCh............uuuiiiiiiiii e 461
RN BN 0] 3 o1 A USRS 462
30.2 CONENLS.eiiieeeiiiie ettt ee ettt te e et e e e et e e e ataeeesabeeeesnsbeeeensneeesnnnseesennnes 463
36.3 Download and insStallation............cceceveeeriireiiiieeniie e 464
36.3.1 Older versions, Linux, FreeBSD, Mac.............uuuuuiiiiiiiiieiieeeeeeeeeeeeeeeeeee 464

36.4 Support, bug reports, mailing List...........ccceverriiiiiniiiieeiee e 466
36.4.1 HOW O T€POTE DUEZS.....eviiiieiiieeeeiiee ettt ee e e e e e e e ere e e e 466

36.5 How to use The Regex Coach..........cceeviiiiiiiiiiiiieieeeee e 467
36.5.1 The MaIN PANES......cccerivieeeeiiieeeeiieeeeiteeeetreeeerree e e sereeeesrreeeessaeeeesnseeeennnns 468
36.5.2 The MEeSSAZE ATCAS.......uvieeecerieeeeiiieeeiieeeeiieeeestteeeeereeeeetaeeeesraeeeessseeeennnns 468
36.5.3 Highlighting selected parts of the match............cccooeviiiiiiiiiiiiie, 469
36.5.4 The highlight buttons...........coociiiiiiiiiiiieee e 469
36.5.5 The highlight MesSages........cc.veeiiiiiiiiiiiiiecceeeeee e 469
36.5.6 Walking through the target String............ccocveeeeeiiieeiiiieeeee e 470
36.5.7 Narrowing the SCAN.........c.ccevvvieiiiieiiiie ettt e e e ree e 470
36.5.8 The INTO PANC.......eeieeiieeiiieciie ettt 470
36.5.9 The PATSE tIEE.....uevieeeiiiie ettt ettt et e et e e e e e e eeree e enraeeseneneas 470
36.5.10 RePlaCiNg tEXT....ceeeuriieeeiiieeeciiee et eeieee e e et e e et e e e ree e e eaaeeeeeneeas 471
360.5.11 SPIELING LEXE...eeeeeiiieeeeiiieeeiiieeeetee et ee e erree e e st eeeeereeeseereeeesseeeeennseeeenes 471
36.5.12 Single-stepping through the matching process.........ccceeevveeerevieereceveeeennne. 471
360.5.13 MOAIIEIS.eviieeeiiiie ettt ree e et e e e e e e seraeeeessneeeens 472
30.5.14 RESIZING......viiieeiiiieeciiee ettt e e e et e e et e e et ae e e s taeeeesaaeeeessneeeennens 472
36.5.15 Saving to and loading from files..........ccoeeiirniiiiiiiiniie 472
36.5.16 AULOSCTOL..cc.eeiiiiiciiie et e e 472

36.6 Known bugs and IMItations............cccueeeeeiiieeiiiieeeeiiee e eereee e eeveee e 474
36.7 Technical INfOrMAtION.eeecuiiiiiieiieeeee et 475
36.7.1 Compatibility With Perl..........cccoooiiiiiiiiiiiiie e 475

36.8 ACKNOWIEAZEMENLS.....ccuiiiiiiiiiiiecieecee e e 476
Chapter 37: Acknowledgements...........ooouuiiiiiiiiiiiii e 477
371 FOIKS. ettt sttt ettt eans 478

PerlClass.com for ACT Students 20-23 Feb 2007 17

18

37.2 Projects

PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 1: Intro-
duction

This chapter will...

Welcome to PerlClass.com's Perl training module. This is a training
course in which you will learn how to program in the Perl program-
ming language.

1 Introduction

1.1 Assumed knowledge

To gain the most from this course, you should:
- Be able to use the UNIX operating system
- Move around the file system
- Create and edit files
- Run programs
- Have programmed in least one other language and
- Understand variables, including data types and arrays
- Understand conditional and looping constructs
- Understand the use of subroutines and/or functions
- Basic database theory - tables, records, fields

- Basic HTML - paragraphs, headings, ordered and unordered lists, anchor
tags, images, etc.

If you need help with editing files under UNIX, a cheat-sheet is available in
Chapter 32 on page 447 and an editor command summary in Chapter 33 start-
ing on page 449.

The UNIX operating system commands you will need are mentioned and ex-
plained very briefly throughout the course - please feel free to ask if you need
more help. Lastly, an HTML cheat-sheet is provided in Chapter 35 starting on
page 457 for those who need reminding.

20 PerlClass.com for ACT Students 20-23 Feb 2007

Introduction

1.2 Day 1 rough outline

- What is Perl? (30 minutes)

- Creating and running a Perl program (45 minutes)
- Morning tea (15 minutes)

- Variable types (45 minutes)

- Operators and Functions (60 minutes)

« Lunch break (60 minutes)

- Conditional constructs (45 minutes)

- Subroutines (30 minutes)

- Afternoon tea (15 minutes)

- Regular expressions (45 minutes)

- Practical exercises (until finish)

PerlClass.com for ACT Students 20-23 Feb 2007

Introduction

1.3 Day 1 objectives

22

- Understand the history and philosophy behind the Perl programming

language

- Know where to find additional information about Perl

- Write simple Perl scripts and run them from the UNIX command line

- Use Perl's command line options to enable warnings

- Understand Perl's three main data types and how to use them

- Use Perl's strict pragma to enforce lexical scoping and better coding

- Understand Perl's most common operators and functions and how to use them
- Understand and use Perl's conditional and looping constructs

- Understand and use subroutines in Perl

- Understand and use simple regular expressions for matching and substitution

PerlClass.com for ACT Students 20-23 Feb 2007

Introduction

1.4 Day 2 outline

- Revise introduction to Perl material
- File I/O
- Line input and globbing operators
- Opening files, directories, and pipes
- Finding information about files
- Recursing down directories
- File locking
- Handling binary data
- Advanced regular expressions
- Review of basic regexps
- Multiline strings
- Backreferences
- More functions
- grep() and map () functions
. printf () and sprintf ()
. pack() and unpack ()
- List manipulation with sp1ice ()
- System interaction
. system() and exec ()
- Backticks
- Interacting with the file system
- Dealing with users, groups and permissions
- Interacting with processes
- Security considerations
- References and complex data structures
- Creating and dereferencing

. Complex data structures

PerlClass.com for ACT Students 20-23 Feb 2007

24

- Anonymous data structures

Introduction

PerlClass.com for ACT Students 20-23 Feb 2007

Introduction 1

1.5 Day 2 objectives
- Be able to open files and directories to read and write data, using various
techniques
- Perform tests on files and directories
- Open pipes to read or write data through another program
- Use regular expressions to handle multiline data
- Use backreferences to create complex regular expressions
- Use and understand more complex Perl functions such as grep () and map ()
- Use Perl functions to call system commands
- Use Perl to interact with the file system, users, and processes

- Understand the security implications of running system commands from Perl,
and how to increase security

- Understand and use Perl references to create complex data structures and
anonymous data structures

PerlClass.com for ACT Students 20-23 Feb 2007 25

1 Introduction

1.6 Day 3 outline

- About databases

- Text based ("flat file") databases

- Relational databases

- Tables and relationships

- Structured Query Language (SQL)
- MySQL and other database servers
- Features of MySQL

- Getting MySQL

- Setting up MySQL databases

- The MySQL client

- The DBI and DBD modules

- What is DBI?

- DBI syntax

- DBI exercises

- Extended exercises

- References (optional topic)

26 PerlClass.com for ACT Students 20-23 Feb 2007

Introduction 1

1.7 Day 3 objectives
- Understand what a database is and use correct terminology to describe types
of databases and parts of databases
- Understand and use flat file or textual databases with Perl

- Understand the advantages and limitations of flat file or textual databases and
relational databases

- Understand and use Structured Query Language (SQL) to manipulate data in
a relational database

- Know about MySQL and other relational databases suitable for small to
medium applications

- Use the MySQL command line client to perform SQL queries
. Understand and use Perl's DBI module to interact with databases

- Use the skills and knowledge learned in this module to create a sample
application

PerlClass.com for ACT Students 20-23 Feb 2007 27

1 Introduction

1.8 Day 4 outline

- What is CGI? (60 minutes)

- Generating web pages with a Perl script (45 minutes)

- Practical exercises (45 minutes)

- Accepting and processing form input with the CGI module (60 minutes)
- Lunch break

- Practical examples (60 minutes)

- Security issues (45 minutes)

- Other related features and Perl modules (60+ minutes)

28 PerlClass.com for ACT Students 20-23 Feb 2007

Introduction 1

1.9 Day 4 objectives

- Understand the meaning of CGI and the HyperText Transfer Protocol (http)
- Know how to generate simple web pages using Perl

- Understand how to accept and process data from web forms using the CGI
module

- Understand security issues pertaining to CGI programming and how to avoid
security problems

- Recognise and use a number of Perl modules for purposes related to CGI
programming

PerlClass.com for ACT Students 20-23 Feb 2007 29

Introduction

1.10 Other topics we can discuss

30

- Win32 — Perl programming in Windows

- XML — there seems to be a lot of XML data lately

- Tk — GUI toolkit

- mod_perl — Perl integration with apache

- Inline — seamless inclusion of non-Perl in Perl

- Data::Dumper — a convenient way to print out complex data structures

- DBIx::Class — a friendy OOP-style layer on top of DBI

- Storable — persistance of complex Perl object across processes, systems, etc.
- 777

- 77?7

- 777

PerlClass.com for ACT Students 20-23 Feb 2007

Introduction 1

1.11 Platform and version details

This course is taught using Linux, a UNIX-like operating system. Most of what
is learned will work equally well on Microsoft Windows, MacOS or other oper-

ating systems. Your instructor will inform you throughout the course of any ar-
eas which differ.

All PerlClass.com's Perl training courses use Perl 5.8. Perl 5 is the most recent
major release of the Perl language. Perl 5 differs significantly from previous
versions of Perl, so you will need a Perl 5 interpreter to use what you learn.
However, nearly all older Perl programs should work fine under Perl 5.

PerlClass.com for ACT Students 20-23 Feb 2007 31

Introduction

1.12 The course notes

32

These course notes contain material which will guide you through the topics
listed above, as well as appendices containing other useful information.

The following typographical conventions are used in these notes:
System commands appear in this typeface

Literal text which you should type in to the command line or editor appears as

monospaced font.

Keystrokes which you should type appear like this: ENTER. Combinations of
keys appear like this: CTRL-D

Program listings and other 1literal 1listings of what appears on the
screen appear in a monospaced font Tike this.

Parts of commands or other literal text which should be replaced by your own
specific values appears 1ike this

Notes and tips appear offset from the text like this.

ADVANCED

Notes which are marked "Advanced" are for those who are
racing ahead or who already have some knowledge of the
topic at hand. The information contained in these notes is not
essential to your understanding of the topic, but may be of
interest to those who want to extend their knowledge.

RTFM!

Notes marked with "RTFM!" are pointers to more
information which can be found in your textbook or in
online documentation such as manual pages or websites.

PerlClass.com for ACT Students 20-23 Feb 2007

Introduction

RTFM!

Src Chap Pgs
Nutshell 2™
Camel 2™
Camel 3™
perldoc
Cookbook 2™
Learning 3"

Learning 4™

#
Perlin a Nutshell
Programming Perl
Programming Perl
perldoc online
Perl Cookbook
Learning Perl

Learning Perl

Most RTFM boxes will appear with a table like this. The
"src" column refers to a variety of standard Perl references.

"Chap" is the chapter which for electronic contexts like man

and perldoc would refer to the "man page" or "whole pod".

PerlClass.com for ACT Students 20-23 Feb 2007

33

1 Introduction

1.13 Other materials

In addition to these notes, you should have a copy of the required text book for
this course: Perl in a Nutshell 2™ Ed. by Nathan Patwardhan, Ellen Siever and
Stephen Spainhour. The Nutshell will be used throughout the course, and will
be a valuable reference to take home and keep next to your computer.

34 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 2: What is
Perl

In this chapter...

This section describes Perl and its uses. You will learn about this his-
tory of Perl, the main areas in which it is commonly used, and a little
about the Perl community and philosophy. Lastly, you will find out
how to get Perl and what software comes as part of the Perl distribu-
tion.

2.1

36

What is Perl

Perl's name

Perl has been said to stand for "Practical Extraction and Reporting Language"
(by it's fans) or "Pathologically Eclectic Rubbish Lister" (by its detractors). In
fact, Perl is not an acronym; it's a shortened version of the program's original
name, "pearl", and when you're talking about the language it's spelled with a
capital "P" and lowercase "erl", not all capitals as is sometimes seen (especially
in job advertisements posted by contract agencies). When you're talking about
the Perl interpreter, it's spelled in all lower case: perl.

Perl has been described as everything from "line noise" to "the Swiss-army
chainsaw of programming languages". The latter of these nicknames gives
some idea of how programmers see Perl - as a very powerful tool that does just
about everything.

PerlClass.com for ACT Students 20-23 Feb 2007

What is Perl 2

2.2 Typical uses of Perl

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

2.2.6

Text processing

Perl's original main use was text processing. It is exceedingly powerful in this
regard, and can be used to manipulate textual data, reports, email, news articles,
log files, or just about any kind of text, with great ease.

System administration tasks

System administration is made easy with Perl. It's particularly useful for tying
together lots of smaller scripts, working with file systems, networking, and so
on.

CGIl and web programming

Since HTML is just text with built-in formatting, Perl can be used to process
and generate HTML. Perl is probably the most popular language around for
web development, and there are many tools and scripts available for free.

Database interaction

Perl's DBI module makes interacting with all kinds of databases --- from Oracle
down to comma-separated variable files --- easy and portable. Perl is increas-
ingly being used to write large database applications, especially those which
provide a database back end to a website.

Other Internet programming

Perl modules are available for just about every kind of Internet programming,
from Mail and News clients, interfaces to IRC and ICQ, right down to lower
level Socket programming.

Less typical uses of Perl

Perl is used in some unusual places as well. The Human Genome Project relies
on Perl for DNA sequencing, NASA uses Perl for satellite control, PDL (Perl
Data Language, pron. "piddle") makes number-crunching easy, and there is
even a Perl Object Environment (POE) which is used for event-driven state ma-
chines.

PerlClass.com for ACT Students 20-23 Feb 2007 37

2 What is Perl

2.3 What is Perl like?

The following (somewhat paraphrased) article, entitled "What is Perl", comes
from The Perl Journal (http://www.tpj.com/) (Used with permission.)

Perl is a general purpose programming language developed in 1987 by Larry Wall. It has become
the language of choice for WWW development, text processing, Internet services, mail filtering,
graphical programming, and every other task requiring portable and easily-developed solutions.

Perl is interpreted. This means that as soon as you write your program, you can run it - there's no
mandatory compilation phase. The same Perl program can run on UNIX, Windows, NT, MacOS,
DOS, OS/2, VMS and the Amiga.

Perl is collaborative. The CPAN software archive contains free utilities written by the Perl commu-
nity, so you save time.

Perl is free. Unlike most other languages, Perl is not proprietary. The source code and compiler are
free, and will always be free.

Perl is fast. The Perl interpreter is written in C, and a decade of optimizations have resulted in a fast
executable.

Perl is complete. The best support for regular expressions in any language, internal support for hash
tables, a built-in debugger, facilities for report generation, networking functions, utilities for CGI
scripts, database interfaces, arbitrary-precision arithmetic - are all bundled with Perl.

Perl is secure. Perl can perform "taint checking" to prevent security breaches. You can also run a
program in a "safe" compartment to avoid the risks inherent in executing unknown code.

Perl is open for business. Thousands of corporations rely on Perl for their information processing
needs.

Perl is simple to learn. Perl makes easy things easy and hard things possible. Perl handles tedious
tasks for you, such as memory allocation and garbage collection.

Perl is concise. Many programs that would take hundreds or thousands of lines in other program-
ming languages can be expressed in a pageful of Perl.

Perl is object oriented. Inheritance, polymorphism, and encapsulation are all provided by Perl's ob-
ject oriented capabilities.

Perl is flexible The Perl motto is "there's more than one way to do it." The language doesn't force a
particular style of programming on you. Write what comes naturally.

Perl is fun. Programming is meant to be fun, not only in the satisfaction of seeing our well-tuned
programs do our bidding, but in the literary act of creative writing that yields those programs. With
Perl, the journey is as enjoyable as the destination.

38 PerlClass.com for ACT Students 20-23 Feb 2007

What is Perl 2

2.4 The Perl Philosophy

241

24.2

243

There's more than one way to do it

The Perl motto is "there's more than one way to do it" - often abbreviated TM-
TOWTDI. What this means is that for any problem, there will be multiple ways
to approach it using Perl. Some will be quicker, more elegant, or more readable
than others, but that doesn't make them wrong.

A correct Perl program...

"... is one that does the job before your boss fires you." That's in the preface to
the Camel book, which is highly recommended reading.

Of course, some Perl programs are more correct than others, but while elegance
is a fine thing to strive for, most Perl people realize that sometimes you just
have to write a quick and dirty hack that'll keep things running for the mean
time. If you get the time to make it beautiful later, so much the better.

Three virtues of a programmer

The Camel book contains the following entries in its glossary:

2.4.3.1 Laziness

PerlClass.com for ACT Students 20-23 Feb 2007 39

244

2.4.5

40

What is Perl

The quality that makes you go to great effort to reduce overall energy expendi-
ture. It makes you write labor-saving programs that other people will find use-
ful, and document what you wrote so you don't have to answer so many ques-
tions about it. Hence, the first great virtue of a programmer.

2.4.3.2 Impatience

The anger you feel when the computer is being lazy. This makes you write pro-
grams that don't just react to your needs, but actually anticipate them. Or at
least pretend to. Hence, the second great virtue of a programmer.

2.4.3.3 Hubris

Excessive pride, the sort of thing Zeus zaps you for. Also the quality that makes
you write (and maintain) programs that other people won't want to say bad
things about. Hence, the third great virtue of a programmer.

Three more virtues

In his "State of the Onion" keynote speech at The Perl Conference 2.0 in 1998,
Larry Wall described another three virtues, which are the virtues of a communi-
ty of programmers. These are:

- Diligence
- Patience
- Humility

Y ou may notice that these are the opposites of the first three virtues. However,
they are equally necessary for Perl programmers who wish to work together,
whether on a software project for their company or on an Open Source project
with many contributors around the world.

Share and enjoy!

Perl is Open Source software, and most of the modules and extensions for Perl
are also released under Open Source licenses of various kinds (Perl itself is re-
leased under dual licenses, the GNU General Public License and the Artistic Li-
cense, copies of which are distributed with the software).

The culture of Perl is fairly open and sharing, and thousands of volunteers
worldwide have contributed to the current wealth of software and knowledge
available to us. If you have time, you should try and give back some of what
you've received from the Perl community. Contribute a module to CPAN, help

PerlClass.com for ACT Students 20-23 Feb 2007

What is Perl 2

a new Perl programmer to debug her programs, or write about Perl and how it's
helped you. Even buying books written by the Perl gurus (like many of the
O'Reilly Perl books) helps give them the financial means to keep supporting
Perl.

PerlClass.com for ACT Students 20-23 Feb 2007 41

2.5
2.5.1

2.5.2

2.5.3

42

What is Perl

Parts of Perl

The Perl interpreter

The main part of Perl is the interpreter. The interpreter is available for UNIX,
Windows, and many other platforms.

The current version of Perl is 5.8.8, which is available from the Perl website
(http://www.perl.com/) or any of a number of mirror sites. Work has been
moving slowly on Perl 6 and it is still early in the test stage. You can check
http://www.perl.org/ for current version status.

A Windows version is available from ActiveState (http://www.activestate.-
com/) or as part of Cygwin tool kit (http://www.cygwin.com/).

Manuals

Along with the interpreter come the manuals for Perl. These are accessed via
the perldoc command or, on UNIX systems, also via the man command. More
than 30 manual pages come with the current version of perl. These can be
found by typing man perl (or perldoc perl on non-UNIX systems). The Perl
FAQs (Frequently Asked Questions files) are available in perldoc format, and
can be accessed by typing perldoc perlfaq

Watch while this is demonstrated; you'll get a chance to try it soon.

Perl Modules

Perl also comes with a collection of modules. These are Perl programs which
carry out certain common tasks, and can be included as common libraries in
any Perl script. Less commonly used modules aren't included with the distribu-
tion, but can be downloaded from (CPAN (http://www.perl.com/CPAN)) and

installed separately.

PerlClass.com for ACT Students 20-23 Feb 2007

http://www.redhat.com/service/custom/cygwin/
http://www.activestate.com/
http://www.activestate.com/
http://www.perl.org/

What is Perl

2.6 CPAN

CPAN is an amazing thing. It provides a comprehensive library of IT
technology that can be installed quickly and used in your Perl projects.

CPAN was inspired by the Comprehensive TeX Archive Network (CTAN), but

it has gone far further in organizing, indexing, mirroring, and sharing than
CTAN or any other collaborative language effort. There are thousands of
modules covering numerous areas.

CPAN

Home - Authors - Recent - News - Mirrors - FAQ - Feedback

in IAII vl CPAN Search

Archiving Compression Conversion File Mame Systems Locking Option Farameter Config Processing

Bundles (and SDKs) Graphics Perl6

Commercial Software Interfaces Internationalization Locale Pragmas

Control Flow Utilities Language Extensions Security

Data and Data Types Language Interfaces Server Dasmon Utilities
Database Interfaces Mail and Usenet News String Language Text Frocessing
Development Support Miscellaneous User Interfaces

Dlocumentation MNetwaorking Devices IPC World Wide Web

File Handle Input/Cutput Operating System Interfaces

hosted by perl.ara, hardware provided by
(=] -

Shopping

Hllustration 1: http://search.cpan.org main page shows the main categories
used by CPAN.

PerlClass.com for ACT Students 20-23 Feb 2007

43

2 What is Perl

2.7 Slashdot

Slashdot is based on an open source Perl project known as "slash". Lots of
technical news and discussion happens on slashdot:

1T Lir

chicks.net | Preferences | Subscribe | Firehose | Journal | Tags | Bookmarks | Password Lagout |Why Subscribe?

Opinion Center: Intel
¥ Opinion Center
Did you know subseribers ca 3 in the future? caishe ol
1U 14" Server for $475
Mi World's Largest Tropical Glacier Vanishing Thermal Efficient 1U for AMD, Intel Linux: Servers,

Posted by Zonk on 22:58 18 February 2007 Storage, Suppart
Apple from the no-rest-for-the-chilly dept. e irensyste ms.eom
HelE Pl I Socguy wrote with a link to a CBC article about the rapidly disappesating Perian glacier Linux Expert Support
Backslash known as the Quelccaya ice cap. The world's largest tropical glacier was a hot topic this = All Linux Flavors Responsive, 24/7 Help
Books past Thursday at the meeting of the American Association for the Advancement of ‘!‘: On-Dermand
Bl Smen.ce Glaciologist Lannie Thumps.:nn, and a tearn of Chio state scientists, produced the . allegroconsultants. com
stunning news that Quelccaya and similar formations are melting at a rate of some 60
it metres per year. While polar ice caps have commanded attention in the discussion of global warming Wasahi Certified BSD
Hardware to date, these tropical caps are crucial to the well-being of ecosystems relying on an influx of mountain Embedded software for devices IP46, RAID,
Interviews stream fresh water. Metwarking, WiFi
T wazabisystems.com
- b science (tagoing beta)
Linu .
Read More... | science.slashdot.org 1 of 28 comments | === AAF]
Politics — /
i Perl 6 Desigh Team Minutes for
geience ; Fa—— - 07 February 2007
IT: Network Computing Editor Wins RSA Hacking Contest AL tebruary £

YAPC::Asia 2007 Registration
Posted by Zonk on 20:28 18 February 2007 Cipens
from the hack-on-hack-off dept. Spens

Perl Critic on Perlcast

richkarpi writes
SanDiego.pm February Meeting

"Metwork Cormputing's security editor won the recent RSA nteractive Testing Challenge. He has up a
blow-by-blow description of the events at their site: The most important factor in the contest besides basic NP 2007 Online registration
weh exploitation skills (cross site scripting (X55), SQL injection, cross site reguest forgeries (CSRF), etc.) Qpens

Qld Polls was speed . | squeaked out a win in the tie-breaking challenge the first day with only a few seconds to European Hackathon Mews
spare as my opponent was right behind in the hunt to combine three injectable fields into one long javascript function.™

¥YRO
Ze
Bugs

Old Etories

Topics Perl & Design Tearn Minutes for
Hall of Fame 31 January 2007
Bookmarks - secut fizgaing hets) Perl & Design Teamn Minutes for
Submit Story Read More... | it.slashdot.org 3 of 42 comments 24 January 2007

Copenhagen Perl Mongers Tech
Supporers Your Rights Online: AOL Now Supports OpeniD Meeting

Grants: Call for Proposals

Posted by Zonk on 17:33 18 February 2007
from the making-progress dept

il
I=1
=3
£

Jobs Murgled writes
i@ "On Sunday John Panzer annaunced that AOL now has experimental OpenlD server support. This means “itualization with FreeBSD Jails
P — that every AOL user now has an OpenlD identifier. OpenlD is a decentralized cross-site authentication Fine-Tuning Kuhuntu

Hllustration 2: A recent sampling of http://slashdot.org - a Perl-based techie site.

44 PerlClass.com for ACT Students 20-23 Feb 2007

What is Perl 2

2.8 Chapter summary

- Common uses of Perl include
. text processing
. system administration
. CGI and web programming
- other Internet programming

- Perl is a general purpose programming language, distributed for free via the
Perl website (http://www.perl.com/) and mirror sites

- Perl includes excellent support for regular expressions, object oriented
programming, and other features

- Perl allows a great degree of programmer flexibility - "There's more than one
way to do it".

- The three virtues of a programmer are Laziness, Impatience and Hubris. Perl
will help you foster these virtues

- The three virtues of a programmer in a group environment are Diligence,
Patience, and Humility.

- Perl is a collaborative language - everyone is free to contribute to the Perl
software and the Perl community

. Parts of Perl include:
- the Perl interpreter
. documentation in several formats

- library modules

PerlClass.com for ACT Students 20-23 Feb 2007 45

Chapter 3: Creating a
a Perl program

In this chapter...

In this chapter we will be creating a very simple "Hello, world" pro-
gram in Perl and exploring some of the basic syntax of the Perl pro-
gramming language.

3.1

48

Creating a a Perl program

Logging into your account

Your username and password will have been given to you with these course

notes.

Table 3-1. Details required to connect to the PerlClass.com training server

Hostname or IP address perlclass.fini.net which probably
has the IP of 192.168. .

Your username stu

Y our password stu_____

1. Open putty

2. Put in the hostname or IP in the host
name bOX | Basic options for vour PuT T session |

. X — Specify your connection by host name or IP address
B T?_“E;:Loaid Host Mame [or IP address) Port
3. Before clicking open there are a few s ko 2
settings that are helpful to adjust. |7 e CBaw O lehet CRogn @ 55
SEEZ:ES::E —Load, save or delete a stored session
. . . Tranglation Saved Sessions
4. Under “Translation” is a drop down | s Fomen
. - Colours
for “Character set translation”. = Comecien T 2] oot |
. . - Prios ave
The default for this is one of the oo [
. - Rilagin Delete |
ISO8559 variants, but Red Hat 550 =
. . . e Auth
derived Linuxes have been using I
- Bugs i : * Only on clean exi
UTFS for many years now. . *
Aboul Hel Open I Cancel

5. Under “Appearance” you can change .— o | — e |
the font size to your liking. Hllustration 3: putty's settings window

6. To avoid retyping your username every time you login, under “Connec-
tion” you can put in an “Auto-login username” and it will take you
directly to the password prompt.

7. If you're used to X-Windows cut and paste, you will probably be more
comfortable with putty following the same mouse conventions. Un-
der “Selection” choose xterm and middle mouse will paste as it
should.

8. Now return to the “Session” screen, put a helpful description under

“Saved Sessions” such as “perlclass” or “Linux server for class”, and

PerlClass.com for ACT Students 20-23 Feb 2007

Creating a a Perl program 3

click “Save”.

9. From now on you can double click on the saved session and it will take
you directly in. So double click on the saved session or click
“Open”.

10. The first time you connect it will ask you to confirm the host key. Its ok
to accept this for the future

11. Put in the username and password when prompted.

You will find yourself at a UNIX shell prompt. Hopefully (if you met the pre-
requisites of this course) you will now be able to see that your account has a
subdirectory called exercises/ which are the example scripts and exercises giv-
en in these course notes. If you're not quite up to speed with UNIX, there's a
cheat-sheet in UNIX: Chapter 32 on page 447 of these notes.

ADVANCED

putty is deceptively powerful. There are many
customizatoins that you can explore further through putty's
documentation.

In particular, look at the key-based authentication. Whether
for automating tasks or typing fewer passwords this is a
powerful facility that meshes well with the ubiquitous ssh
infrastructure.

The official site URL
(http://www.chiark.greenend.org.uk/~sgtatham/putty/) is
awful to type, but there is a mirror (http:// www.putty.nl/),
and even easier, you can google for putty and the org.uk
URL is the first one that comes up.

When you download putty.exe its handy to put it in
C:\Windows so you can run it from command windows and
the run dialog.

PerlClass.com for ACT Students 20-23 Feb 2007 49

http://www.putty.nl/
http://www.chiark.greenend.org.uk/~sgtatham/putty/

3 Creating a a Perl program

3.2 Using peridoc

On the command line, type perldoc perl. You will find yourself in the Perl
documentation pages. Here's how to get around inside the documentation:

Table 3-2. Getting around in perldoc

Action Keystroke
Page down SPACE
Page up b

Quit q

$ perldoc perl
PERL (1) User Contributed Perl Documentation
PERL(1)

NAME
perl - Practical Extraction and Report Language

SYNOPSIS
perl [-=sTuUu] [-hv] [-V[:configvar]]
[—-cw] [-d[:debugger]] [-D[number/Tlist] 1]
[-pna] [-Fpattern] [-T1[octal]] [-O[octal]]
[-Idir] [-m[-]Imodule] [-M[-]’module...’]
[-P]1 [-s1I[-x[dir]]
[-i[extension]] [-e ’command’]
[-- 1 [program-file] [argument]...

If you’re new to Perl, you should start with perlintro, which is a
general intro for beginners and provides some background to help

you navigate the rest of Perl’s extensive documentation.

For ease of access, the Perl manual has been split up into several

sections.

overview
perl Perl overview (this section)
perlintro Perl introduction for beginners

50 PerlClass.com for ACT Students 20-23 Feb 2007

Creating a a Perl program

perltoc Per1l documentation table of contents
Tutorials
perlreftut Per1l references short introduction
perldsc Per1l data structures intro
perllol Per1l data structures: arrays of arrays
perlrequick Per1l regular expressions quick start
perlretut Perl regular expressions tutorial
perlboot Per1l 00 tutorial for beginners
perltoot Perl 00 tutorial, part 1
perltooc Perl 00 tutorial, part 2
perlbot Perl 00 tricks and examples
perlstyle Perl style guide
perlcheat Per1l cheat sheet
perltrap Perl traps for the unwary
perldebtut Per1l debugging tutorial
perlfaq Per1l frequently asked questions
perlfaql General Questions About Perl
perlfaq2 Obtaining and Learning about Perl
perlfaq3 Programming Tools
perlfaq4 Data Manipulation
perlfaqg5 Files and Formats
perlfaqb Regexes
perlfaq?7 Per1l Language Issues
perlfaq8 System Interaction
perlfaq9 Networking

Reference Manual

perlsyn Perl syntax

perldata Perl data structures

perlop Perl operators and precedence
perlsub Perl subroutines

PerlClass.com for ACT Students 20-23 Feb 2007

52

perlfunc
perlopentut
perlpacktut

perlpod

perlpodspec

perlrun
perldiag
perllexwarn
perldebug
perlvar
perlre

perlreref

perlref

perlform

perlobj

periltie
perldbmfilter

perlipc
perlfork
perlnumber

perlthrtut
perlothrtut

perlport
perllocale
perluniintro
perlunicode
perlebcdic

perlsec

perlmod

perimodlib
perimodstyle

Creating a a Perl program

Per1l built-in functions

Per1 open() tutorial

Per1 pack() and unpack() tutorial

Perl plain old documentation

Per1l plain old documentation format
specification

Perl execution and options

Perl diagnostic messages

Perl warnings and their control

Perl debugging

Per1l predefined variables

Per1l regular expressions, the rest of the
story

Per1l regular expressions quick reference
Perl references, the rest of the story
Per1 formats

Perl objects

Perl objects hidden behind simple variables
Per1l DBM filters

Perl interprocess communication
Per1l fork() information
Per1l number semantics

Per1l threads tutorial
01ld Perl threads tutorial

Perl portability guide

Perl locale support

Perl Unicode introduction

Perl Unicode support

Considerations for running Perl on EBCDIC
platforms

Perl security

Per1 modules: how they work

Perl modules: how to write and use

Per1l modules: how to write modules with
style

PerlClass.com for ACT Students 20-23 Feb 2007

Creating a a Perl program

perimodinstall
perlnewmod

perlutil

perlcompile

perlfilter

Per1l modules: how to install from CPAN
Per1l modules: preparing a new module for
distribution

utilities packaged with the Perl
distribution

Perl compiler suite 1intro

Perl source filters

Internals and C Language Interface

perlembed
perldebguts
perlxstut
perlxs
perlclib
perlguts
perlcall
perlapi
perlintern
perliol
perlapio
perThack

Miscellaneous

perlbook
perltodo

perldoc

Perl ways to embed perl in your C or C++
application

Per1l debugging guts and tips

Per1l XS tutorial

Per1l XS application programming interface
Internal replacements for standard C
Tibrary functions

Perl internal functions for those doing
extensions

Per1 calling conventions from C

Perl API listing (autogenerated)

Per1 internal functions (autogenerated)

C API for Perl’s implementation of IO 1in
Layers

Perl internal IO abstraction interface

Per1l hackers guide

Per1 book information
Per1l things to do

Look up Perl documentation in Pod format

PerlClass.com for ACT Students 20-23 Feb 2007 53

Creating a a Perl program

perlhist Perl history records

perldelta Per1l changes since previous version

per1584delta Per1l changes in version 5.8.4

per1583delta Per1l changes 1in version 5.8.3

per1582delta Perl changes in version 5.8.2

per1581ldelta Per1l changes in version 5.8.1

per158delta Per1l changes in version 5.8.0

perl1573delta Per1l changes 1in version 5.7.3

perl1572delta Per1l changes 1in version 5.7.2

per1571delta Per1 changes in version 5.7.1

per1570delta Per1l changes in version 5.7.0

per156ldelta Per1 changes in version 5.6.1

perl56delta Per1l changes 1in version 5.6

per15005delta Per1l changes 1in version 5.005

per15004delta Per1l changes in version 5.004

perlartistic Perl Artistic License

perlgpl GNU General Public License
Language-Specific

perlcn Perl for Simplified Chinese (in EUC-CN)

perljp Per1l for Japanese (in EUC-JP)

perlko Per1 for Korean (in EUC-KR)

perltw Per1l for Traditional Chinese (in Big5)
Platform-Specific

perlaix Per1l notes for AIX

perlamiga Per1l notes for Amigaos

perlapollo Per1l notes for Apollo DomainOS

perlbeos Per1l notes for BeOS

perlbs2000 Per1l notes for POSIX-BC BS2000

perlce Per1l notes for WinCE

perlcygwin Per1l notes for Cygwin

perldgux Per1l notes for DG/UX

perldos Perl notes for DOS

perlepoc Per1l notes for EPOC

PerlClass.com for ACT Students 20-23 Feb 2007

Creating a a Perl program

perlfreebsd
perlhpux
perlhurd
perlirix
perlmachten
perlmacos
perlmacosx
perimint
perimpeix
perlnetware
perlos?2
perlos390
perlos400
periplan9
perlqgnx
perlsolaris
perltru64
perluts
perlvmesa
perlvms
perlvos
perlwin32

Per
Per
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Per
Per
Per
Per
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Per

notes
notes
notes
notes
notes
notes
notes
notes
notes
notes
notes
notes
notes
notes
notes
notes
notes
notes
notes
notes
notes
notes

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

FreeBSD
HP-UX

Hurd

Irix

Power MachTen
Mac 0S (Classic)
Mac OS X
MiNT

MPE/1iX
Netware
0Ss/?2

0S/390
0s/400

Plan 9

QNX

Solaris
Tru64

UTsS

VM/ESA

VMS

Stratus VOS
windows

By default, the manpages listed above are installed in the

/usr/local/man/ directory.

Extensive additional documentation for Perl modules is available.
The default configuration for perl will place this additional

documentation in the /fusr/local/lib/perl5/man directory (or else in

the man subdirectory of the Perl library directory).

Some of this

additional documentation is distributed standard with Perl, but
you’1l1l also find documentation for third-party modules there.

You should be able to view Perl’s documentation with your man(1)
program by including the proper directories in the appropriate

start-up files, or in the MANPATH environment variable.

To find out

where the configuration has installed the manpages, type:

perl -v:man.dir

PerlClass.com for ACT Students 20-23 Feb 2007

55

Creating a a Perl program

If the directories have a common stem, such as /usr/local/man/manl
and /usr/local/man/man3, you need only to add that stem
(/usr/local/man) to your man(l) configuration files or your MANPATH
environment variable. If they do not share a stem, you’ll have
to add both stems.

If that doesn’t work for some reason, you can still use the supplied
perldoc script to view module information. You might also look into
getting a replacement man program.

If something strange has gone wrong with your program and you’re not
sure where you should look for help, try the -w switch first. It
will often point out exactly where the trouble is.

DESCRIPTION

56

Per1l is a language optimized for scanning arbitrary text files,
extracting information from those text files, and printing reports
based on that information. 1It’s also a good Tanguage for many
system management tasks. The language is intended to be practical
(easy to use, efficient, complete) rather than beautiful (tiny,
elegant, minimal).

Per1l combines (in the author’s opinion, anyway) some of the best
features of C, sed, awk, and sh, so people familiar with those
Tanguages should have little difficulty with it. (Language
historians will also note some vestiges of csh, Pascal, and even
BASIC-PLUS.) Expression syntax corresponds closely to C expression
syntax. Unlike most UNIX utilities, Perl does not arbitrarily limit
the size of your data—-if you’ve got the memory, Perl can slurp in
your whole file as a single string. Recursion is of unlimited
depth. And the tables used by hashes (sometimes called "associative
arrays") grow as necessary to prevent degraded performance. Perl
can use sophisticated pattern matching techniques to scan large
amounts of data quickly. Although optimized for scanning text, Perl
can also deal with binary data, and can make dbm files look Tike
hashes. Setuid Perl scripts are safer than C programs through a
dataflow tracing mechanism that prevents many stupid security holes.

If you have a problem that would ordinarily use sed or awk or sh,
but it exceeds their capabilities or must run a Tittle faster, and
you don’t want to write the silly thing in C, then Perl may be for

PerlClass.com for ACT Students 20-23 Feb 2007

Creating a a Perl program

you. There are also translators to turn your sed and awk scripts
into Perl scripts.

But wait, there’s more...

Begun in 1993 (see perlhist), Perl version 5 is nearly a complete
rewrite that provides the following additional benefits:

modularity and reusability using innumerable modules
Described in perimod, perlmodlib, and perlmodinstall.
embeddable and extensible

Described in perlembed, perlixstut, perlxs, perlcall, perlguts,
and xsubpp.

roll-your-own magic variables (including multiple simultaneous
DBM implementations)

Described in perltie and AnyDBM_File.

subroutines can now be overridden, autoloaded, and prototyped
Described in perlsub.

arbitrarily nested data structures and anonymous functions
Described in perlreftut, perlref, perldsc, and perllol.
object-oriented programming

Described in perlobj, perlboot, perltoot, perltooc, and
perlbot.

support for Tight-weight processes (threads)
Described 1in perlthrtut and threads.

support for Unicode, internationalization, and localization

PerlClass.com for ACT Students 20-23 Feb 2007

57

3 Creating a a Perl program

Described 1in perluniintro, perllocale and Locale: :Maketext.
Texical scoping

Described in perlsub.

regular expression enhancements

Described 1in perlre, with additional examples in perlop.

enhanced debugger and interactive Perl environment, with
integrated editor support

Described in perldebtut, perldebug and perldebguts.
POSIX 1003.1 compliant library
Described in POSIX.
okay, that’s definitely enough hype.
AVAILABILITY
Perl 1is available for most operating systems, including virtually
all UNIX-1ike platforms. See "Supported Platforms" in perlport for

a listing.

ENVIRONMENT
See perlrun.

AUTHOR
Larry wall <larry@wall.org>, with the help of oodles of other folks.

If your Perl success stories and testimonials may be of help to
others who wish to advocate the use of Perl in their applications,
or if you wish to simply express your gratitude to Larry and the
Perl developers, please write to perl-thanks@perl.org .

FILES
"@INC" Tocations of perl libraries

58 PerlClass.com for ACT Students 20-23 Feb 2007

Creating a a Perl program 3

SEE ALSO
azp awk to perl translator
s2p sed to perl translator
http://www.perl.com/ the Perl Home Page
http://www.cpan.org/ the Comprehensive Perl Archive
http://www.perl.org/ Per1l Mongers (Perl user groups)
DIAGNOSTICS

BUGS

The "use warnings" pragma (and the -w switch) produces some Tlovely
diagnostics.

See perldiag for explanations of all Perl’s diagnostics. The "use
diagnostics" pragma automatically turns Perl’s normally terse
warnings and errors into these longer forms.

Compilation errors will tell you the 1line number of the error, with
an indication of the next token or token type that was to be
examined. (In a script passed to Perl via -e switches, each -e is
counted as one line.)

Setuid scripts have additional constraints that can produce error
messages such as "Insecure dependency". See perlsec.

Did we mention that you should definitely consider using the -w
switch?

The -w switch is not mandatory.

Per1l 1is at the mercy of your machine’s definitions of various
operations such as type casting, atof(), and floating-point output

with sprintf(Q).

If your stdio requires a seek or eof between reads and writes on a
particular stream, so does Perl. (This doesn’t apply to sysread()
and syswrite().)

While none of the built-in data types have any arbitrary size Timits

PerlClass.com for ACT Students 20-23 Feb 2007 59

NOTES

Creating a a Perl program

(apart from memory size), there are still a few arbitrary limits: a
given variable name may not be longer than 251 characters. Line
numbers displayed by diagnostics are internally stored as short
integers, so they are Timited to a maximum of 65535 Chigher numbers
usually being affected by wraparound).

You may mail your bug reports (be sure to include full configuration
information as output by the myconfig program in the perl source
tree, or by "perl -v") to perlbug@perl.org . If you’ve succeeded in
compiling perl, the perlbug script in the utils/ subdirectory can be
used to help mail in a bug report.

Per1l actually stands for Pathologically Eclectic Rubbish Lister, but
don’t tell anyone I said that.
The Perl motto is "There’s more than one way to do it." Divining

how many more is left as an exercise to the reader.

The three principal virtues of a programmer are Laziness,
Impatience, and Hubris. See the Camel Book for why.

perl v5.8.5 2005-12-21 PERL(1)

60

As you can see, there is a lot of documentation included with Perl.

PerlClass.com for ACT Students 20-23 Feb 2007

Creating a a Perl program 3

3.3 Using the editor

A Perl script is just a normal text file, which means that you can edit it using a
normal text editor.

The system you are using has several editors available for your use, including
vi, pico, or its work-alike nano and others. Those who are not already familiar
with vi should probably use pico, as it has a simpler interface. If you're an
emacs user, sorry, feel free to use it, but the instructor isn't inclined to support
emacs.

To edit a file using pico, type:

$ pico filename

(Note that the dollar sign is your UNIX/Linux command line prompt - you don't
have to type it.)

To edit a file using vi, type:

$ vi filename

For other editors, just type the name of the editor followed by the name of the
file you wish to edit.

A summary of editor commands appears in UNIX in Chapter 33 starting on
page 449 in the back of these course notes, just in case you need them.

Incidentally, Chapter 34 starting on page 455 contains a guide to pronouncing
ASCII characters, especially punctuation. This will help you translate perl into
spoken language, for ease of communication with other programmers.

PerlClass.com for ACT Students 20-23 Feb 2007 61

3 Creating a a Perl program

3.4 Our first Perl program
We're about to create our first, simple Perl script: a "hello world" program.
There are a couple of things you should know in advance:

- Perl programs (or scripts --- the words are interchangeable) consist of a series
of statements

- When you run the program, each statement is executed in turn, from the top
of your script to the bottom. (There are two special cases where this doesn't
occur, one of which --- subroutine declarations --- we'll be looking at later
today)

. Each statement ends in a semi-colon
. Statements can flow over several lines

- Whitespace (spaces, tabs and newlines) are ignored most places in a Perl
script.

Now, just for practice, open a file called he11o.p1 in your text editor. Type in
the following one-line Perl program:
print "Hello, world!\n";

This one-line program calls the print function with a single parameter, the
string literal "Hello, world!" followed by a newline character.

Save it and exit.

62 PerlClass.com for ACT Students 20-23 Feb 2007

Creating a a Perl program

3.5 Running a Perl program from the command
line

We can run the program from the command line by typing in:

perl hello.pl

You should see this output:
HelTlo, world!

This program should, of course, be entirely self-explanatory. The only thing
you really need to note is the \n ("backslash N") which denotes a new line.

PerlClass.com for ACT Students 20-23 Feb 2007

63

3 Creating a a Perl program

3.6 The "shebang"” line

So what if we want to run our program from the command line without having
to type in the name of the Perl interpreter first?

You can make a file executable by typing:

$ chmod +x hello.pl

at the command line. (For more information about the chmod command, type
man chmod).

In order to let the shell know what to do with our program when we try to run it
with ./hello.pl from the command line, we put the following line at the top of
our program:

#!/usr/bin/perl

That's what we call a "shebang" line (because the # is a "hash" sign, and the ! is
referred to as a "bang", hence "hashbang" or "shebang"). It tells the system
what to use to interpret our script. Of course, if the Perl interpreter were some-
where else on our system, we'd have to change the shebang line to reflect that.

64 PerlClass.com for ACT Students 20-23 Feb 2007

Creating a a Perl program

3.7 Comments

Incidentally, comments in Perl start with a hash sign (#), either on a line on
their own or after a statement. Anything after a hash is a comment.

This is a hello world program
print "Hello, world!\n"; # print the message

PerlClass.com for ACT Students 20-23 Feb 2007

65

3 Creating a a Perl program

3.8 Command line options

Perl has a number of command line options, which you can specify on the com-
mand line by typing perl options hello.pl or which you can include in the
shebang line. Let's say you want to use the -w command line option to turn on
warnings:

#!/usr/bin/perl -w

(Incidentally, it's always a good idea to turn on warnings while you're develop-
ing something.)

ADVANCED

Setting the special variable s~w to a true value will locally
disable warnings (i.e. in the current block).

RTFM!

Src Chap Pgs #
Nutshell 2™ 3 35-38
Camel 2™ 6 330-337 "Switches"
Camel 3™ 19 486-505
perldoc perlrun
Cookbook 2™
Learning 3" 2 26-27

Learning 4™

66 PerlClass.com for ACT Students 20-23 Feb 2007

Creating a a Perl program

3.9 Chapter summary

Here's what you know about Perl's operation and syntax so far:
- Perl programs typically start with a "shebang" line
. statements (generally) end in semicolons

- statements may span multiple lines; it's only the semicolon that ends a
statement

- comments are indicated by a hash (#) sign. Anything after a hash sign on a
line is a comment.

- \n is used to indicate a new line
- whitespace is ignored almost everywhere
- command line arguments to Perl can be indicated on the shebang line

- the -w command line argument turns on warnings

PerlClass.com for ACT Students 20-23 Feb 2007

67

Chapter 4: Perl
variables

In this chapter...

In this section we will explore Perl's three main variable types ---
scalars, arrays, and hashes --- and learn to assign values to them, re-
trieve the values stored in them, and manipulate them in certain
ways.

Perl variables

4.1 What is a variable?

A variable is a place where we can store data. Think of it like a pigeonhole with
a name on it indicating what data is stored in it.

The Perl language is very much like human languages in many ways, so you
can think of variables as being the "nouns" of Perl. For instance, you might
have a variable called "total" or "employee".

70 PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables 4

4.2 Variable names

Variable names in Perl may contain alphanumeric characters in upper or lower
case, and underscores. A variable name may not start with a number, though -
that means something special, which we'll encounter later. Likewise, variables
that start with anything non-alphanumeric are also special, and we'll discuss
that later, too.

It's standard Perl style to name variables in lower case, with underscores sepa-
rating words in the name. For instance, employee number. Upper case is usually
used for constants, for instance 1.1guT_speep or p1. Following these conventions
will help make your Perl more maintainable and more easily understood by oth-
ers.

Lastly, variable names all start with a punctuation sign depending on what sort
of variable they are:

Table 4-1. Variable punctuation

Variable type Starts with Pronounced
Scalar $ dollar

Array @ at

Hash % Percent

(Don't worry if those variable type names don't mean anything to you. We're
about to cover it.)

PerlClass.com for ACT Students 20-23 Feb 2007 71

4 Perl variables

4.3 Variable scoping and the strict pragma

Many programming languages require you to "pre-declare" variables -- that is,
say that you're going to use them before you use them. Variables can either be
declared as global (that is, they can be used anywhere in the program) or local
(they can only be used in the same part of the program in which they were de-
clared).

In Perl, it is not necessary to declare your variables before you begin. You can
summon a variable into existence simply by using it, and it will be globally
available to any routine in your program. If you're used to programming in C or
any of a number of other languages, this may seem odd and even dangerous to
you. This is, in fact, the case.

4.3.1 Arguments in favour of strictness

- avoids accidental creation of unwanted variables when you make a typing
error

- avoids scoping problems, for instance when a subroutine uses a variable with
the same name as a global variable

- allows for warnings if values are assigned to variables and never used

4.3.2 Arguments against strictness

- takes a while to get used to, and may slow down development until it
becomes instinctual

- enforces a nasty, fascist style of coding which isn't nearly as much fun

Sometimes a little bit of fascism is a good thing, like when you want the trains
to run on time. Because of this, Perl lets you turn strictness on if you want it,
using something called the strict pragma. A pragma, in Perl-speak, is a set of
rules for how your code is to be dealt with.

72 PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables

RTFM!

Src Chap Pgs
Nutshell 2™ 8 335-336
Camel 2™ 7 500
Camel 3" 4 137-138
perldoc strict
Cookbook 2™
Learning 3™ B 289
Learning 4™

PerlClass.com for ACT Students 20-23 Feb 2007

73

4 Perl variables

4.4 Using the strict pragma

In the interests of bug-free code and teaching better Perl style, we're going to
use the strict pragma throughout this training course. Here's how it's invoked:

#!/usr/bin/perl -w

use strict;

That typically goes at the top of your program, just under your shebang line and
introductory comments.

Once we use the strict pragma, we have to explicitly declare new variables us-
ing my. You'll see this in use below, and it will be discussed again later when we
talk about blocks and subroutines.

Try running the program exercises/perlintro/strictfail.pl and see what
happens. What needs to be done to fix it? Try it and see if it works. By the way,
get used to this error message - it's one of the most common Perl programming
mistakes, though it's easily fixed.

RTFM!

4 74
5 117
3 189
4 130-136
-fmy
perlsub
10 376-376
4 67

74 PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables 4

4.5 Scalars

The simplest form of variable in Perl is the scalar. A scalar is a single item of
data such as:

- Arthur

- Just Another Perl Hacker
- 42

- 0.000001

- 3.27el7

Here's how we assign values to scalar variables:

my $name = "Arthur";

my $whoami = 'Just Another Perl Hacker';

my $meaning_of_life = 42;

my $number_less_than_1 = 0.000001;

my $very_large_number = 3.27el7; # 3.27 by 10 to the power of 17

ADVANCED

There are other ways to assign things apart from the =
operator, too. They're covered on pages 92-93 of the Camel.

As you can see, a scalar can be text of any length, and numbers of any precision
(machine dependent, of course). Perl magically converts between them when it
needs to. For instance, it's quite legal to say:

adding an integer to a floating point number
my $sum = $meaning_of_life + $number_less_than_1;

here we're putting the int in the middle of a string we

want to print
print "$name says, 'The meaning of life is $meaning_of_1ife.'\n";

PerlClass.com for ACT Students 20-23 Feb 2007 75

76

Perl variables

This may seem extraordinarily alien to those used to strictly typed languages,
but believe it or not, the ability to transparently convert between variable types
is one of the great strengths of Perl. Some people say that it's also one of the
great weaknesses.

ADVANCED

You can explicitly cast scalars to various specific data types.
Look up int () on page 180 of the camel, for instance.

PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables 4

4.6 Double and single quotes

RTFM!

4 45-47 String interpolation

52 Input Operators
41 Pick your own quotes

2 60-65 String literals...

perldata Scalar values
perlop Quote and Quote-like operators
1 3
2 23-24

While we're here, let's look at the assignments above. You'll see that some have
double quotes, some have single quotes, and some have no quotes at all.

In Perl, quotes are required to distinguish strings from the language's reserved
words or other expressions. Either type of quote can be used, but there is one
important difference: double quotes can include other variable names inside
them, and those variables will then be interpolated - as in the last example
above - while single quotes do not interpolate.

single quotes don't interpolate...
my $price = '$9.95"';

double quotes interpolate...
my $invoice_item = "24 widgets at $price each\n";

print $invoice_item;

The above example is available in your directory as exercises/perlintro/in-
terpolate.pl SO you can experiment with different kinds of quotes.

PerlClass.com for ACT Students 20-23 Feb 2007 77

78

Perl variables

Note that special characters such as the \n newline character are only available
within double quotes. Single quotes will fail to expand these special characters
just as they fail to expand variable names.

When using either type of quotes, you must have a matching pair of opening
and closing quotes. If you want to include a quote mark in the actual quoted
text, you can escape it by preceding it with a backslash:

print "He said, \"Hello!\"\n";

You can also use a backslash to escape other special characters such as dollar
signs within double quotes:

print "The price is \$300\n";

To include a literal backslash in a double-quoted string, use two backslashes: \\

PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables 4

4.7 EXxercises

1. Write a script which sets some variables:
a. your name
b. your street number
c. your favorite colour

2. Print out the values of these variables using double quotes for variable
interpolation

3. Change the quotes to single quotes. What happens?

4. Write a script which prints out c: \wINpows\sysTEM\ twice -- once using
double quotes, once using single quotes. How do you have to escape the
backslashes in each case?

You'll find answers to the above in exercises/perlintro/answers/scalars.pl.

PerlClass.com for ACT Students 20-23 Feb 2007 79

4 Perl variables

4.8 Answers

#!/usr/bin/perl -w

use strict;

my $name = "Kirrily Robert";
my $street_number = 52;
my $colour = "purple";

print "My name is $name and I live in house number $street_number.\n";
print "My favourite colour is $colour.\n";

print "C:\\WINDOWS\\SYSTEM\n";
print 'C:\\WINDOWS\\SYSTEM';

print "\n";

80 PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables 4

4.9 Arrays

If you think of a scalar as being a singular thing, arrays are the plural form. Just
as you have a flock of sheep or a bunch of bankers, you can have an array of
scalars.

An array is a list of (usually related) scalars all kept together. Arrays start with
an e (at sign), and are initialized thus:

my @fruits = ("apples", "oranges", '"guavas",
"passionfruit", "grapes");
my @magic_numbers = (23, 42, 69);
my @random_scalars = ("mumble"™, 123.45, "willy the wombat"™, -300);

As you can see, arrays can contain any kind of scalars. They can have just
about any number of elements, too, without needing to know how many before
you start. Really any number - tens or hundreds of thousands, if you've got the
memory.

RTFM!

4 47-49
1 6

2 47-49
1 8-10
2 72-76

perldata

4 110-149
3 40-55

So if we don't know how many items there are in an array, how can we find
out? Well, there are a couple of ways.

PerlClass.com for ACT Students 20-23 Feb 2007 81

Perl variables

First of all, Perl's arrays are indexed from zero. We can access individual ele-
ments of the array like this:

print $fruits[0]; # prints "apples"
print $random_scalars[2]; # prints "willy the wombat"

Wait a minute, why are we using dollar signs in the example above, instead of
at signs? The reason is this: we only want a scalar back, so we show that we
want a scalar. There's a useful way of thinking of this, which is explained in
chapter 1 of the Camel: if scalars are the singular case, then the dollar sign is
like the word "the" - "the name", "the meaning of life", etc. The e sign on an ar-
ray, or the ¢ sign on a hash, is like saying "those" or "these" - "these fruit",
"those magic numbers". However, when we only want one element of the array,
we'll be saying things like "the first fruit" or "the last magic number" - hence
the scalar-like dollar sign.

If we wanted what we call an array slice we could say:

@fruits[1,2,3]; # oranges, guavas, passionfruit
@magic_numbers[0..1]; # 23, 42

You just learned something new, by the way: the .. ("dot dot") range operator
(see pages 90-91 of your Camel or perldoc perlop) which creates a temporary
list of numbers between the two you specify - in this case 0 and 1, but it could
have been 1 and 100 if we'd had an array big enough to use it on. You'll run
into this operator again and again, so remember it.

Another thing you can do with arrays is insert them into a string, the same as
for scalars:

print "My favorite fruits are @fruits\n"; # whole array
print "Two types of fruit are @fruits[0,2]"; # array slice

Returning to the point, how do we find the last element in an array? Well,
there's a special variable called s#array which is the index of the last element,
SO you can say:

@fruit[0..$#fruit];

and you'll get the whole array. If you print s#fruit you'll find it's 4, which is

PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables 4

not the same as the number of elements - 5. Remember that it's the index of the
last element and that the index starts at zero, so you have to add one to it to
find out how many elements in the array.

But wait! There's More Than One Way To Do It - and an easier way, at that. If
you evaluate the array in a scalar context - that is, do something like this:

my $fruit_count = @fruits;

... you'll get the number of elements in the array.

There's more than two ways to do it, as well - scalar (@fruits) and
int (efruits) will also tell us how many elements there are in the array.

ADVANCED

Using $count = scalar @fruits is the clearest way
to express "how many are in fruits?" and is considered a best
practice.

4.9.1 A quick look at context

There's a term you've heard used just recently but which hasn't been explained:
context.

All Perl expressions are evaluated in a context. The two main contexts are:
. scalar context, and
- list context

Here's an example of an expression which can be evaluated in either context:

my $howmany = @array; # scalar context
my @newarray = @array; # list context

If you look at an array in a scalar context, you'll see how many elements it has;
if you look at it in list context, you'll see the contents of the array itself.

PerlClass.com for ACT Students 20-23 Feb 2007 83

4 Perl variables

4.9.2 What's the difference between a list and an array?

Not much, really. A list is just an unnamed array. Here's a demonstration of the
difference:

printing a Tist of scalars
print ("Hello", " ", $name, "\n");

printing an array
@hello = ("Hello", " ", $name, "\n");
print @hello;

If you come across something that wants a LIST, you can either give it the ele-
ments of list as in the first example above, or you can pass it an array by name.
If you come across something that wants an ARRAY, you have to actually give
it the name of an array.

84 PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables 4

410 Exercises

1. Create an array of your friends' names
2. Print out the first element
3. Print out the last element

4. Print out the array from within a double-quoted string using variable
interpolation

5. Print out an array slice of the 2nd to 4th items using variable interpolation

Answers to the above can be found in exercises/perlintro/answers/arrays.pl

4.10.1 Advanced exercises

1. Print the array without putting quotes around its name. What happens?

2. Set the special variable s, to something appropriate and try the previous
step again (see page 132 of your Camel for this variable's documentation)

3. What happens if you have a small array and then you assign a value to
Sarray[1000]°?

Answers to the above can be found in exercises/perlin-

tro/answers/arrays_ advanced.pl

PerlClass.com for ACT Students 20-23 Feb 2007 85

411 Answers

4111

86

#!/usr/bin/perl -w
use strict;
my @friends = ("Larry", "Randal", "Tom", "Nat", "Joe");

print "First element: $friends[0]\n";
print "Last element: $friends[$#friends]\n";

print "My friends' names are @friends\n";

print "Three of my friends are @friends[1l..3]\n";
Advanced Answer

#!/usr/bin/perl -w

use strict;

my @friends = ("Larry", "Randal", "Tom", "Nat", "Joe");

print "First element: $friends[0]\n";
print "Last element: $friends[$#friends]\n";

print "My friends' names are @friends\n";

print "Three of my friends are @friends[1..3]\n";
we'll get no spaces with the following...

print @friends;

print "\n";

set the item separator to something meaningful
$’ = " and n;

ahhh, now it works..
print @friends;

Perl variables

PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables

print "\n";

print command 1line arguments
print "Arguments: ";

print @ARGV;

print "\n";

PerlClass.com for ACT Students 20-23 Feb 2007

87

4 Perl variables

412 Hashes

A hash is a two-dimensional array which contains keys and values. Instead of
looking up items in a hash by an array index, you can look up values by their
keys.

RTFM!

4 49

1 7-8

2 50

1 10-12
2 76-78

perlldata

5 150-178
5 73-85

4.12.1 Initialising a hash

Hashes are initialized in exactly the same way as arrays, with a comma separat-
ed list of values:

my %monthdays = ("January", 31, "February", 28, "March", 31, ...);

Of course, there's more than one way to do it:

my %monthdays = (

"January" => 31,
"February" => 28,
"March" => 31,
...

88 PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables 4

);
The spacing in the above example is commonly used to make hash assignments
more readable.

The => operator is syntactically the same as the comma, but is used to distin-
guish hashes more easily from normal arrays. Also, you don't need to put
quotes on the item which comes immediately before the => operator:

my %monthdays = (

January => 31,
February => 28,
March => 31,
...

);

4.12.2 Reading hash values

You get at elements in a hash by using the following syntax:

print $monthdays{"January"}; # prints 31

Again you'll notice the use of the dollar sign, which you should read as "the
monthdays belonging to January".

4.12.3 Adding new hash elements

You can also create elements in a hash on the fly:

my %monthdays = ();
$monthdays{"January"} = 31;
$monthdays{"February"} = 28;

4.12.4 Other things about hashes

. Hashes have no internal order

- There is no equivalent to s#array to get the size of a hash

PerlClass.com for ACT Students 20-23 Feb 2007 89

4 Perl variables

- However, there are functions such as each (), keys () and values () which will
help you manipulate hash data. We look at these later, when we deal with
functions.

ADVANCED

You may like to look up the following functions which relat-
ed to hashes: xeys (), values (), each (), delete (), exists (),
and defined ().

4.12.5 What's the difference between a hash and an
associative array?

Back in the days of Perl version 4 (and earlier), hashes were called associative
arrays. The name "hash" is now preferred because it's much quicker to type. If
you consider all the times that hashes are talked about in the newsgroup com-
p.lang.perl.misc (news:comp.lang.perl.misc) and other Perl newsgroups, the re-
naming of associative arrays to hashes has resulted in a major saving of band-
width.

90 PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables 4

413 Exercises

1. Create a hash of people and something interesting about them

2. Print out a given person's interesting fact

3. Change an person's interesting fact

4. Add a new person to the hash

5. What happens if you try to print an entry for a person who's not in the hash?

Answers to these exercises are given in exercises/perlintro/answers/hash.pl

PerlClass.com for ACT Students 20-23 Feb 2007 91

Perl variables

414 Answers

92

#!/usr/bin/perl -w

use strict;

my %people = (

"Larry" => "Invented Perl",

"Linus" => "Invented Linux",

"Guido" => "Invented Python",

"Bill1" => "Invented PC software Ticensing fees"

)
print "An interesting fact about Larry is: $people{'Larry'}\n";

change someone's interesting fact
$people{"Bil11"} = "wears glasses";

add a new person
$people{"Ada"} = "invented the concept of looping in computer
programs";

what happens if we try to print someone who's not there?

print $people{"Charles"};

PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables 4

4.15 Special variables

Perl has many special variables. These are used to set or retrieve certain values
which affect the way your program runs. For instance, you can set a special
variable to turn interpreter warnings on and off, or read a special variable to
find out the command line arguments passed to your script.

Special variables can be scalars, arrays, or hashes. We'll look at some of each
kind.

RTFM!

4 53-59
2 127-140
7 403
28 653-676
32 884
perlvar
English English provides friendlier

names for special variables

3 49 '$_quickly

PerlClass.com for ACT Students 20-23 Feb 2007 93

4 Perl variables

4.16 The first special variable, $_

The first special variable, and possibly the one you'll encounter most often, is
called s ("dollar-underscore"), and it represents the current thing that your Perl
script's working with - often a line of text or an element of a list or hash. It can
be set explicitly, or it can be set implicitly by certain looping constructs (which
we'll look at later).

The special variable s_ is often the default argument for functions in Perl. For
instance, the print () function defaults to printing s_

$_ = "Hello, world!\n";
print;

If you can think of Perl variables as being "nouns", then s is the pronoun "it".

4.16.1 Exercises

1. Set s to a string like "Hello, world", then print it out by using the print ()
command's default argument

The answers to the above are in exercises/perlintro/answers/scalars2.pl.

94 PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables

417 Answer

#!/usr/bin/perl -w
use strict;
my @friends_names = ("John", "3i11", "Mark", "Melissa", "Bill");
print "My first friend is $friends_names[0].\n";
print "My last friend is $friends_names[$#friends_names].\n";
or $friends_names[-1]

print "All of my friends are @friends_names.\n";
print "My 2nd to 4th friends are @friends_names[1l..3].\n";

PerlClass.com for ACT Students 20-23 Feb 2007

95

4 Perl variables

418 @ARGYV - a special array

Perl programs accept arbitrary arguments or parameters from the command line,
like this:

perl printargs.pl foo bar baz

This passes "foo", "bar" and "baz" as arguments into our program, where they
end up in an array called earcv. Try this script, which you'll find in your direc-
tory. It's called exercises/perlintro/printargs.pl.

#!/usr/bin/perl -w

print "@ARGV\n";

To run the script, type:

% exercises/perlintro/printargs.pl foo bar baz

You should see "foo bar baz" printed out.

4.18.1.1 Exercises

1. Modify your earlier array-printing script to print out the script's command
line arguments instead of the names of your friends. Call your script by
typing ./scriptname.pl firstarg secondarg thirdarg or similar.

The answers to the above exercise 1S In exercises/perlintro/answers/argv.pl

96 PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables

419 Answers

#!/usr/bin/perl -w
use strict;

if (@GARGV == 0) {
print "I have no arguments.\n"
} else {
print "My first argument is $ARGV[0].\n";
print "My last argument 1is $ARGV[$#ARGV].\n"; # or $ARGV[-1]
print "Al1l of my arguments are @ARGV.\n";
if (@GARGV >= 4) {
print "My 2nd to 4th arguments are @ARGV[1l..3].\n";
} else {
print "I have less than 4 arguments.\n";

PerlClass.com for ACT Students 20-23 Feb 2007

97

Perl variables

4.20 %ENV - a special hash

98

Just as there are special scalars and arrays, there is a special hash called senv.
This hash contains the names and values of environment variables. To view
these variables under UNIX, simply type env on the command line.

4.20.1.1 Exercises

1. A user's home directory is stored in the environment variable sove. Print out
your own home directory.

The answer to the above can be found in exercises/perlintro/answers/env.pl

PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables

4.21 Answer

#!/usr/bin/perl -w
use strict;

print "The HOME environment variable is $ENV{'HOME'}.\n"

PerlClass.com for ACT Students 20-23 Feb 2007

99

Perl variables

4.22 Chapter summary

100

- Perl variable names typically consist of alphanumeric characters and

underscores. Lower case names are used for most variables, and upper case
for global constants.

- The statement use strict; 1s used to make Perl require variables to be pre-

declared and to avoid certain types of programming errors.

- There are three types of Perl variables: scalars, arrays, and hashes.

- Scalars are single items of data and are indicated by a dollar sign (s) at the

beginning of the variable name.

- Scalars can contain strings, numbers, etc

- Strings must be delimited by quote marks. Using double quote marks will

allow you to interpolate other variables and meta-characters such as \n
(newline) into a string. Single quotes do not interpolate.

- Arrays are one-dimensional lists of scalars and are indicated by an at sign ()

at the beginning of the variable name.

- Arrays are initialised using a comma-separated list of scalars inside round

brackets.

- Arrays are indexed from zero
- Item n of an array can be accessed by using sarrayname [n]
- The index of the last item of an array can be accessed by using s#arraynamne.

- The number of elements in an array can be found by interpreting the array in

a scalar context, eg my Sitems = @array;

- Hashes are two-dimensional arrays of keys and values, and are indicated by a

percent sign (%) at the beginning of the variable name.

- Hashes are initialised using a comma-separated list of scalars inside curly

brackets. Whitespace and the => operator (which is syntactically identical to
the comma) can be used to make hash assignments look neater.

- The value of a hash item whose key is foo can be accessed by using

Shashname{foo}

. Hashes have no internal order

- s _is a special variable which is the default argument for many Perl functions

and operators

PerlClass.com for ACT Students 20-23 Feb 2007

Perl variables 4

- The special array earcv contains all command line parameters passed to the
script

- The special hash <rnv contains information about the user's environment.

PerlClass.com for ACT Students 20-23 Feb 2007 101

Chapter 5: Operators
and functions

In this chapter...

In this chapter, we look at some of the operators and functions which
can be used to manipulate data in Perl. In particular, we look at oper-
ators for arithmetic and string manipulation, and many kinds of func-
tions including functions for scalar and list manipulation, more com-
plex mathematical operations, type conversions, dealing with files,
etc.

5 Operators and functions

5.1 What are operators and functions?
Operators and functions are routines that are built into the Perl language to do
stuff.

The difference between operators and functions in Perl is a very tricky subject.
There are a couple of ways to tell the difference:

- Functions usually have all their parameters on the right hand side
- Operators can act in much more subtle and complex ways than functions

- Look in the documentation - if it's in perldoc perlop, it's an operator; if it's in
perldoc perlfunc, it's a function. Otherwise, it's probably a subroutine.

The easiest way to explain operators is to just dive on in, so here we go...

RTFM!

4 60 - 65

2 76 - 94

3 86-110
perlop

2 28 -34

104 PerlClass.com for ACT Students 20-23 Feb 2007

Operators and functions

5.2 Arithmetic operators

Arithmetic operators can be used to perform arithmetic operations on variables
or constants. The commonly used ones are:

Table 5-5. Arithmetic operators

Operator Example Description
+ $a + Sb Addition
- $a - $b Subtraction
* $a_* $b Multiplication
/ sa / $b Division
% Sa % $b Modulus (remainder when sa is divided
by sb,eg 11 % 3 =2)
*x $a ** $b Exponentiation (sa to the power of sb)

ADVANCED

Just like in C, there are some short cut arithmetic operators:

$a += 1;
$a -= 3;
$a *= 42;

same as $%a
same as $%a

$a + 1
$a - 3

same as $a = $a * 42

(In fact, you can extrapolate the above with just about any
operator - see page 17 of the Camel for more about this)

You can also use sa++ and sa---- if you're familiar with
such things. ++sa and ----sa are also valid, but they do some
slighty different things and you won't need them today (but
you can read about them on pages 17 to 18 of the Camel if
you are sufficiently interested).

PerlClass.com for ACT Students 20-23 Feb 2007

105

5 Operators and functions

5.3 String operators

Just as we can add and multiply numbers, we can also do similar things with
strings:

Table 5-5. String operators

Operator Example Description

$a . Sb Concatenation (puts sa and sb
together as one string)

x $a x $b Repeat (repeat sa sb times --- eg
"foo" x 3 gives us "foofoofoo"

my $fullname = $first_name . $mid_initial . $last_name;
my $line = '-' x 80;
my $ruler = $1line . "\n";

5.3.1 Exercises

1. Calculate the cost of 18 widgets at $37.00 each and print the answer
(AHSWGI'Z exercises/perlintro/answers/widgets. pl)

2. Print out a line of dashes without using more than one dash in your code
(except for the -w). (Answer: exercises/perlintro/answers/dashes.pl)

3. Use exercises/perlintro/operate.pl to practice using arithmetic and
string operators.

106 PerlClass.com for ACT Students 20-23 Feb 2007

Operators and functions 5

5.4 Answers

5.41 Exercise 1

#!/usr/bin/perl -w
use strict;

my $cost = 18 * 37;
print "The cost of 18 widgets at \$37 each is $cost.\n";

5.4.2 Exercise 2
#!/usr/bin/perl

I
=

use strict;

print "-" x 78;

5.4.3 Source to operate.pl
#!/usr/bin/perl -w

use strict;

arithmetic...
print "Five times thirty is " . (5 * 30) . "\n";

exponentiation and a foreach Tloop...
foreach (0..8) {

print "2 to the power of $_ is " . 2%*$_ . "\n";
}
strings!
my $sentence = "There's more than ";
$sentence .= "one way to ";
$sentence .= "do it.";

print (($sentence . "\n") x 3);

PerlClass.com for ACT Students 20-23 Feb 2007 107

5.5 File operators

Operators and functions

We can use file test operators to test various attributes of files and directories:

Table 5-5. File test operators

Operator Example Description
-e -e Sa Exists - does the file exist?
-r -r Sa Readable - is the file readable?
-w -w $a Writable - is the file writable?
-d -d $a Directory - is it a directory?
-f -f Sa File - is it a normal file?
-T -T S$a Text - 1s the file a text file?

if (-e "~/.forward"} {
print "your email is being forwarded somewhere else";

unless (-w $log_file) {
print "can't write to $log_file\n";

if (-T "perl.exe") {
print "your perl.exe is a text file!\n";

108

PerlClass.com for ACT Students 20-23 Feb 2007

Operators and functions 5

5.6 Other operators

You'll encounter all kinds of other operators in your Perl career, and they're all
described in the Camel from page 76 onwards. We'll cover them as they be-
come necessary to us -- you've already seen operators such as the assignment
operator (=), the => operator which behaves a bit like the comma operator, and
SO on.

ADVANCED

While we're here, let's just mention what "unary" and
"binary" operators are.

A unary operator 1s one that only needs something on one
side of it, like the file operators or the autoincrement (++) op-
erator.

A binary operator is one that needs something on either side
of it, such as the addition operator.

A trinary operator also exists, but we don't deal with it in this

course. C programmers will probably already know about it,
and can use it if they want.

PerlClass.com for ACT Students 20-23 Feb 2007 109

5 Operators and functions

5.7 Functions
A function is like an operator - and in fact some functions double as operators
in certain conditions - but with the following differences:
- longer names
- can take any kinds of arguments
- arguments always come affer the function name

The only real way to tell whether something is a function or an operator is to
check the periop and perifunc manual pages and see which it appears in.

RTFM!

5 92 - 146
1 8 Verbs
141-242
29 677-830
perlfunc
4 56

5.7.1 Types of arguments

Functions typically take the following kind of arguments:

SCALAR -- Any scalar variable - 42, "foo", Of sa

LIST -- Any named or unnamed list (remember that a named list is an array)
ARRAY -- A named array; usually results in the array being modified
HASH -- Any named or unnamed hash

PATTERN -- A pattern to match on - we'll talk more about these later on, in
Regular Expressions

110 PerlClass.com for ACT Students 20-23 Feb 2007

Operators and functions 5

5.7.2

FILEHANDLE -- A filehandle indicating a file that you've opened or one of the
pseudo-files that is automatically opened, such as STDIN, STDOUT, and
STDERR

There are other types of arguments, but you're not likely to need to deal with
them in this module.

Return values

Just as a function can take arguments of various kinds, they can return various
things for you to use - though they don't have to, and you don't have to use
them if you don't want.

If a function returns a scalar, and we want to use it, we can say something like:

my Sage = 29.75;
my $Syears = int ($age);

and syears will be assigned the returned value of the int () function when giv-
en the argument sage - in this case, 29, since int () truncates instead of round-
ing.

If we just wanted to do something to a variable and didn't care what value was
returned, we could just say:

my $input = <STDIN>;
chomp ($input) ;

While we're at it, you should also know that the brackets on functions are op-
tional if it's not likely to cause confusion. What's likely to cause confusion
varies from one person to the next, but it's a pretty safe bet to use brackets as
much as possible when you're starting out, and then drop them off if you see
that other people are usually doing it. Seriously. You can learn a lot about Perl
style by looking at other people's code, especially code found on CPAN or giv-
en as examples in Perl books, newsgroups, etc.

PerlClass.com for ACT Students 20-23 Feb 2007 111

5.8

112

Operators and functions

More about context

Many different functions and operators behave differently depending on
whether they're called in scalar context or list context. Each one will be noted
in its documentation, either in the Camel or in the manual pages.

Here are some Perl operators and functions that care about context:

Table 5-4. Context-senstive functions

What? Scalar context List context
reverse () Reverses characters in | Reverses the order of
a string the elements in an
array
each () Returns the next key | Returns a two-element
in a hash list consisting of the

next key and value
pair in a hash

gmtime () and Returns the time as a | Returns a list of

localtime () string in common second, minute, hour,
format day, etc

keys () Returns the number of | Returns a list of all the

keys (and hence the keys in a hash
number of elements)

in a hash
readdir () Returns the next Returns a list of all the
filename in a filenames in a

directory, or undef'if | directory
there are no more

There are many other cases where an operation varies depending on context.
Take a look at the notes on context at the start of perldoc perlfunc to see the
official guide to this: "anything you want, except consistency".

You can also use perldoc -f functionname to get the documentation for just
a single function.

PerlClass.com for ACT Students 20-23 Feb 2007

Operators and functions 5

5.9

String manipulation

5.9.1.1 Finding the length of a string

The length of a string can be found using the 1ength () function:
#!/usr/bin/perl -w
use strict;

my $string = "This is my string";
print length($string);

5.9.1.2 Case conversion

You can convert Perl strings from upper case to lower case, or vice versa, using
the 1c () and uc () functions, respectively.

#!/usr/bin/perl -w

print lc("Hello, World!"™); # prints "hello, world!"
print uc("Hello, World!"); # prints "HELLO, WORLD!"

The 1cfirst () and ucfirst () functions can be used to change only the first let-
ter of a string.

#!/usr/bin/perl -w

print lcfirst("Hello, World!"™); # prints "hello, World!"
print lcfirst (uc("Hello, World!")); # prints "hELLO, WORLD!"

Notice how, in the last line of the example above, the 1cfirst () operates on the
result of the uc () function.

5.9.1.3 chop() and chomp()

The chop () function removes the last character of a string and returns that char-
acter.

#!/usr/bin/perl -w

use strict;

PerlClass.com for ACT Students 20-23 Feb 2007 113

114

Operators and functions

my Schar = chop ("Hello"); # Schar is now equal to "o"
my $string = "Goodbye";

Schar = chop $string;

print Schar . "\n"; # "e"

print S$string . "\n"; # "Goodby"

The chomp () works similarly, but only removes the last character if it is a new-
line. This is very handy for removing extraneous newlines from user input.

5.9.1.4 String substitutions with substr()

The substr () function can be used to return a portion of a string, or to change a
portion of a string.

#!/usr/bin/perl -w

use strict;

my $string = "Hello, world!";

print substr ($string, 0, 5); # prints "Hello"

substr ($string, 0, 5) = "Greetings";

print $string; # prints "Greetings, world!"

PerlClass.com for ACT Students 20-23 Feb 2007

Operators and functions

5.10 Numeric functions

There are many numeric functions in Perl, including trig functions and func-
tions for dealing with random numbers. These include:

- abs () (absolute value)

« cos(), sin(), and atan2 ()

- exp () (exponentiation)

+ 1log() (logarithms)

- rand() and srand() (random numbers)

- sgrt () (square root)

PerlClass.com for ACT Students 20-23 Feb 2007

115

Operators and functions

5.11 Type conversions

116

The following functions can be used to force type conversions (if you really
need them):

oct () turns an octal number into its decimal equivalent.
int() truncates a number. It does not round.

hex () turns a hexadecimal number into its decimal equivalent.
chr() turns a decimal number into its character equivalent
ord() turns a character into its decimal equivalent

scalar() provides a scalar context.

my $fatty_decimal = hex(“BEEF”);

my $secret_agent = oct(007);

my $backspace = ord(127); # ASCII BS
my $m = asc('m');

PerlClass.com for ACT Students 20-23 Feb 2007

Operators and functions

5.12 Manipulating lists and arrays

5.12.1

PerlClass.com for ACT Students 20-23 Feb 2007

Stacks and queues

Stacks and queues are special kinds of lists.

A stack can be thought of like a stack of paper on a desk. Things are put onto
the top of it, and taken off the top of it.

A queue, on the other hand, has things added to the end of it and taken out of
the start of it. Queues are also referred to as "FIFO" lists (for "First In, First
Out").

We can simulate stacks and queues in Perl using the following functions:

. push() -- add items to the end of a list

.+ pop () -- remove items from the end of a list

- shift () -- remove items from the start of a list
- unshift () -- add items to the start of a list

A queue can be created by pushing items onto the end of a list and shifting
them off the front.

A stack can be created by pushing items on the end of a list and popping them
off.

act Tike a stack
push(@stack,”item”,”item 27);
my $item = pop(@stack);

act Tike a queue
push(@queue,”1”,72”,73”,74”,75,76”,77”,78");

my $item = shift(@Qqueue); # get 1, 2..8 left
my $newitem = shift(@Qqueue); # get 2, 3..8 left

push(@queue,”9”,710”,711”); # add three more
my $thirditem = shift(@Qqueue); # get 3, 4..11 left

unshift(@queue, $thirditem) # put 3 back at the top of the queue

117

5.12.2

5.12.3

118

Operators and functions

Sorting lists

The sort () function, when used on a list, returns a sorted version of that list. It
does not sort the list in place.

The reverse () function, when used on a list, returns the list in reverse order. It
does not reverse the list in place.

#!/usr/bin/perl -w
my @list = ("a", "Z", "C", "m");

my @sorted = sort(@list);
my @reversed = reverse(sort(@list));

Converting lists to strings, and vice versa

The join () function can be used to join together the items in a list into one
string. Conversely, sp1it () can be used to split a string into elements for a list.
To fully appreciate sp1it () will have to wait for regular expressions, but join is
straightforward:

my $glommed thing = join(“:”,$user,$pass,$uid,$gid);

PerlClass.com for ACT Students 20-23 Feb 2007

Operators and functions 5

5.13 Hash processing

The delete () function deletes an element from a hash.
The exists () function tells you whether a certain key exists in a hash.

The xeys () and values () functions return lists of the keys or values of a hash,
respectively.

my @keys = keys %hash;
delete $hash{getgone};

if (exists $hash{getgone}) {
print “your Perl is sick”;

PerlClass.com for ACT Students 20-23 Feb 2007 119

5 Operators and functions

5.14 Reading and writing files

The open () function can be used to open a file for reading or writing. The
close () function closes a file after you're done with it.

We will cover file-related functions more in

120 PerlClass.com for ACT Students 20-23 Feb 2007

Operators and functions 5

5.15 Time

The time () function returns the current time in UNIX format (that is, the num-
ber of seconds since 1 Jan 1970).

The gnmtime () and 1ocaltime () functions can be used to get a more friendly rep-
resentation of the time, either in Greenwich Mean Time or the local time zone.
Both can be used in either scalar or list context.

PerlClass.com for ACT Students 20-23 Feb 2007 121

5 Operators and functions

5.16 Exercises

These exercises range from easy to difficult. Answers are provided in the exer-
cises directory (filenames are given with each exercise).

1. Create a scalar variable containing the phrase "There's more than one way
to do it" then print it out in all upper-case (Answer: exercises/perlin-
tro/answers/tmtowtdi.pl)

2. Print a random number

3. Print a random item from an array (Answer: exercises/perlin-

tro/answers/quotes.pl)

4. Print out the third character of a word entered by the user as an argument on
the command line (There's a starter script in exercises/thirdchar.pl and
the answer's in exercises/perlintro/answers/thirdchar.pl)

5. Print out the date for a week ago (the answer's in

exercises/answers/lastweek.pl
6. Print out a sentence in reverse
a. reverse the whole sentence
b. reverse just the words

(Answer: exercises/perlintro/answers/reverse.pl)

122 PerlClass.com for ACT Students 20-23 Feb 2007

Operators and functions 5

5.17 Answers

5.17.1 Exercise 1
#!/usr/bin/perl -w

use strict;
my $sentence = "There's more than one way to do it.\n";

print uc($sentence);

5.17.2 Exercise 3
#!/usr/bin/perl -w

use strict;

my @quotes = (

"Madness takes its toll; please have correct change.",

"How do I set my Tlaser printer to STUN?",

"why is the symbol for anarchy always written the same way?",

"Any sufficiently advanced magic is indistinguishable from
technology",

"I could tell you, but then I'd have to reboot you.",

"Real girls don't knit, they perl script.",

)

srand; # seed the random number generator
print $quotes[rand(@quotes)] . "\n";

5.17.3 Exercise 4
#!/usr/bin/perl -w

use strict;

my $input = $ARGV[0] || die "You need to provide a work as an
argument";

PerlClass.com for ACT Students 20-23 Feb 2007 123

5 Operators and functions

print "The third character is " . substr($input, 2, 1) . "\n";

5.17.4 Exercise 5
#!/usr/bin/perl -w

use strict;
my $WEEK_SECONDS = 60 * 60 * 24 * 7;

print localtime(time - $WEEK_SECONDS) . "\n";

5.17.5 Exercise 6
#!/usr/bin/perl -w

use strict;
my $sentence = "There's more than one way to do it.";

my $rev = reverse $sentence;
print "$rev\n";

my @words = reverse split(, $sentence);

print "@words\n";

124 PerlClass.com for ACT Students 20-23 Feb 2007

Operators and functions 5

5.18 Chapter summary
- Perl operators and functions can be used to manipulate data and perform
other necessary tasks

- The difference between operators and functions is blurred; most can behave
in either way

- Chapter 3 of your Camel book, perldoc perlop, perldoc perlfunc, and
perldoc -f functionname can be used to find out detailed information
about operators and functions.

- Functions can accept arguments of various kinds
- Functions may return scalars, lists etc

- Return values may differ depending on whether a function is called in scalar
or list context

PerlClass.com for ACT Students 20-23 Feb 2007 125

Chapter 6: Condi-
tional constructs

In this chapter...

In this section, we look at Perl's various conditional constructs and
how they can be used to provide flow control to our Perl programs.
We also learn about Perl's meaning of Truth and how to test for truth

in various ways.

Conditional constructs

6.1 What is a block?

128

The simplest block is a single statement, for instance:

print "Hello, world!\n";

Sometimes you'll want several statements to be grouped together logically.
That's what we call a block. A block can be executed either in response to some
condition being met, or as an independent chunk of code that's given a name.

Blocks always have curly brackets ({ and }) around them. In C and Java, curly
brackets are optional in some cases - not so in Perl.

{

Sfruit = "apple";

Showmany = 32;

print "I'd like to buy S$howmany S$fruit" . "s.\n";
}

You'll notice that the body of the block is indented from the brackets; this is to
improve readability. Make a habit of doing it.

RTFM!

50-52
73-74
2 97
4 113
perlsyn Compound statements
perlsyn Basic BLOCKs
10 373-374
2 34-37
4 56-57

PerlClass.com for ACT Students 20-23 Feb 2007

Conditional constructs 6

6.2

Scope

Something that needs mentioning again at this point is the concept of variable
scoping. You will recall that we use the my function to declare variables when
we're using the strict pragma. The my also scopes the variables so that they are
local to the current block

#!/usr/bin/perl -w

use strict;

my $a = "foo";

{ # start a new block
my $a = "bar";
print "$a\n"; # prints bar

}

print $a; # prints foo

Now, onto the situations in which we'll encounter blocks.

PerlClass.com for ACT Students 20-23 Feb 2007 129

Conditional constructs

6.3 What is a conditional statement?

130

A conditional statement is one which allows us to test the truth of some condi-
tion. For instance, we might say "If the ticket price is less than ten dollars..." or
"While there are still tickets left..."

You've almost certainly seen conditional statements in other programming lan-
guages, so we'll just assume that you get the general idea.

RTFM!

4 51-53

2 95-106

4 114-125
perlsyn

2 34-37

PerlClass.com for ACT Students 20-23 Feb 2007

Conditional constructs 6

6.4 What is truth?

Conditional statements invariably test whether something is true or not. Perl
thinks something is true if it doesn't evaluate to zero (0), an empty string ("),
or undefined.

42 # true
0 # false
"o" # false, because perl switches it to a number when
it
needs to
"wibble" # true
$new_variable # false (if we haven't set it to anything, it's
undefined)

RTFM!

1 20-21 What is truth?
1 29-30 | What is truth?
2 34-35

PerlClass.com for ACT Students 20-23 Feb 2007 131

§) Conditional constructs

6.5 Comparison operators

We can compare things, and find out whether our comparison statement is true
or not. The operators we use for this are:

Table 6-1. Comparison operators

Operator | Example | Meaning
== sa == sb | Equality (same as in C and other C-like
languages)
1= sa != sb | Inequality (again, C-like)
< sa < $pb | Less than
> sa > $b | Greater than
<= sa <= sb | Less than or equal to
>= sa >= $b | Greater than or equal to

If we're comparing strings, we use a slightly different set of comparison opera-
tors, as follows:

Table 6-2. String comparison operators

Operator Meaning
eq Equality
ne Inequality
1t Less than (in "asciibetical" order)
gt Greater than
le Less than or equal to
ge Greater than or equal to

Some examples:

69 > 42 # true

"0" =3 -3 # true

"apple' gt 'banana' # false; apple is alphabetically before
banana

1+ 2 == "3com" # true - 3com 1is evaluated in numeric
context because we used == not eq

132 PerlClass.com for ACT Students 20-23 Feb 2007

Conditional constructs 6

Assigning undef to a variable name undefines it again, as does using the undef
function with the variable's name as its argument.

6.5.1 Existence and Defined-ness

We can also check whether things are defined (something is defined when it's
had a value assigned to it), or whether an element of a hash exists.

To find out if something is defined, use Perl's defined function. You can't just
use the name of the variable because the variable can be defined an still evalu-
ate to false - for example, if you assign it the value o.

$skippy = "bush kangaroo";
if (defined($skippy)) {
print "Skippy is defined.\n";
} else {
print "Skippy is undefined.\n";

RTFM!

5 99

3 155

29 697
-f defined

2 38

To find out if an element of a hash exists, use the exists function:

my %animals = (
"Skippy" => "bush kangaroo",
"Flipper" => "faster than 1lighting",

PerlClass.com for ACT Students 20-23 Feb 2007 133

134

Conditional constructs

);

if (exists($animals{"Blinky Bil1"}) {
print "Blinky Bill exists.\n";
} else {
print "Blinky Bill doesn't exist.\n";

RTFM!

Src Chap Pgs #
Nutshell 2™ 5 103
Camel 2™ 3 164
Camel 3" 29 710
perldoc -f exists
Cookbook 2™ 5 153 - 154
Learning 3" 5 83

Learning 4™

One last quick example to clarify existence, definedness and truth:

my %miscellany = (

"apple" => "red", # exists, defined, true
"howmany" => 0, # exists, defined, false
"koala" => undef, # exists, undefined, false
)
if (exists($miscellany{"wombat"})) { # doesn't exist
print "wombat exists\n";
} else {
print "we have no wombats here.\n"; # this will happen
}

PerlClass.com for ACT Students 20-23 Feb 2007

Conditional constructs

6.5.2 Boolean logic operators

Boolean logic operators can be used to combine two or more Perl statements,
either in a conditional test or elsewhere.

The short circuit operators come in two flavours: line noise, and English. Both

do similar things but have different precedence. This causes great confusion.

There are two ways of avoiding this: use lots of brackets, or read page 89 of the
Camel book very, very carefully.

first.

ADVANCED

Alright, if you insist: and and or operators have very low
precedence (i.e. they will be evaluated after all the other op-
erators in the condition) whereas s« and | | have quite high
precedence and may require parentheses in the condition to
make it clear which parts of the statement are to be evaluated

Table 6-3. Boolean logic operators

English-like | C-style | Example | Result
and && Sa && Sb True if both sa and s are
true; acts on sa then if sa is
true, goes on to act on sb.
or N $a || $b True if either of sa and sb are

true; acts on sa then if sa is
false, goes on to act on $b.

Here's how you can use them to combine conditions in a test:

$a = 1;
$b 2;

$a == 1 and $b ==

PerlClass.com for ACT Students 20-23 Feb 2007

true

135

Conditional constructs

$a == 1 or $b == 5 # true
$a == 2 or $b == 5 # false
($3a == 1 and $b == 5) or $b == 2 # true (parenthesized expression

evaluated first)

6.5.3 Using boolean logic operators as short circuit
operators

136

These operators aren't just for combining tests in conditional statements --- they
can be used to combine other statements as well.

Here's a real, working example of the | | short circuit operator:
open (INFILE, "input.txt") or die("Can't open input file: $!");

What is it doing?

RTFM!

5 118

3 191

29 747
-f open

11 150 - 151

The «& operator is less commonly used outside of conditional tests, but is still
very useful. Its meaning is this: If the first operand returns true, the second will
also happen. As soon as you get a false value returned, the expression stops
evaluating.

($day eq 'Friday') and print "Have a good weekend!\n";

The typing saved by the above example is not necessarily worth the loss in
readability, especially as it could also have been written:

PerlClass.com for ACT Students 20-23 Feb 2007

Conditional constructs 6

print "Have a good weekend!\n" if S$day eqg 'Friday';

if ($day eq 'Friday') {
print "Have a good weekend!\n";

}

...or any of a dozen other ways. That's right, there's more than one way to do it.

The most common usage of the short circuit operators, especially || (or or) is

to trap errors, such as when opening files or interacting with the operating sys-
tem.

RTFM!

Src Chap Pgs #
Nutshell 2"
Camel 2™ 2 89 short circuit

operators

Camel 3" 3 102
perldoc
Cookbook 2™
Learning 3" 10 143

Learning 4™

PerlClass.com for ACT Students 20-23 Feb 2007 137

6.6

6.6.1

138

Conditional constructs

Types of conditional constructs

You'll have noticed that we snuck in something new in the last section -- the ir
construct. It probably didn't surprise you much - you'll have seen something
similar in just about every programming language. (Bonus points will not be
given for naming programming languages which have no "if" construct.)

if statements

The irf construct goes like this:

if (conditional statement) {

BLOCK

} elsif (conditional statement) {
BLOCK

} else {
BLOCK

}

Both the e1sif and e1se parts of the above are optional, and of course you can
have more than one e1sif. elsif is also spelt differently to other languages'
equivalents - C programmers should take especial note to not use eise if.

If you're testing for something negative, it can sometimes make sense to use the
similar-but-opposite construct, uniess.

unless (conditional statement) {
BLOCK
}

There is no such thing as an "elsunless" (thank the gods!), and if you find your-
self using an e1se with un1ess then you should probably have written it as an i f
test in the first place.

There's also a shorthand, and more English-like, way to use if and unless:

print "we have apples\n" if $apples;
print "Yes, we have no bananas\n" unless $bananas;

PerlClass.com for ACT Students 20-23 Feb 2007

Conditional constructs 6

6.6.2 while loops

We can repeat a block while a given condition is true:

while (conditional statement) {
BLOCK

my $hunger = 5;

while ($hunger) {
print "Feed me!\n";
$hunger--;

}

The logical opposite of this is the "until" construct:

my $full = 0;

until ($full) {
print "Feed me!\n";
$Full++;

}

6.6.3 for and foreach

Perl has a for construct identical to C and Java:

for ($count = 0; $count <= $enough; $count++) {
print "Had enough?\n";

}

However, since we often want to loop through the elements of an array, we
have a special "shortcut" looping construct called foreach, which is similar to
the construct available in some UNIX shells. Compare the following:

using a for Tloop

for ($i = 0; $i <= $#array; $i++) {
print $array[$i] . "\n";

PerlClass.com for ACT Students 20-23 Feb 2007 139

§) Conditional constructs

using foreach

foreach (@array) {
print "$_\n";
}

There are some examples of foreach in exercises/perlintro/foreach.pl

foreach (n..m) can be used to automatically generate a list of numbers between n and

m.

We can loop through hashes easily too, using the keys function to return the
keys of a hash as an list that we can use:

foreach $key (keys %monthdays) {
print "There are $monthdays{$key} days in $key.\n";
}

We'll look at hash functions later.

6.6.4 Exercises

1. Set a variable to a numeric value, then create an i statement as follows:
a. If the number is less than 3, print "Too small"
b. If the number is greater than 7, print "Too big"
c. Otherwise, print "Just right"

2. Set two variables to your first and last names. Use an it statement to print
out whichever of them comes first in the alphabet.

3. Use a while loop to print out a numbered list of the elements in an array
4. Now do it with a foreach loop

5. Now do it with a hash, printing out the keys and values for each item (hint:
look up the xeys function in your Camel book)

Answers are given n exercises/answers/loops.pl

140 PerlClass.com for ACT Students 20-23 Feb 2007

Conditional constructs 6

6.7 Answer
#!/usr/bin/perl -w

use strict;
my @array = ("a", "b", "c", "d", "e");
first with a foreach...
foreach (1..@array) {
print "$_ $array[$_ - 1]\n";
next with a C-1like for Toop

my $i;
my $count;

for ($i = 0; $i <= $#array; $i++) {
$count = $i + 1;
print "$count $array[$i]\n";

now a hash

my %colours = (

"red" => "fire",
"yellow" => "daffodils",
"green" => "lTeaves",
"blue" => "ocean",

)

foreach (keys %colours) {
print "$_ $colours{$_3}\n";

PerlClass.com for ACT Students 20-23 Feb 2007 141

Conditional constructs

6.8 Practical uses of while loops: taking input
from STDIN

142

STDIN is the standard input stream for any UNIX program. If a program is in-
teractive, it will take input from the user via STDIN. Many UNIX programs ac-
cept input from STDIN via pipes and redirection. For instance, the UNIX cat
utility prints out any file it has redirected to its STDIN:

$ cat < hello.pl

UNIX also has STDOUT (the standard output) and STDERR (where errors are
printed to).

We can get a Perl script to take input from STDIN (standard input) and do
things with it by using the line input operator, which is a set of angle brackets
with the name of a filehandle in between them:

my $user_input = <STDIN>;

The above example takes a single line of input from STDIN. The input is termi-
nated by the user hitting Enter. If we want to repeatedly take input from
STDIN, we can use the line input operator in a while loop:

#!/usr/bin/perl -w

while ($_ = <STDIN>) {
do some stuff here, if you want...
print; # NOTE: print takes $_ as 1its default argument

]

Conveniently enough, the wnhile statement can be written more succinctly, be-
cause in these circumstances, the line input operator assigns to s by default:

while (<STDIN>) {
print;

}

PerlClass.com for ACT Students 20-23 Feb 2007

Conditional constructs 6

Better yet, the default filehandle used by the line input operator is STDIN, so
we can shorten the above example yet further:

while (<>) {
print;
}
As always, there's more than one way to do it.

The above example script (which is available in your directory as exercis-
es/perlintro/cat.pl) will basically perform the same function as the UNIX
cat command; that is, print out whatever's given to it through STDIN.

Try running the script with no arguments. You'll have to type some stuff in, line
by line, and type CTRL-D (a.k.a. ~p) when you're ready to stop. ~p indicates
end-of-file (EOF) on most UNIX systems.

Now try giving it a file by using the shell to redirect its own source code to it:

perl exercises/perlintro/cat.pl < exercises/perlintro/cat.pl

This should make it print out its own source code.

PerlClass.com for ACT Students 20-23 Feb 2007 143

Conditional constructs

6.9 Best practices template for file
manipulation

144

Its a good idea to follow this template when reading and writing from files:

my $filename = 'filename'; # the filename
my $fh;

open($th, "<", $filename) or die "couldn't open $filename for read

(1"

while(my $1ine = <$fh>) {
chomp($T1ine);
do whatever else you want to do with it

}

close($fh) or die "couldn't close $filename ($!)";
There are a couple of points to note about this. The first would be the use of
the 3-argument open(). Another would be stooring the filename in a scalar for

use in error messages. die()ing on open() and close() is considered good form
and the system-provided error ($!) can be very helpful.

PerlClass.com for ACT Students 20-23 Feb 2007

Conditional constructs 6

6.10 Named blocks

Blocks can be given names, thus:

#!/usr/bin/perl -w
LINE: while (<STDIN>) {

}

By tradition, the names of blocks are in upper case. The name should also re-
flect the type of thing you are iterating over -- in this case, a line of text from
STDIN.

PerlClass.com for ACT Students 20-23 Feb 2007 145

Conditional constructs

6.11 Breaking out of loops

146

You can break out of loops using next, 1ast and similar statements.

#!/usr/bin/perl -w

LINE: while (<STDIN>) {

chomp; # remove newline
next LINE if $_eq ''; # skip blank Tines
Tast LINE if 1c($.) eq 'q'; # quit

or 1in better form

while my ($1ine = <STDIN) {
chomp $1ine; # strip trailing newline
next unless length $1line;
Tast if 1c($1line) eq 'q';

The v1nE indicating the block to break out of is optional (it defaults to the cur-
rent smallest loop), but can be very useful when you wish to break out of a loop
higher up the chain:

#!/usr/bin/perl -w

LINE: while (<STDIN>) {
chomp; # remove newline
next LINE if $_eq ''; # skip blank Tines

we split the 1line into words and check all of them

foreach (split $_) {
Tast LINE if 1c($_) eq 'quit'; # quit

PerlClass.com for ACT Students 20-23 Feb 2007

Conditional constructs 6

6.12 Chapter summary
- A block in Perl is a series of statements grouped together by curly brackets.
Blocks can be used in conditional constructs and subroutines.

. A conditional construct is one which executes statements based on the truth
of a condition

- Truth in Perl 1s determined by testing whether something is NOT any of:
numeric zero, the null string, or undefined

- The if - e1sif - else conditional construct can be used to perform certain
actions based on the truth of a condition

- The while, for, and foreach constructs can be used to repeat certain
statements based on the truth of a condition.

- A common practical use of the whiie loop is to read each line of a file.
- Blocks may be named using the nave: convention

- You can break out of blocks using next, 1ast and similar statements

PerlClass.com for ACT Students 20-23 Feb 2007 147

Chapter 7: Sub-
routines

In this chapter...

In this chapter, we look at subroutines and how they can be used to
simplify your code.

7.1

150

Subroutines

Introducing subroutines

If you have a long Perl script, you'll probably find that there are parts of the
script that you want to break out into subroutines. In particular, if you have a
section of code which is repeated more than once, it's best to make it a subrou-
tine to save on maintenance (and, of course, linecount).

A subroutine is basically a little self-contained mini-program in the form of
block which has a name, and can take arguments and return values:

the general case
sub name {
BLOCK

the specific case

sub print_headers {
print "Programming Perl, 2nd ed\n";
print "by\n";
print "Larry wall et al.\n";

PerlClass.com for ACT Students 20-23 Feb 2007

Subroutines 7

7.2 Calling a subroutine

A subroutine can be called in either of the following ways:

&print headers;
print headers();

If (for some reason) you've got a subroutine that clashes with a reserved func-
tion or something, you will need to prefix your function name with s (amper-
sand) to be perfectly clear. You should avoid doing this anyway; overloading
built-in functions can cause more confusion than it's worth.

ADVANCED

There are other times when you need to use an ampersand on
your subroutine name, such as when a function needs a
SUBROUTINE type of parameter, or when making an
anonymous subroutine reference.

PerlClass.com for ACT Students 20-23 Feb 2007 151

7.3

152

Subroutines

Passing arguments to a subroutine

You can pass arguments to a subroutine by including them in the brackets when
you call it. The arguments end up in an array called e which is only visible in-
side the subroutine.

print headers ("Programming Perl, 2nd ed", "Larry Wall et al");

we can also pass variables to a subroutine by name...
my Sfiction title = "Lord of the Rings";

my Sfiction author = "J.R.R. Tolkein";

print headers($fiction title, $fiction author);

sub print headers {
my ($title, Sauthor) = @ ;
print "S$title\n";
print "by\n";
print "S$author\n";

}

You can take any number of scalars in as arguments - they'll all end up ine_ in
the same order you gave them.

RTFM!

5 132
3 215 shift()
1 33 shift()
9 268

29 785

-f shift

4 143 circular lists
3 47

PerlClass.com for ACT Students 20-23 Feb 2007

Subroutines 7

7.4 Returning values from a subroutine

To return a value from a subroutine, simply use the return function.

sub print_headers {
my ($title, $author) = @_;
return "$title\nby\n$author\n\n";

}
sub sum {
my $total;
foreach my $x (@) {
$total = $total + $x;
}
return $total;
}

You can also return lists from your subroutine:

subroutine to return the first three arguments passed to it
sub firstthree {
return @_[0..2];

}
my @three_items = firstthree("x", "y", "z", "a", "b");
sets @three_items to ("x", "y", "z");

PerlClass.com for ACT Students 20-23 Feb 2007 153

7 Subroutines

7.5 Exercises

1. Write a subroutine which prints out its first argument

2. Modify the above subroutine to also print out the last argument

3. Now change it to compare the first and last arguments and return the one
which is numerically larger (you'll want to use an it statement for that)

154 PerlClass.com for ACT Students 20-23 Feb 2007

Subroutines 7

7.6
7.6.1

7.6.2

7.6.3

Answers

Exercise 1
#!/usr/bin/perl -w

use strict;

sub print_first {
my ($first) = @_;
print "argl=$first\n";

print_first("pass through","ignore","crap");

Exercise 2
#!/usr/bin/perl -w

use strict;

sub print_first_and_Tast {
my ($first) = shift @_;
my ($last) = pop @_;
print "argl=$first last=$last\n";

print_first_and_Tlast("pass through","ignore","crap");

Exercise 3
#!/usr/bin/perl -w

use strict;

sub get_biggest_end {
my ($first) = shift @_;
my ($last) = pop @_;
if ($first > $last) {
print "$first (first) is larger than $last\n";

PerlClass.com for ACT Students 20-23 Feb 2007 155

7 Subroutines

} else {
print "$last (last) is Targer than $first\n";

print_first_and_Tast("pass through","ignore","crap");

156 PerlClass.com for ACT Students 20-23 Feb 2007

Subroutines

7.7 Chapter summary

- A subroutine is a named block which can be called from anywhere in your
Perl program

- Subroutines can accept parameters, which are available via the special array
@

. Subroutines can return scalar or list values.

PerlClass.com for ACT Students 20-23 Feb 2007 157

Chapter 8: Regular
expressions

In this chapter...

In this chapter we begin to explore Perl's powerful regular expression
capabilities, and use regular expressions to perform matching and
substitution operations on text.

8 Regular expressions

8.1 What are regular expressions?

The easiest way to explain this is by analogy. You will probably be familiar
with the concept of matching filenames under DOS and UNIX by using wild-
cards - *.txt Of /usr/local/* for instance. When matching filenames, an aster-
isk can be used to match any number of unknown characters, and a question
mark matches any single character. There are also less well-known filename
matching characters.

Regular expressions are similar in that they use special characters to match text.
The differences are that any kind of text can be matched, and that the set of spe-
cial characters is different.

Regular expressions are also known as REs, regexes, and regexps.

ADVANCED

If you have a mathematical background, you may like
to think of a regexp as a definition of a set of strings.
For instance, a regexp may describe the set of all
strings which begin with the letter "a".

160 PerlClass.com for ACT Students 20-23 Feb 2007

Regular expressions 8

8.2 Regular expression operators and functions

8.2.1 m/PATTERN/ - the match operator

The most basic regular expression operator is the matching operator, m/pat-
TERN/.

- Works on s by default.

- In scalar context, returns true (1) if the match succeeds, or false (the empty
string) if the match fails.

- In list context, returns a list of any parts of the pattern which are enclosed in
parentheses. If there are no parentheses, the entire pattern is treated as if it
were parenthesized.

- The m 1s optional if you use slashes as the pattern delimiters.

- If you use the m you can use any delimiter you like instead of the slashes. This
is very handy for matching on strings which contain slashes, for instance
directory names or URLs.

- Using the /i modifier on the end makes it case insensitive.

while (<>) {

print if m/foo/; # prints if a 1ine contains "foo"

print if m/foo/i; # prints if it contains "foo", "F0O0", etc
print if /foo/i; # exactly the same; the m is optional
print if m!http://!; # using ! as an alternative delimiter

8.2.2 s/PATTERN/REPLACEMENT/ - the substitution
operator

This is the substitution operator, and can be used to find text which matches a
pattern and replace it with something else.

- Works on s by default.
- In scalar context, returns the number of matches found and replaced.
- In list context, behaves the same as in scalar context and returns the number

of matches found and replaced.

PerlClass.com for ACT Students 20-23 Feb 2007 161

8 Regular expressions

- You can use any delimiter you want, the same as the m// operator.

- Using /g on the end of it matches globally, otherwise matches (and replaces)
only the first instance of the pattern.

- Using the /i modifier makes it case insensitive.

fix some misspelt text

while (<>) {
s/freind/friend/g;
s/teh/the/qg;
s/jsut/just/g;
print;

}

The above example can be found in exercises/perlinto/spellcheck.pl.

162 PerlClass.com for ACT Students 20-23 Feb 2007

Regular expressions 8

8.3 Binding operators

If we want to use m// or s/// to operate on something other than s we need to
use binding operators to bind the match to another string.

Table 8-1. Binding operators

Operator Meaning
— True if the pattern matches

L~ True if the pattern doesn't match

print "Please enter your homepage URL: ";
my $url = <STDIN>;
if ($url =~ /geocities/) {

print "Ahhh, I see you have a geocities homepage!\n";

PerlClass.com for ACT Students 20-23 Feb 2007 163

8 Regular expressions

8.4 Metacharacters

The special characters we use in regular expressions are called metacharacters,
because they are characters that describe other characters.

8.4.1 Some easy metacharacters

Table 8-2. Regular expression metacharacters
Metacharacter(s) | Matches...
~ Start of string

$ End of string

Any single character except \n (though special
things can happen in multiline mode)

\n Newline (subtly different to s - when working
in multiline mode, there may be newlines
embedded in the multiline string you're
working with.

\t Matches a tab

\s Any whitespace character, such as space or tab

\sS Any non-whitespace character

\d Any digit (0 to 9)

\D Any non-digit

\w Any "word" character - alphanumeric plus
underscore ()

\W Any non-word character

\b A word break - the zero-length point between a

word character (as defined above) and a non-
word character.

164 PerlClass.com for ACT Students 20-23 Feb 2007

Regular expressions 8

RTFM!

4 67 -73

2 58 -68

5 158 - 164
perlre

7 100

Any character that isn't a metacharacter just matches itself. If you want to
match a character that's normally a metacharacter, you can escape it by preced-
ing it with a backslash

Some quick examples:

Perl regular expressions are usually found within slashes - the
matching operator/function which we will see soon.

/cat/ # matches the three characters
c, a, and t in that order.
/Acat/ # matches c, a, t at start of Tine
/\scat\s/ # matches c, a, t with spaces on either side
/\bcat\b/ # same as above, but won't include the
spaces in the text it matches

we can 1interpolate variables just like 1in strings:

my $animal = "dog" # we set up a scalar variable
/$animal/ # matches d, o, g

/$animal$/ # matches d, o, g at end of Tine
/\$\d\.\d\d/ # matches a dollar sign, then a digit,

then a dot, then another digit, then
another digit, eg $9.99

PerlClass.com for ACT Students 20-23 Feb 2007 165

Regular expressions

8.5 Quantifiers

166

What if, in our last example, we'd wanted to say "Match a dollar, then any num-
ber of digits, then a dot, then two more digits"? What we need are quantifiers.

Table 8-3. Regular expression quantifiers

Quantifier Meaning

? Oorl

* 0 or more

+ 1 or more

{n}) match exactly n times

{n,) match n or more times

{n,m} match between n and m times

Some examples of quantifiers:

X? #0 or 1 "x"
X% # 0 or more "x"
X+ # 1 or more "x"
x{5} # exactly 5 "x"
x{5,} # 5 or more "x"
x{5,10} # 5-10 "x"
bore*d # "bor", 0 or more "e", "d"
¥ # 0 or more of anything
A+ # 1 or more of anything
[I*=[] # match an "=" with optional spaces on either side

PerlClass.com for ACT Students 20-23 Feb 2007

Regular expressions 8

8.6 Greediness

Regular expressions are, by default, "greedy". This means that any regular ex-
pression, for instance . *, will try to match the biggest thing it possibly can.
Greediness is sometimes referred to as "maximal matching".

To change this behavior, follow the quantifier with a question mark, for exam-
ple . 2. This is sometimes referred to as "minimal matching".

Sstring = "abracadabra";
/a.*a/ # greedy -- matches "abracadabra"
/a.*?a/ # not greedy -- matches "abra"

PerlClass.com for ACT Students 20-23 Feb 2007 167

8 Regular expressions

8.7 Exercises

1. What regular expression would match dollar amounts ignoring commas and
assuming that the pennies will be there.

2. Another example: what regular expression would match the word "colour"
with either British or American spellings?

3. How can we match any four-letter word?

168 PerlClass.com for ACT Students 20-23 Feb 2007

Regular expressions 8

8.8 Answers

8.8.1 Exercise 1
/\$\d+.\d{2}/
8.8.2 Exercise 2

/colou?r/

8.8.3 Exercise 3
/\b\w{43}\b/

PerlClass.com for ACT Students 20-23 Feb 2007 169

8.9

8.9.1

170

Regular expressions

Character classes

A character class can be used to find a single character that matches any one of
a given set of characters.

Let's say you're looking for occurrences of the word "grey" in text, then remem-
ber that the American spelling is "gray". The way we can do this is by using
character classes. Character classes are specified using square brackets, thus:
/grlealy/

We can also use character sequences by saying things like [a-z] or [0-9]. The
sequences \d and \w can easily be expressed as character classes: [0-9] and [a-
zA-70-9_] respectively.

We can negate a character class by putting a caret at the start of it. That's right,
the same character that we used to match the start of the line. Larry Wall has
written that Perl does anything you want -- unless you want consistency, and it
has also been said that consistency is the hobgoblin of small minds. Therefore,
we'll learn about these character class inconsistencies, learn to love them, and
flatter ourselves that we do not have small minds.

Here are some of the special rules that apply inside character classes. I make
no guarantee that this is a complete list; additions are always welcome.

-~ at the start of a character class negates the character class, rather than
specifying the start of a line.

- - specifies a range of characters.

- s . (O \{\ *+} and other metacharacters taken literally.
Exercises as a group

Your trainer will help you do the following exercises as a group.

1. How would we find any word starting with a letter in the first half of the
alphabet, or with X, Y, or Z?

2. What regular expression could be used for any word that starts with letters
other than those listed in the previous example.

3. There's almost certainly a problem with the regular expression we've just
created - can you see what it might be?

PerlClass.com for ACT Students 20-23 Feb 2007

Regular expressions 8

8.10 Alternation

The problem with character classes is that they only match one character. What
if we wanted to match any of a set of longer strings, like a set of words?

The way we do this is to use the pipe symbol | for alternation:

/cat|dog|budgie/ # matches any of our pets

Now we come up against another problem. If we write something like:
/"~cat|dog|budgie$/

...to match any of our pets on a line by itself, what we're actually matching is:
"the start of the string followed by cat; or dog; or budgie followed by the end of
the string". This is not what we originally intended. To fix this, we enclose our
alternation in round brackets:

/” (cat |dog|budgie) $/

a simple matching program to get some email headers and print them
out

while (<>) {
print if /" (From|Subject|Date) :\s/;
}

The above email example can be found in exercises/perlinto/mailhdr.pl.

PerlClass.com for ACT Students 20-23 Feb 2007 171

8 Regular expressions

8.11 The concept of atoms

Round brackets bring us neatly into the concept of atoms. The word "atom" de-
rives from the Greek afomos meaning "indivisible" (little did they know!).
What we use it to mean is "something that is a chunk of regular expression in
its own right" -- as opposed to "something that can wipe out cities with a single
blast".

Atoms can be arbitrarily created by simply wrapping things in round brackets -
handy for indicating grouping, using quantifiers for the whole group at once,
and for indicating which bit(s) of a matching function should be the returned
value (but we'll deal with that later).

In the example above, there are three atoms:
1. start of line
2. cat or dog or budgie
3. end of line
How many atoms were there in our dollar prices example earlier?

Atomic groupings can have quantifiers attached to them. For instance:

match a consonant followed by a vowel twice in a row
eg "tutu"
/ ([~aeilou] [aeiou]) {2}/

match three or more words starting with "a" in a row

eg "all angry animals"

/ (\ba\w+\b\s*) {3, }

172 PerlClass.com for ACT Students 20-23 Feb 2007

Regular expressions 8

8.12 Exercises

1. Determine whether your name appears in a string (an answer's in

exercises/perlintro/answers/namere .pl).

2. Remove footnote references (like [1]) from some text (see
exercises/perlintro/footnote.txt for some sample text, and
exercises/perlintro/answers/footnote.pl for an answer).

3. Split tab-separated data into an array then print out each element using a
foreach 100p.

PerlClass.com for ACT Students 20-23 Feb 2007 173

8 Regular expressions

8.13 Answers

8.13.1 Exercise 1
#!/usr/bin/perl -w

use strict;

my $string = "Some text goes in here, blah blah.";
my $name = "Your Name Here";

if ($string =~ /$name/) {
print "Your name appears in the string.\n";
} else {

print "Your name doesn't appear in the string.\n";

}

8.13.2 Exercise 2
#!/usr/bin/perl -w

call this script as ./footnote.pl < footnote.txt

while (<>) {
s/\[[0-9a-z]\1//9;

print;

}
8.13.3 Exercise 3

#!/usr/bin/perl -w

while (my $1line = <>) {
chomp $Tine;

while

my @data = split(/\t/,$1ine);

foreach my $item (@data) {
print "$item\n";

174 PerlClass.com for ACT Students 20-23 Feb 2007

Regular expressions 8

this is much easier with split() as we will see shortly
while (my $1line = <>) {
chomp $T1ine;
my @data = split(/\t/,$1ine);
foreach my $item (@data) {
print "$item\n";

PerlClass.com for ACT Students 20-23 Feb 2007 175

8 Regular expressions

8.14 split() function

The split() function provides a convenient way to take a scalar and use a regular
expression to represent some definition of separator and it gives back the data
between those seperators. Some examples will make this seem much easier:

split a sentence based on spaces
my $words
my @words

"This is a sentence.";
split(/ /,$words);

split the time on the colons
my $time = "01:23:45";
my @timeparts = split(/:/,$time);

176 PerlClass.com for ACT Students 20-23 Feb 2007

Regular expressions 8

8.15 Exercises

1. Use split() to turn a full name into name parts.
2. Use split() to turn a string containing the alphabet

($alpha="abcedfghijklmnopqrstuvwxyz") to produce an array
containing one letter per cell.

PerlClass.com for ACT Students 20-23 Feb 2007 177

8 Regular expressions

8.16 Answers

8.16.1 Exercise 1

my @name_parts = split(/\s+/,$name);

8.16.2 Exercise 2

my $alpha="abcedfghijkIimnopqrstuvwxyz";
my @alpha_bits = split(//,%$alpha0;

178 PerlClass.com for ACT Students 20-23 Feb 2007

Regular expressions 8

8.17 Chapter summary

- Regular expressions are used to perform matches and substitutions on strings

- Regular expressions can include meta-characters (characters with a special
meaning, which describe sets of other characters) and quantifiers

- Character classes can be used to specify any single instance of a set of
characters

- Alternation may be used to specify any of a set of sub-expressions
- The matching operator is m/paTTERN/ and acts on s_ by default

- The substitution operator is s/PATTERN/REPLACEMENT/ and acts on s by
default

- Matches and substitutions can be performed on strings other than s by using
the =~ binding operator

- Functions such as sp1it () and grep () use regular expression patterns as one
of their arguments

PerlClass.com for ACT Students 20-23 Feb 2007 179

Chapter 9: Practical
exercises

This chapter provides you with some broader exercises to test your
new Perl skills. Each exercise requires you to use a mixture of vari-
ables, operators, functions, conditional and looping constructs, and
regular expressions.

9 Practical exercises

9.1 Exercises
There are no right or wrong answers. Remember, "There's More Than One Way
To Do It."

1. Write a simple menu system where the user is repeatedly asked to choose a
message to display or Q to quit.

a. Consider case-sensitivity
b. Handle errors cleanly

2. Write a "chatterbox" program that holds a conversation with the user by
matchings patterns in the user's input.

3. Write a program that gives information about files.
a. use file test operators
b. offer to print the file out if it's a text file

c. how will you cope with files longer than a screenful?

182 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 10: File I/O

In this chapter...

In this section, we learn how to open and interact with files and direc-
tories in various ways.

10 File 1/0

10.1 Assumed knowledge

You should already have encountered the open () function and the <> line input
operator in a previous Perl training session or in your previous Perl experience.

184 PerlClass.com for ACT Students 20-23 Feb 2007

File 1/0 10

10.2 Angle brackets - the line input and globbing
operators

You will have encountered the line input operator <> before, in situations such
as these:

reading lines from STDIN
while (<>) {

}

reading a single line of user input from STDIN
my $input = <STDIN>

RTFM!

4 78 read it now
2 53
2 80 - 83
perlop I/O Operators
8 300 - 302
11 155-156
5 70 - 72

<> is also known as the diamond operator.

- In scalar context, the line input operator yields the next line of the file refer-
enced by the filehandle given.

- In list context, the line input operator yields all remaining lines of the file ref-
erenced by the filehandle.

- The default filehandle is stp1n, or any files listed on the command line of the
Perl script (eg myscript.pl filel file2 file3).

PerlClass.com for ACT Students 20-23 Feb 2007 185

10

186

File 1/0

The globbing operator is nearly, but not quite, identical to the line input opera-
tor. It looks the same, and it acts partly in a similar way, but it really is a sepa-
rate operator.

RTFM!

5 111
2 55-57
2 83 -85
perlop I/O Operators
9 358 -359
12 169 - 170
12 165 - 166

If the angle brackets have anything in them other than a filehandle or nothing, it
will work as a globbing operator and whatever is between the angle brackets
will be treated as a filename wildcard. For instance:

my @files = <*.txt>

The filename glob . txt is matched against files in the current directory, then
either they are returned as a list (in list context, as above) or one scalar at a time
(in scalar context).

If you get a list of files this way, you can then open them in turn and read from
them.

while (<*.txt>) {

open (FILEHANDLE, $) || die ("Can't open $: $!M);

close FILEHANDLE;
t

The g10b () function behaves in a very similar manner to the angle bracket glob-
bing operator.

PerlClass.com for ACT Students 20-23 Feb 2007

File 1/0 10

my @files = glob("*.txt")
foreach (glob "*.txt") {

}

The g10b () 1s considered much cleaner and better to use than the angle-brackets
globbing operator.

10.2.1 Exercises

1. Use the line input operator to accept input from the user then print it out

2. Modify your previous script to use a while loop to get user input repeatedly,
until they type "Q" (or "q" - check out the 1c () and uc () functions in
chapter 3 of your Camel book) (Answer:

exercises/perlinter/answers/userinput.pl)

3. Use the file globbing function or operator to find all Perl scripts in your
home directory and print out their names (assuming they are named in the
fbrnl*.pl)(}\nsvverlexercises/perlinter/answers/findscripts.pl)

10.2.1.1 Advanced exercises

1. Use the above example of globbing to print out all the Perl scripts one after
the other. You will need to use the open () function to read from each file in
turn,([\DSVverZexercises/perlinter/answers/printscripts.pl)

PerlClass.com for ACT Students 20-23 Feb 2007 187

10

10.3 Answers

10.3.1

Exercise 2
#!/usr/bin/perl -w

use strict;

print "Please type something (Q to quit): ";

while (<>) {
chomp;
exit if 1c($) eq 'q';

print "Please type something (Q to quit):

}

10.3.2 Exercise 3

188

#!/usr/bin/perl -w
use strict;

using a while loop and angle brackets
while (<*.pl1>) {
print;

using a foreach Toop with the glob function
foreach (glob "*.p1") {
print;

using a named variable instead of $_
foreach my $script (glob "*.p1") {
print $script;

two even quicker methods...
print <*.pl>;
print glob "*.pl";

File 1/0

PerlClass.com for ACT Students 20-23 Feb 2007

File 1/0 10

10.3.3 Advanced Exercise 1
#!/usr/bin/perl -w

use strict;

using while and angle brackets...

while (<*.pl1>) {
open (FILE, $_) or die "Can't open file: §$!";
while (<FILE>) {
print;

using foreach and the glob() function

foreach (glob "*.p1") {
open (FILE, $_) or die "Can't open file: $!";
while (<FILE>) {
print;

using a named variable instead of $_

foreach my $script (glob "*.p1") {
open (FILE, $script) or die "Can't open file: $!";
while (<FILE>) {
print;

PerlClass.com for ACT Students 20-23 Feb 2007 189

10 File 1/0

10.4 open() and friends - the gory details
10.4.1 Opening a file for reading, writing or appending

The open () function is used to open a file for reading or writing (or both, or as a
pipe - more on that later).

RTFM!

5 118-119
3 191 - 195
29 747 - 755
-f open read it now
7 247 -252
11 150 - 151
5 79 - 81

In a typical situation, we might use open () to open and read from a file:
open (LOGFILE, "/var/log/httpd/access.log")

Note that the < (less than) used to indicate reading is assumed; we could equally
well have said "</var/log/httpd/access.log".

You should a/ways check for failure of an open () statement:

open (LOGFILE, "/var/log/httpd/access.log") || die "Can't open
/var/log/httpd/access.log: $!";

190 PerlClass.com for ACT Students 20-23 Feb 2007

File 1/0 10

RTFM!

Src Chap Pgs #
Nutshell 2™ 4 55
Camel 2™ 2 134
Camel 3"
perldoc perlvar aka SERRNO
Cookbook 2™
Learning 3" 11 153 - 154
Learning 4™ 5 82 - 84

Once a file is opened for reading or writing, we can use the filehandle we speci-
fied (in this case rocr1LE) for a variety of useful purposes:

open (LOGFILE, "/var/log/httpd/access.log") || die "Can't open
/var/log/httpd/access/log: $!";

use the filehandle in the in the <> line input operator...
while (<LOGFILE>) {
print if /PerlClass.com.com.au/;

close LOGFILE;

open a new logfile for appending
open (SCRIPTLOG, ">>myscript.log") || die "Can't open myscript.log: $!";

print () takes an optional filehandle argument - defaults to STDOUT
print SCRIPTLOG "Opened logfile successfully.\n";

close SCRIPTLOG;

Note that you should always close a filehandle when you're finished with it
(though admittedly any open filehandles will be automatically closed when
your script exits).

PerlClass.com for ACT Students 20-23 Feb 2007 191

10 File 1/0

RTFM!

5 138

3 229

29 808 - 809
-f sysopen

7 247 - 252

10.4.2 Exercises

1. Write a script which opens a file for reading. Use a while loop to print out
each line of the file.

2. Use the above script to open a Perl script. Use a regular expression to print
out only those lines not beginning with a hash character (i.e. non-comment
lines). (Answer: exercises/perlinter/answers/delcomments.pl)

3. Create a new script which opens a file for writing. Write out the numbers 1
to 100 into this file. (Answer: exercises/perlinter/answers/100count.pl)

4. Create a new script which opens a logfile for appending. Create a while
loop which accepts input from STDIN and appends each line of input to the
logﬁle. (Al’lSWGI’Z exercises/perlinter/answers/logfile. pl)

5. Create a script which opens two files, reads input from the first, and writes
it out to the second. (Al’lSWCI‘I exercises/perlinter/answers/readwrite. pl)

192 PerlClass.com for ACT Students 20-23 Feb 2007

File 1/0 10

10.5 Answers

10.5.1 Exercise 3
#!/usr/bin/perl -w

use strict;
open (COUNT, ">count.txt") || die ("Can't open count.txt: $!");
foreach (1..100) {

print COUNT "$_\n";

close COUNT;

10.5.2 Exercise 4
#!/usr/bin/perl -w

use strict;
open (LOG, ">>log.txt") || die ("Can't open log.txt: $!");
while (<>) {

print LOG "$_";

close LOG;

10.5.3 Exercise 5
#!/usr/bin/perl -w

use strict;

open (INFILE, "Tinux.txt") || die "Can't open linux.txt: $!";
open (OUTFILE, ">Tinux2.txt") || die "Can't open Tinux2.txt for
writing: $!";

PerlClass.com for ACT Students 20-23 Feb 2007 193

10 File 1/0

while (<INFILE>) {
print OUTFILE $_;

close INFILE;
close OUTFILE;

194 PerlClass.com for ACT Students 20-23 Feb 2007

File 1/0 10

10.6 Reading directories

It 1s also possible to open directories (using opendir () and read from them.
However, it 1s not possible to read the contents of files in that directory simply
by opening it and looping through it. Opening a directory simply makes the
filenames in that directory accessible via functions such as readdir ().

RTFM!

5 119 opendir
5 125 readdir
3 195 opendir
3 202 readdir
29 755 opendir
29 770 readdir
-f opendir
-f readdir
9 356 - 358
12 171-173
12 167 - 168

opendir (HOMEDIR, S$ENV{HOME}) ;
my @files = readdir (HOMEDIR) ;
closedir HOMEDIR;

foreach (Q@files) {

open (THISFILE, "<$ ") || die "Can't open file $: $!");

close THISFILE;

PerlClass.com for ACT Students 20-23 Feb 2007 195

10 File 1/0

10.7 EXxercises

1. Use opendir () and readdir () to obtain a list of files in a directory. What
order are they in?

2. Use the sort () function to sort the list of files asciibetically (Answer:

exercises/perlinter/answers/dirlist.pl)

196 PerlClass.com for ACT Students 20-23 Feb 2007

File 1/0 10

10.8 Answer to #2

#!/usr/bin/perl -w

use strict;
opendir (THISDIR, ".") || die "Can't open directory: $!";
$, = "\n"; # item separator

print sort readdir(THISDIR);

closedir THISDIR;

PerlClass.com for ACT Students 20-23 Feb 2007 197

10

File 1/0

10.9 Opening files for simultaneous read/write

10.9.1

198

Files can be opened for simultaneous read/write by putting a + in front of the >
or < sign. +< is almost always preferable, however, as +> would overwrite the
file before you had a chance to read from it.

Read/write access to a file is not as useful as it sounds --- you can't write into
the middle of the file using this method, only onto the end. The main use for
read/write access is to read the contents of a file and then append lines to the
end of it.

A more flexible way to read and write a file is to import the file into an array,
manipulate the array, then output each element again.

program to remove duplicate lines

open (INFILE, "file.txt") || die "Can't open file.txt for input: $!";
my @lines = <INFILE>;

close INFILE;

dup-remover taken from The Perl Cookbook
my Qunique = grep { ! S$seen{$ } ++ } @lines;

open (OUTFILE, ">file.txt") || die "Can't open file.txt for output: $!";

foreach (Qunique) {
print OUTFILE $_;

close OUTFILE;

One thing to watch out for here is memory usage. If you have a ten megabyte file, it will
use at least that much memory as a Perl data structure.

Exercises

1. Open a file, reverse its contents (line by line) and write it back to the same
ﬁlenanﬁe([\nsvver:exercises/perlinter/answers/reversefile.pl)

PerlClass.com for ACT Students 20-23 Feb 2007

File 1/0 10

10.10 Answer

#!/usr/bin/perl -w

use strict;
open (JUNKFILE, "junk.txt") || die "Can't open junk.txt to read:
$!II;

my @junk = <JUNKFILE>;
close JUNKFILE;

open (JUNKFILE, ">junk.txt") || die "Can't open junk.txt to write:
$!||;

foreach (@junk) {

print JUNKFILE $_;

close JUNKFILE;

PerlClass.com for ACT Students 20-23 Feb 2007 199

10 File 1/0

10.11 Opening pipes

If the filename given to open () begins with a pipe symbol (), the filename is
interpreted as a command to which output is to be piped, and if the filename
ends with a |, the filename is to be interpreted as a filename which pipes input
to us.

This is often used when you want to take input from the system a line at a time.
Here's an example which reads from the rot13 filter (a simple routine which ro-
tates the letters of its input by 13 letters, providing a very simple cipher for en-
coding the answers to jokes, spoilers to movies, or other low-security informa-
tion):

#!/usr/bin/perl -w

use strict;

open (ROT13, "rotl3 < /etc/motd |") || die "Can't open pipe: $!";
while (<ROT13>) {

print;

}

close ROT13;

Conversely, we can output something through rot13:
#!/usr/bin/perl -w

use strict;

open (ROT13, "|rotl3") || die "Can't open pipe: $!";

print "This is some rotl3'd text:\n";
print ROT13 "This is some rotl3'd text.\n";

close ROT13;

200 PerlClass.com for ACT Students 20-23 Feb 2007

File 1/0 10

RTFM!

Src Chap Pgs #
Nutshell 2™ 4 59 $]
Camel 2™ 2 130
Camel 3" 28 670
perldoc perlvar $
Cookbook 2™ 7 281 -284
Learning 3" 6 92 light

Learning 4™

10.11.1.1 Exercises

1. Modify the second example above (provided for you as
exercises/perlinter/rot13.pl in your exercises directory to accept user
input and print out the rot13'd version.

2. Change your script to accept input from a file using open () (Answer:

exercises/perlinter/answers/rot13.pl)

3. Change your script to pipe its input through the strings command, so that if
you get a file that's not a text file, it will only look at the parts of the file
which are strings. (Answer: exercises/perlinter/answers/strings.pl)

PerlClass.com for ACT Students 20-23 Feb 2007 201

10

File

10.12 Answers

10.12.1 Exercise 2

#!/usr/bin/perl -w

use strict;
open (ROT13, "|rotl3") || die "Can't open pipe: $!";
open (INFILE, "Tinux.txt") || die "Can't open input file: $!";

while (<INFILE>) {
print ROT13 $_;

close INFILE;
close ROT13;

10.12.2 Exercise 3

202

#!/usr/bin/perl -w

use strict;

open (ROT13, "|strings|rotl3") || die "Can't open pipe: $!";
open (INFILE, "Tinux.txt") || die "Can't open input file: $!";
while (<INFILE>) {

print ROT13 $_;

close INFILE;
close ROT13;

1/0

PerlClass.com for ACT Students 20-23 Feb 2007

File 1/0

10.13 Finding information about files

10

We can find out various information about files by using file test operators and
functions such as stat ()

Table 10-1. File test operators

Operator Meaning
-e File exists.
-r File is readable
-w File is writable
-x File is executable
-0 File is owned by you
-z File has zero size.
-s File has nonzero size (returns size).
-f File is a plain file.
-d File is a directory.
-1 File is a symbolic link.
-p File is a named pipe (FIFO), or Filehandle is a pipe.
-s File is a socket.
b File is a block special file.
-c File is a character special file.
-t Filehandle is opened to a tty.
~u File has setuid bit set.
-g File has setgid bit set.
-k File has sticky bit set.
T File is a text file.
-B File is a binary file (opposite of -T).
-M Age of file in days when script started.
-2 Same for access time.
-C Same for inode change time.

PerlClass.com for ACT Students 20-23 Feb 2007

203

10 File 1/0

Src Chap Pgs #
Nutshell 2™ 4 63 - 64
Camel 2™ 2 85
Camel 3™ 3 98
perldoc perlfunc
Cookbook 2™
Learning 3" 11 157 - 163

Learning 4™

Here's how the file test operators are usually used:

#!/usr/bin/perl -w
use strict;
unless (-e "config.txt") {

die "Config file doesn't exist";

or equivalently...
die "Config file doesn't exist" unless -e config.txt;

The stat () function returns similar information for a single file, in list form.
1stat () can also be used for finding information about a file which is pointed
to by a symbolic link.

204 PerlClass.com for ACT Students 20-23 Feb 2007

File 1/0 10

10.14 Exercises

1. Write a script which asks a user for a file to open, takes their input from
STDIN, checks that the file exists, then prints out the contents of that file.
(}\HS“KXZexercises/perlinter/answers/fileexists.pl)

2. Write a script to find zero-byte files in a directory. (Answer:

exercises/perlinter/answers/zerobyte.pl)

3. Write a script to find the largest file in a directory:

exercises/perlinter/answers/largestfile.pl)

PerlClass.com for ACT Students 20-23 Feb 2007 205

10 File 1/0

10.15 Answers

10.15.1 Exercise 1
#!/usr/bin/perl -w

use strict;

print "what file should I open? ";
my $filename = <STDIN>

chomp $filename;
die "File doesn't exist" unless -e $filename;
open (IN, $filename) or die "Can't open file for reading: $!";

while (<IN>) {
print;

}

10.15.2 Exercise 2
#!/usr/bin/perl -w

use strict;

foreach (glob("*")) {
print if -z;

}

10.15.3 Exercise 3
#!/usr/bin/perl -w

use strict;

my $largest_size = 0;
my $largest_filename = "";

foreach (glob("*")) {

206 PerlClass.com for ACT Students 20-23 Feb 2007

File 1/0 10

my $size = -s $_ ;

if ($size > $largest_size) {
$Targest_size = $size;
$largest_filename = $_;

print "The largest file was $largest_filename\n";

PerlClass.com for ACT Students 20-23 Feb 2007 207

10 File 1/0

10.16 Recursing down directories

The built-in functions described above do not enable you to easily recurse
through subdirectories. Luckily, the File::Find module is part of the standard
library distributed with Perl 5.

RTFM!

8 254
7 439
31 867
File::Find
9 359 -361
12 173 pretty light

File::Find emulates UNIX's find command. It takes as its arguments a block to
execute for each file found, and a list of directories to search.

#!/usr/bin/perl -w

use strict;
use File::Find;

print "Enter the directory to search: ";
chomp(my $dir = <STDIN>);

find (\&wanted, $dir);

sub wanted {
print "$_\n";

208 PerlClass.com for ACT Students 20-23 Feb 2007

File 1/0 10

For each file found, certain variables are set. sFile::Find::dir 1S set to the cur-

rent directory name, srile::Find: :name contains the full name of the file, i.e.
$File::Find::dir/$.

10.16.1 Exercises

1. Modify the simple script above (in your scripts directory as
exercises/perlinter/find.pl) to only print out the names of plain text
files only (hint: use file test operators)

2. Now use it to print out the contents of each text file. You'll probably want
to pipe your output through more so that you can see it all. (Answer:

exercises/perlinter/answers/find.pl)

PerlClass.com for ACT Students 20-23 Feb 2007 209

10 File 1/0

10.17 Answer to Exercise #2

#!/usr/bin/perl -w

use strict;
use File::Find;

print "Enter the directory to search: ";
chomp(my $dir = <STDIN>);

find (\&wanted, $dir);

sub wanted {

open (FILE, "$_") || die "can't open $_: $!";
while (<FILE>) {
print;
}
close FILE;

210 PerlClass.com for ACT Students 20-23 Feb 2007

File 1/0 10

10.18 File locking

File locking can be achieved using the fiock () function. This can be used to
guard against race conditions or other problems which occur when two (or
more) users open the same file in read/write mode.

RTFM!

Src Chap Pgs #
Nutshell 2™ 5 104
Camel 2™ 3 166 - 167
Camel 3™ 29 714 -715
perldoc -f flock
Cookbook 2™ 7 279-281
Learning 3"

Learning 4™

PerlClass.com for ACT Students 20-23 Feb 2007 211

10

File 1/0

10.19 Handling binary data

If you are opening a file which contains binary data, you probably don't want to
read it in a line at a time using while (<>) { }, as there's no guarantee that
there will be any line breaks in the data.

212

Instead, we use read () to read a certain number of bytes from a file handle.

RTFM!

29

-fread

8
16

125
202
769

304, 325

225-227 fixed-length record
databases

read () takes the following arguments:

. The filehandle to read from

- The scalar to put the binary data into

- The number of bytes to read

- The byte offset to start from (defaults to 0)

#!/usr/bin/perl -w
use strict;

my $image = "picture.gif";

open (IMAGE, $image) or die "Can't open image file: $!";

PerlClass.com for ACT Students 20-23 Feb 2007

File 1/0 10

open (OUT, ">backup/$image™) or die "Can't open backup file: $!";
my $buffer;
binmode IMAGE;

while (read IMAGE, $buffer, 1024) {
print ouT $buffer;

close IMAGE;
close OUT;

If you are using Windows, DOS, or some other types of systems, you may need to use
binmode () to make sure that certain linefeed characters aren't translated when Perl
reads a file in binary mode. While this is not needed on UNIX systems, it's a good idea
to use it anyway to enhance portability.

PerlClass.com for ACT Students 20-23 Feb 2007 213

10

File 1/0

10.20 Chapter summary

214

- Angle brackets <> can be used for simple line input. In scalar context, they

return the next line; in list context, all remaining lines; the default filehandle
is sTDIN or any files mentioned in the command line (ie earcv).

- Angle brackets can also be used as a globbing operator if anything other than

a filehandle name appears between the angle brackets. In scalar context,
returns the next file matching the glob pattern; in list context, returns all
remaining matching files.

- The open () and c1ose () functions can be used to open and close files. Files

can be opened for reading, writing, appending, read/write, or as pipes.

- The opendir (), readdir () and closedir () functions can be used to open, read

from, and close directories.

- The File::Find module can be used to recurse down through directories.
- File test operators or stat () can be used to find information about files
- File locking can be achieved using f1ock ()

- Binary data can be read using the read () function. The vinmode () function

should be used to ensure platform independence when reading binary data.

PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 11: Advanced
regular expressions

In this section...

This section builds on the basic regular expressions taught in day 1 of
PerlClass.com's Introduction to Perl course. We will learn how to
handle data which consists of multiple lines of text, including how to
input data as multiple lines and different ways of performing matches
against that data.

11 Advanced regular expressions

11.1 Assumed knowledge

You should already be familiar with the following topics:

- Regular expression metacharacters

- Quantifiers

- "Greediness" in regular expressions, aka maximal and minimal matching
- Character classes and alternation

- The n// matching function

- The s/// substitution function

- Matching strings other than s with the =~ matching operator

- Assigning matched strings to Ivalues

RTFM!

4 66- 72
2 57-175
5 139 -216
perlre
6 179 - 238
7 98 - 104 Concepts
8 105 - 114 More
9 115-127 Using

216 PerlClass.com for ACT Students 20-23 Feb 2007

Advanced regular expressions 11

11.2 Review exercises

The following exercises are intended to refresh your memory of basic regular
expressions:

1. Write a script to search a file for any of the names "Yasser Arafat", "Boris
Yeltsin" or "Monica Lewinsky". Print out any lines which contain these
names. (Answer: exercises/perlinter/answers/namesre.pl)

2. What pattern could be used to match any of: Elvis Presley, Elvis Aron
Presley, Elvis A. Presley, Elvis Aaron Presley. (Answer:

exercises/perlinter/answers/elvisre.pl)

3. What pattern could be used to match a blank line? (Answer:

exercises/perlinter/answers/blanklinere.pl)

4. What pattern could be used to match an IP address such as 203.20.104.241,
where each part of the address is a number from 0 to 255? (Answer:

exercises/perlinter/answers/ipre.pl)

PerlClass.com for ACT Students 20-23 Feb 2007 217

11

11.3 More metacharacters

218

Here are some more advanced metacharacters, which build on the ones already

Advanced regular expressions

covered in the Introduction to Perl module:

Table 11-1. More metacharacters

Metacharacter

Meaning

\B Match anything other than a word
boundary

\cX Control character, i.e. CTRL-X

\0nn Octal character represented by nn

\xnn Hexadecimal character represented
by nn

\1 Lowercase next character

\u Uppercase next character

\L Lowercase until \e

\U Uppercase until \E

\Q quote (disable) metacharacters
until \e

\E End of lowercase/uppercase

search for the C++ computer language:

/C++/
/C\+\+/ # this works
/C\Q++\E/ # this works too

wrong! regexp engine complains about the plus signs

search for "bell" control characters, eg CTRL-G

/\cG/ # this is one way
/\007/ # this is another -- CTRL-G is octal 07
/\x07/ # here it is as a hex code

PerlClass.com for ACT Students 20-23 Feb 2007

Advanced regular expressions 11

11.4 Working with multiline strings

Often, you will want to read a file several lines at a time. Consider, for exam-
ple, a typical UNIX fortune cookie file, which is used to generate quotes for the
fortune command:

%
Let's call it an accidental feature.
-- Larry wall
%
Linux: the choice of a GNU generation
%
when you say "I wrote a program that crashed windows", people just
stare at you blankly and say "Hey, I got those with the system, *for
free*".
-- Linus Torvalds
%
I don't know why, but first C programs tend to look a lot worse than
first programs in any other Tanguage (maybe except for fortran, but
then I suspect all fortran programs look like "firsts')
-- Olaf Kirch
%
A1l language designers are arrogant. Goes with the territory...
-- Larry wall
%
we all know Linux is great... it does infinite Toops in 5 seconds.
-- Linus Torvalds
%
Some people have told me they don't think a fat penguin really
embodies the grace of Linux, which just tells me they have never
seen a angry penguin charging at them in excess of 100mph. They'd
be a lot more careful about what they say if they had.
-- Linus Torvalds, announcing Linux v2.0
%

The fortune cookies are separated by a line which contains nothing but a per-
cent sign.

PerlClass.com for ACT Students 20-23 Feb 2007 219

11 Advanced regular expressions

To read this file one item at a time, we would need to set the delimiter to some-
thing other than the usual \n - in this case, we'd need to set it to something like

\n%\n.

To do this in Perl, we use the special variable s/.

$/ = "\n%\n";

Conveniently enough, setting s/ to " will cause input to occur in "paragraph
mode", in which two or more consecutive newlines will be treated as the delim-
iter. Undefining s,/ will cause the entire file to be slurped in.

undef $/;

$ = <FH>; # whole file now here

RTFM!

4 53-59
2 127-140
7 403
28 653-676
32 884
perlvar
English English provides friendlier
names for special variables
3 49 '$_quickly

Since s/ i1sn't the easiest name to remember, we can use a longer name by using

the English module:

use English;

220

PerlClass.com for ACT Students 20-23 Feb 2007

Advanced regular expressions 11

$INPUT_RECORD_SEPARATOR = "\n%\n"; # Tong name for $/
$RS = "\n%\n"; # same thing, awk-Tike

11.4.1 Exercises

1. In your directory is a file called exercises/perlinter/linux.txt which is a
set of Linux-related fortunes, formatted as in the above example. Use
multiline regular expressions to find only those quotes which were uttered
by Larry Wall. (Answer: exercises/perlinter/answers/larry.pl)

PerlClass.com for ACT Students 20-23 Feb 2007 221

11 Advanced regular expressions

11.5 Answer

#!/usr/bin/perl -w
use strict;

my $pattern = "Larry wall";
$/ - ll\n%\nll;

while (<>) {
print if /$pattern/;

222 PerlClass.com for ACT Students 20-23 Feb 2007

Advanced regular expressions 11

11.6 Regexp modifiers for multiline data

The /s and /m modifiers can be used to treat the string you're matching against
as either a single or multiple lines. In single line mode, ~ will match only at the
start of the entire string, and s will match only at the end of the entire string. In
multiline mode, they will match at embedded newlines as well.

my $string = qq(

This is some text

and some more text
spanning several lines

)

if ($string =~ /Aand some/m) { # this will match
print "Matched in multiline mode\n";

}

if ($string =~ /Aand some/s) { # this won't match
print "Matched in single 1ine mode\n";

}

In single line mode, the dot metacharacter will match \n. In multiline mode, it
won't.

The differences between default, single line, and multiline mode are set out
very succinctly by Jeffrey Friedl in Mastering Regular Expressions (see the
Bibliography at the back of these notes for details). The following table is para-
phrased from the one on page 236 of that book.

His term "clean multiline mode" refers to a mode which is similar to multi-line,
but which does not strip the newline character from the end of each line.

PerlClass.com for ACT Students 20-23 Feb 2007 223

11

224

Advanced regular expressions

Table 3-2. Effects of single and multiline options

Mode Specified | ~ matches | s matches | Dot matches
with start of ... | end of ... | newline
default neither /s string string No
nor /m
single-line /s string string Yes
multi-line /m line line No
clean multi-line | /ms line line Yes

PerlClass.com for ACT Students 20-23 Feb 2007

Advanced regular expressions 11

11.7 Backreferences

11.7.1 Special variables

There are several special variables related to regular expressions.

- $s 1S the matched text

- s is the unmatched text to the left of the matched text

- s is the unmatched text to the right of the matched text

- 51, 52, $3, etc. The text matched by the 1Ist, 2nd, 3rd, etc sets of parentheses.

All these variables are modified when a match occurs, and can be used in any
way that other scalar variables can be used.

this...
my ($match) = m/AQ(\d+)/;
print $match;

is equivalent to this:
m/A\d+/;
print $&;

match the first three words...

m/AQw+) QAw+) QAw+)/;
print "$1 $2 $3\n";

You can also use s« and other special variables in substitutions:

$string = "It was a dark and stormy night.";
$string =~ s/dark|wet]|cold/very $&/;

If you want to use parentheses simply for grouping, and don't want them to set

a s1 style variable, you can use a special kind of non-capturing parentheses,
which look like (2: ...)

this only sets $1 - the first two sets
of parentheses are non-capturing

PerlClass.com for ACT Students 20-23 Feb 2007 225

11

226

Advanced regular expressions

m/AC?:\w+) (7 \w+) Q\w+)/;

The special variables s1 and so on can be used in substitutions to include
matched text in the replacement expression:

swap first and second words

s/AQw+) QAw+)/$2 $1/;

However, this is no use in a simple match pattern, because s1 and friends aren't
set until after the match is complete. Something like:

my $word = "this";
print if m/($word) $1/;

... will not match "this this". Rather, it will match "this" followed by whatever
$1 was set to by an earlier match.

In order to match "this this" we need to use the special regular expression
metacharacters \1, \2, etc. These metacharacters refer to parenthesized parts of
a match pattern, just as s1 does, but within the same match rather than referring
back to the previous match.

my $word = "this";
print if m/($word) \1/;

PerlClass.com for ACT Students 20-23 Feb 2007

Advanced regular expressions 11

11.8 EXxercises

1. Write a script which swaps the first and the last words on each line
CAHSW@Y:exercises/perlinter/answers/firstlast.pl)

2. Write a script which looks for doubled terms such as "bang bang" or "quack
quack" and prints out all occurrences. This script could be used for finding
typographic errors in text. (Answer:

exercises/perlinter/answers/double.pl)

11.8.1 Advanced

1. Modify the above script to work across line boundaries (Answer:

exercises/perlinter/answers/multiline double.pl)

2. What about case sensitivity?

PerlClass.com for ACT Students 20-23 Feb 2007 227

11 Advanced regular expressions

11.9 Answers

11.9.1 Exercise 1
#!/usr/bin/perl -w

use strict;

while (<>) {

s(
A # start of line
A\w?) # optional punctuation mark
Aw+) # first word
(.*?) # non-greedy match on stuff in the middle
Aw+) # last word
A\w?) # optional punctuation mark
$

)

($1%4%3%2%5)9x;

print;

11.9.2 Exercise 2
#!/usr/bin/perl -w

use strict;
while (<>) {

print "$&\n" if /Q\w+) \1/;
}

11.9.3 Advanced Exercise 1
#!/usr/bin/perl -w

use strict;

§/ =""; # suck in whole file at once

228 PerlClass.com for ACT Students 20-23 Feb 2007

Advanced regular expressions 11

$_ = <STDIN>; # get whole file

this leaves linebreaks in - if you want to remove them, you'll

have to
modify this next bit. Or possibly the previous bit.

print "$&\n" while m/Qw+) (\s|\n)\1/g;

PerlClass.com for ACT Students 20-23 Feb 2007 229

11

Advanced regular expressions

11.10 Section summary

230

- Input data can be split into multiline strings using the special variable s/, also

known as $INPUT RECORD SEPARATOR.

. The /s and /m modifiers can be used to treat multiline data as if it were a

single line or multiple lines, respectively. This affects the matching of ~ and
s, as well as whether or not . will match a newline.

- The special variables s, s and s' are always set when a successful match

occurs

- 51, 52, $3 etc are set after a successful match to the text matched by the first,

second, third, etc sets of parentheses in the regular expression. These should
only be used outside the regular expression itself, as they will not be set until
the match has been successful.

- Special non-capturing parentheses (2:...) can be used for grouping when

you don't wish to set one of the numbered special variables.

- Special metacharacters such as \1, \2 etc may be used within the regular

expression itself, to refer to text previously matched.

PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 12: More
functions

In this chapter...

In this chapter, we discuss some more advanced Perl functions.

12 More functions

12.1 The grep() function

The grep () function is used to search a list for elements which match a certain
regexp pattern. It takes two arguments - a pattern and a list - and returns a list of
the elements which match the pattern.

RTFM!

5 112
3 178 - 179
24 605
29 730
-f grep
4 136 - 137
17 236 - 237
B 292

trivially check for valid email addresses
my @valid_email_addresses = grep /\@/, @email_addresses;

The grep () function temporarily assigns each element of the list to s then per-
forms matches on it.

There are many more complicated uses for the grep function. For instance, in-
stead of a pattern you can supply an entire block which is to be used to process
the elements of the list.

my Q@long words = grep { (length($) > 8); } Qwords;

grep () doesn't require a comma between its arguments if you are using a block
as the first argument, but does require one if you're just using an expression.
Have a look at the documentation for this function to see how this is described.

232 PerlClass.com for ACT Students 20-23 Feb 2007

More functions 12

12.1.1 Exercises

1. Use grep () to return a list of elements which contain numbers (Answer:

exercises/perlinter/answers/grepnumber.pl)
2. Use grep () to return a list of elements which are
a. keys to a hash (Answer: exercises/perlinter/answers/grepkeys.pl)

b. readable files (Answer: exercises/perlinter/answers/grepfiles.pl)

PerlClass.com for ACT Students 20-23 Feb 2007 233

12 More functions

12.2 Answers

12.2.1 Exercise 1
#!/usr/bin/perl

I
=

use strict;

my @list = qw(2 be or not 2 be 3com 2morrow);

print grep /\d/, @list;

12.2.2 Exercise 2a

#!/usr/bin/perl -w

use strict;

my %hash = (
alpha => "a",
bravo => "b",
charlie => "c",
delta => "d",
echo => "e",

);
my @array = gw(alpha zulu mary);

print grep { exists $hash{$_} } @array;

12.2.3 Exercise 2b
#!/usr/bin/perl -w

use strict;
my @array = qw(/etc/passwd /etc/shadow /usr/local /no/such/file);

use -r file test operator to find readable files
print grep { -r $_ } @array;

234 PerlClass.com for ACT Students 20-23 Feb 2007

More functions 12

12.3 The map() function

The map () function can be used to perform an action on each member of a list
and return the results as a list.

my @lowercase = map lc, @words;
my @doubled = map { $_ * 2 } @numbers;

map () 1S often a quicker way to achieve what would otherwise be done by iterat-
ing through the list with foreach.

foreach (@words) {
push (@lowercase, 1c($_);

}

Like grep (), it doesn't require a comma between its arguments if you are using
a block as the first argument, but does require one if you're just using an ex-
pression.

12.3.1 Exercises

1. Create an array of numbers. Use map () to find the square of each number.
Print out the results.

PerlClass.com for ACT Students 20-23 Feb 2007 235

12 More functions

12.4 Chapter summary

- The grep () function can be used to find items in a list which match a certain
regular expression

- The map () function can be used to perform an operation on each member of a
list.

236 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 13: System
interaction

In this section...

In this section, we look at different ways to interact with the operat-
ing system. In particular, we examine the system() function, and the
backtick command execution operator. We also look at security and
platform-independence issues related to the use of these commands

in Perl.

13

System interaction

13.1 system() and exec()

The system() and exec () functions both execute system commands.

system() forks, executes the commands given in its arguments, waits for them
to return, then allows your Perl script to continue. exec () does not fork, and ex-
its when it's done. system () is by far the more commonly used.

$ perl -we 'system("/bin/true"); print "Foo\n";
Foo

$ perl -we 'exec("/bin/true"); print "Foo\n";'
Statement unlikely to be reached at -e 1line 1.
(Maybe you meant system() when you said exec()?)

If the system command fails, the error message will be available via the special
variable s!.

$ per1l -e 'system("cat non-existant-file") || die "$!";'
cat: non-existant-file: No such file or directory

13.1.1 Exercises

238

1. Write a script to ask the user for a username on the system, then perform
the finger command to see information about that user. (Answer:

exercises/perlinter/answers/finger.pl)

PerlClass.com for ACT Students 20-23 Feb 2007

System interaction 13

13.2 Answer

#!/usr/bin/perl -w
use strict;

print "what user do you want to finger? ";
my $username = <STDIN>;

system("finger $username");

PerlClass.com for ACT Students 20-23 Feb 2007 239

13

System interaction

13.3 Using backticks

240

Single quotes can be used to specify a literal string which can be printed, as-
signed to a variable, et cetera. Double quotes perform interpolation of variables
and certain escape sequences such as \n to create a string which can also be
printed, assigned, etc.

A new set of quotes, called backticks, can be used to interpolate variables then
run the resultant string as a shell command. The output of that command can
then be printed, assigned, and so forth.

Backticks are the backwards-apostrophe character (* which appears below the
tilde (~), next to the number 1 on most keyboards.

Just as the g () and qq () functions can be used to emulate single and double
quotes and save you from having to escape quotemarks that appear within a
string, the equivalent function gx () can be used to emulate backticks.

RTFM!

2 52 Backticks
2 41 ax()
2 63
perlop
-fgx
19 770 - 772 Securely running

shell commands
with user input from
CdQl, etc.

1 17
14 107 - 201

PerlClass.com for ACT Students 20-23 Feb 2007

System interaction 13

13.3.1 Exercises

1. Modify your earlier finger program to use backticks instead of system ()
CADSW@YZexercises/perlinter/answers/backtickfinger.pl)

2. Change it to use gx () instead (Answer:

exercises/perlinter/answers/qxfinger.pl)

3. The UNIX command whoami gives your username. Since most shells
support backticks, you can type finger "'whoami' to finger yourself. Use
shell backticks inside your gx () statement to do this from within your Perl
pngranl.QAnSVVeriexercises/perlinter/answers/qxfinger2.pl)

PerlClass.com for ACT Students 20-23 Feb 2007 241

13 System interaction

13.4 Answers

13.4.1 Exercise 1
#!/usr/bin/perl -w

use strict;

print "what user do you want to finger? ";
my $username = <STDIN>;

print ~finger $username ;

13.4.2 Exercise 2
#!/usr/bin/perl -w

use strict;

print "what user do you want to finger? ";
my $username = <STDIN>;

print gx(finger $username);

13.4.3 Exercise 3
#!/usr/bin/perl -w

use strict;

print gx(finger “whoami);

242 PerlClass.com for ACT Students 20-23 Feb 2007

System interaction 13

13.5 Platform dependency issues

Note that the examples given above will not work consistently on all operating
systems. In particular, the use of system() calls or backticks with UNIX-specif-
ic commands will not work under Windows NT. Slightly less obviously, the use
of backticks on NT can sometimes fail when the output of a command is sent
explicitly to the screen rather than being returned by the backtick operation.

The same situation used to apply to MacOS, but now that MacOS is Linux-
based and tends to have much better support for free and open source software,
portability has basically become a Windows versus POSIX situation. With
Linux, MacOS, Solaris, and every other flavor of UNIX all living in the POSIX
camp and Microsoft survives as an anomaly.

PerlClass.com for ACT Students 20-23 Feb 2007 243

13 System interaction

13.6 Security considerations

Many of the examples given above can result in major security risks if the com-
mands executed are based on user input. Consider the example of a simple fin-
ger program which asked the user who they wanted to finger:

#!/usr/bin/perl -w
use strict;

print "Who do you want to finger? ";
my Susername = <STDIN>;
print “finger Susername’;

Imagine if the user's input had been skud; cat /etc/passwd, Or worse yet,
skud; rm -rf /. The system would perform both commands as though they had
been entered into the shell one after the other.

Luckily, Perl's -1 flag can be used to check for unsafe user inputs.

#!/usr/bin/perl -wT

RTFM!

6 356 - 360

23 557 - 566
perlsec

19 767 - 770

B 294 light

-1 stands for "taint checking". Data input by the user is considered "tainted"
and until it has been modified by the script, may not be used to perform shell
commands or system interactions of any kind. This includes system interactions

244 PerlClass.com for ACT Students 20-23 Feb 2007

System interaction 13

such as open (), chmod (), and any other built-in Perl function which interacts
with the operating system.

The only thing that will clear tainting is referencing substrings from a regexp
match. The perisec online documentation contains a simple example of how to
do this. Read it now, and use it to complete the following exercises.

Note that you'll also have to explicitly set sexv('paTu'} to something safe (like
/bin) as well.

ADVANCED

There i1s a Safe module available from CPAN that will let
you setup sand boxes (similar to the JVM) that you can run
Perl code in with arbitrary restrictions.

13.6.1 Exercises

1. Modify the finger program above to perform taint checking (Answer:

exercises/perlinter/answers/taintfinger.pl)

2. Take one of your scripts using open () Or opendir () and modify it to accept
a filename as user input. Turn taint checking on. What sort of regular
expression could you use to check for valid filenames? (Answer:

exercises/perlinter/answers/taintfile.pl)

PerlClass.com for ACT Students 20-23 Feb 2007 245

13

System interaction

13.7 Answers

13.7.1

Exercise 1

#!/usr/bin/perl -wT
use strict;
$ENV{PATH} = "/usr/bin";

print "what user do you want to finger? ";
my $username = <STDIN>;

if ($username =~ /AQ\w+)$/) {

$username = $1; # $username now untainted
system("finger $username");
} else {

die "You're not allowed to finger $username";

}

13.7.2 Exercise 2

246

#!/usr/bin/perl -wT
use strict;

print "what file do you want to output to? ";
my $filename = <STDIN>;

if ($filename =~ /A([-\w.]+)$/) {

$filename = $1; # $filename now untainted
} else {

die "Bad filename in $filename";
}
open (COUNT, ">$filename") || die ("Can't open $filename: $!");

foreach (1..100) {
print COUNT "$_\n";

PerlClass.com for ACT Students 20-23 Feb 2007

System interaction 13

close COUNT;

PerlClass.com for ACT Students 20-23 Feb 2007 247

13 System interaction

13.8 Section summary
- The system() function can be used to perform system commands. s! is set if
any error occurs.

- The backtick operator can be used to perform a system command and return
the output. The gx () quoting function/operator works similarly to backticks.

- The above methods may not result in platform independent code.

- Data input by users or from elsewhere on the system can cause security
problems. Perl's -1 flag can be used to check for such "tainted" data

- Tainted data can only be untainted by referencing a substring from a pattern
match.

248 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 14: Refer-
ences and data
structures

In this section...

In this section, we look at Perl's powerful reference syntax and how it
can be used to implement complex data structures such as multi-di-
mensional lists, hashes of hashes, and more.

14 References and data structures

14.1 Assumed knowledge

For this section, it is assumed that you have a good understanding of Perl's data
types: scalars, arrays, and hashes. Prior experience with languages which use
pointers or references is helpful, but not required.

250 PerlClass.com for ACT Students 20-23 Feb 2007

References and data structures 14

14.2 Introduction to references

Perl's basic data type is the scalar. Arrays and hashes are made up of scalars, in
one- or two-dimensional lists. It is not possible for an array or hash to be a
member of another array or hash under normal circumstances.

However, there is one thing about an array or hash which is scalar in nature --
its memory address. This memory address can be used as an item in an array or
list, and the data extracted by looking at what's stored at that address. This is
what a reference is.

RTFM!

Src Chap Pgs #
Nutshell 2™ 4 75-177
Camel 2™ 4 243 - 275
Camel 3" 8 242 - 267
perldoc perlref
Cookbook 2™ 11 407 - 443
Learning 3" B 296 light
Learning 4™

Also Chapter 1 in Advanced Perl Programming and Tom
Christiansen's FMTEYEWTK (Far More Than You Ever
Wanted To Know) tutorials contain information about refer-
ences. They're available from the Perl website
(http://www.perl.com/)

PerlClass.com for ACT Students 20-23 Feb 2007 251

http://www.perl.com/

14 References and data structures

14.3 Uses for references

There are three main uses for Perl references.

14.3.1 Creating complex data structures
Perl references can be used to create complex data structures, for instance hash-

es of arrays, arrays of hashes, hashes of hashes, and more.

14.3.2 Passing arrays and hashes to subroutines and
functions

Since all arguments to subroutines are flattened to a list of scalars, it is not pos-
sible to use two arrays as arguments and have them retain their individual iden-

tities.
my @l = gw(a b c);
my @a2 = gqw(d e f);

printargs(@al, @a2);

sub printargs {
print "@_\n";
}

The above example will printouta b ¢ d e *.

References can be used in these circumstances to keep arrays and hashes passed
as arguments separate.

14.3.3 Object oriented Perl

References are used extensively in object oriented Perl. In fact, Perl objects are
references to data structures.

252 PerlClass.com for ACT Students 20-23 Feb 2007

References and data structures 14

14.4 Creating and dereferencing references

To create a reference to a scalar, array or hash, we prefix its name with a back-
slash:

my $scalar "This is a scalar";

my @array = gw(a b c);

my %hash = (
'sky' => "blue',
"apple'’ => "red',
'grass' => 'green'

)

my $scalar_ref = \$scalar;
my $array_ref \@array;
my $hash_ref = \%hash;

Note that all references are scalars, because they contain a single item of infor-
mation: the memory address of the actual data.

This is what a reference looks like if you print it out:

% perl -e 'my $foo_ref = \$foo; print "$foo_ref\n";

SCALAR (0x80c697¢c)

% perl -e 'my $bar_ref = \@bar; print "$bar_ref\n";'
ARRAY (0x80c6988)

% perl -e 'my $baz_ref = \%baz; print "$baz_ref\n";'
HASH(0x80c6988)

You can find out whether a scalar is a reference or not by using the ref () func-
tion, which returns a string indicating the type of reference, or undef if a scalar
is not a reference..

PerlClass.com for ACT Students 20-23 Feb 2007 253

14 References and data structures

RTFM!

4 77

5 126

3 204

4 251 - 252 | Other tricks with

references

8 258

29 773
-fref

11 409

13 499

Also in Advanced Perl Programming.

Dereferencing (getting at the actual data that a reference points to) is achieved
by prepending the appropriate variable-type punctuation to the name of the ref-
erence. For instance, if we have a hash reference shash reference we can
dereference it by looking for ¢$hash_reference

$$scalar_ref;
@$array_ref;
%$hash_ref;

my $new_scalar
my @new_array
my %new_hash

In other words, wherever you would normally put a variable name (like
new scalar) you can put a reference variable (like $scalar ref).

Here's how you access array elements or slices, and hash elements:

print $$array_ref[0]; # prints the first element of the
array referenced by $array_ref

print @$array_ref[0..2]; # prints an array slice

print $$hash_ref{'sky'}; # prints a hash element's value

The other way to access the value that a reference points to is to use the "arrow"

254 PerlClass.com for ACT Students 20-23 Feb 2007

References and data structures 14

notation. This notation is usually considered to be better Perl style than the one
shown above, which can have precedence problems and is less visually clean.

print $array_ref->[0];
print $hash_ref->{'sky'};

PerlClass.com for ACT Students 20-23 Feb 2007 255

14 References and data structures

14.5 Passing multiple arrays/hashes as
arguments

If we were attempt to pass two arrays together to a subroutine, they would be
flattened out to form one large array.

my @fruits = gw(apple orange pear banana);
my @rodents = qw(mouse rat hamster gerbil rabbit);
my @books = gw(camel 1lama panther sheep);

mylist(@fruit, @rodents);

print out all the fruits and then all the rodents
sub mylist {
my @list = @_;
foreach (@list) {
print "$_\n";

}

If we want to keep them separate, we need to pass the arrays by references:

myreflist(\@fruit, \@rodents);

sub myreflist {
my ($firstref, $secondref) = @_;
print "First Tist:\n";
foreach (@$firstref) {
print "$_\n";
}
print "Second list:\n";
foreach (@$secondref) {
print "$_\n";

256 PerlClass.com for ACT Students 20-23 Feb 2007

References and data structures 14

14.6 Complex data structures

References are most often used to create complex data structures. Since hashes
and arrays only accept scalars as elements, references (which are inherently

scalars) can be used to create arrays of arrays or hashes, and hashes of arrays or
hashes.

my %categories = (

'fruits' => \@fruits,
'rodents'’ => \@rodents,
'books’ => \@books,

);

to print out "gerbil"...
print $categories{'rodents'}->[3];

PerlClass.com for ACT Students 20-23 Feb 2007 257

14

References and data structures

14.7 Anonymous data structures

258

We can use anonymous data structures to create complex data structures, to
avoid having to declare many temporary variables. Anonymous arrays are cre-
ated by using square brackets instead of round ones. Anonymous hashes use
curly brackets instead of round ones.

the old two-step way:

my @array = qw(a b c d);

my $array_ref = \Q@array;

if we get rid of $array_ref, @array will still hang round using
up memory. Here's how we do it without the intermediate step,
by creating an anonymous array:

my $array_ref = ['a', 'b', 'c', 'd'];

look, we can still use gqw() too...

my $array_ref = [qw(a b c d)];

more useful yet, put these anon arrays straight into a hash:

my %transport = (

'cars' => [qw(toyota ford holden porsche)],
'planes’ => [qw(boeing harrier)],
'boats' => [qw(cTipper skiff dinghy)],

The same technique can be used to create anonymous hashes:

The old, two-step way:

my %hash = (
a => 1,
b => 2,

PerlClass.com for ACT Students 20-23 Feb 2007

References and data structures

)
my $hash_ref = \$hash;

the quicker way, with an anonymous hash:
my $hash_ref = {

a => 1,
b => 2,
C => 3

PerlClass.com for ACT Students 20-23 Feb 2007

14

259

14 References and data structures

14.8 EXxercises

1. Create a complex data structure as follows:

a. Create a hash called spizza prices which contains prices for small,
medium and large pizzas.

b. Create a hash called spasta prices which contains prices for small,
medium and large serves of pasta.

c. Create a hash called ¢milkshake prices which contains prices for small,
medium and large milkshakes.

d. Create a hash containing references to the above hashes, so that given a
type of food and a size you can find the price of it.

e. Convert the above hash to use anonymous data structures instead of the
original three pizza, pasta and milkshake hashes

f. Add a new element to your hash which contains the prices of salads
(/\nSVVCIIexercises/perlinter/answers/food.pl)

2. Create a subroutine which can be passed a scalar and a hash reference.
Check whether there is an element in the hash which has the scalar as its
key. Hint: use exists for this. (Answer:

exercises/perlinter/answers/exists.pl)

260 PerlClass.com for ACT Students 20-23 Feb 2007

References and data structures 14

14.9 Answers

14.9.1

Exercise 1
#!/usr/bin/perl -w

use strict;

my %pizza_prices =

"small"
"medium" =>
"medium" =>

)

my %pasta_prices =
"small"
"medium" =>
"Targe"

)

my %milkshake_prices
"small"
"medium" =>
"Targe"

)

=> 6,
8,
10,
=> 4,
3,
=> 7,
= (
=> 2,
3,
=> 4,

original, hash reference way...

my %food_prices = (
"pizza"
"pasta"
"milkshakes"

)

=> \%pizza_prices,
=> \%pasta_prices,
=> \%milkshake_prices,

and here's how we do the one with anonymous hashes

my %anon_food_prices

"pizza"

=> {

"small" => 6,

PerlClass.com for ACT Students 20-23 Feb 2007 261

14

"pasta"

"milkshakes

);

References and data structures

add an element...

$anon_food_prices{"salad"} =

"small"
"medium"
"Targe"

}s
14.9.2 Exercise 2

"medium" => 8,
"medium" => 10,
},
=> {
"small" => 4,
"medium" => 5,
"Targe" => 7,
s
" — {
"small" => 2,
"medium" => 3,
"Targe" => 4,
},
= {
=> 3,
=> 5,
=> 7,

#!/usr/bin/perl -w

use strict;

set up some initial variables and stuff

my $scalar = "quux";

my %hash = (

"foo" =>
"bar" =>
"baZ” =>

262

"The first metasyntactic variable",
"The second metasyntactic variable",
"The third metasyntactic variable",

PerlClass.com for ACT Students 20-23 Feb 2007

References and data structures 14

print "Element exists\n" if my_exists($scalar, \%hash);
sub my_exists {

my ($scalar, $hashref) = @_;
return 1 if exists($hashref->{$scalar});

PerlClass.com for ACT Students 20-23 Feb 2007 263

14

References and data structures

14.10 Section summary

264

- References are scalar data consisting of the memory address of a piece of Perl

data, and can be used in arrays, hashes, etc wherever you would use a normal
scalar

- References can be used to create complex data structures, to pass multiple

arrays or hashes to subroutines, and in object-oriented Perl.

- References are created by prepending a backslash to a variable name.

- References are dereferenced by replacing the name part of a variable name

(eg foo 1n sfoo) with a reference, for example replace foo with sfoo ref to
get $$foo_ref

- References to arrays and hashes can also be dereferenced using the arrow ->

notation.

- References can be passed to subroutines as if they were scalars.
- References can be included in arrays or hashes as if they were scalars.

- Anonymous arrays can be made by using square brackets instead of round;

anonymous hashes can be made by using curly brackets instead of round.
These can be assigned directly to a reference, without any intermediate step.

PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 15: perlstyle

In this chapter...

We will learn what it means to be stylish in Perl.

15

perlstyle

15.1 peristyle 5.8.8

266

What follows is the perlstyle page form the Perl 5.8.8 distribution. It raises a
number of points worth considering while developing in Perl.

Each programmer will, of course, have his or her own preferences in regards to
formatting, but there are some general guidelines that will make your programs
easier to read, understand, and maintain.

The most important thing is to run your programs under the -w flag at all times.
You may turn it off explicitly for particular portions of code via the no
warnings pragma or the $Aw variable if you must. You should also always run
under use strict or know the reason why not. The use sigtrap and even
use diagnostics pragmas may also prove useful.

Regarding aesthetics of code lay out, about the only thing Larry cares strongly
about is that the closing curly bracket of a multi-line BLOCK should line up
with the keyword that started the construct. Beyond that, he has other
preferences that aren't so strong:
4-column indent.
Opening curly on same line as keyword, if possible, otherwise line up.
Space before the opening curly of a multi-line BLOCK.
One-line BLOCK may be put on one line, including curlies.
- No space before the semicolon.
Semicolon omitted in "short" one-line BLOCK.
Space around most operators.
Space around a "complex" subscript (inside brackets).
Blank lines between chunks that do different things.
Uncuddled elses.
- No space between function name and its opening parenthesis.
Space after each comma.
Long lines broken after an operator (except and and or).
Space after last parenthesis matching on current line.
Line up corresponding items vertically.
Omit redundant punctuation as long as clarity doesn't suffer.

PerlClass.com for ACT Students 20-23 Feb 2007

perlstyle 15

Larry has his reasons for each of these things, but he doesn't claim that everyone
else's mind works the same as his does.

Here are some other more substantive style issues to think about:

Just because you CAN do something a particular way doesn't mean that

you SHOULD do it that way. Perl is designed to give you several ways to

do anything, so consider picking the most readable one. For instance
open(F00,$foo) || die "Can't open $foo: $!";

1s better than
die "Can't open $foo: $!" unless open(F00, $fo0);

because the second way hides the main point of the statement in a
modifier. On the other hand

print "Sstarting analysis\n" if $verbose;

1s better than
$verbose && print "Starting analysis\n";

because the main point isn't whether the user typed -v or not.

Similarly, just because an operator lets you assume default arguments
doesn't mean that you have to make use of the defaults. The defaults are
there for lazy systems programmers writing one-shot programs. If you
want your program to be readable, consider supplying the argument.

Along the same lines, just because you CAN omit parentheses in many
places doesn't mean that you ought to:

return print reverse sort num values %array;

return print(reverse(sort num (values(%array))));

When in doubt, parenthesize. At the very least it will let some poor
schmuck bounce on the % key in vi.

Even if you aren't in doubt, consider the mental welfare of the person who
has to maintain the code after you, and who will probably put parentheses
in the wrong place.

PerlClass.com for ACT Students 20-23 Feb 2007 267

15

268

perlstyle

Don't go through silly contortions to exit a loop at the top or the bottom,
when Perl provides the Tast operator so you can exit in the middle. Just
"outdent" it a little to make it more visible:
LINE:
for (55) {
statements;
Tast LINE if $foo;
next LINE 1if /A#/;
statements;

}

Don't be afraid to use loop labels--they're there to enhance readability as
well as to allow multilevel loop breaks. See the previous example.

Avoid using grep () (or map()) or ‘backticks’ in a void context, that is,
when you just throw away their return values. Those functions all have
return values, so use them. Otherwise use a foreach () loop or the
system() function instead.

For portability, when using features that may not be implemented on
every machine, test the construct in an eval to see if it fails. If you know
what version or patchlevel a particular feature was implemented, you can
test $1 ($PERL_VERSION in EngTish) to see if it will be there. The
config module will also let you interrogate values determined by the
Configure program when Perl was installed.

Choose mnemonic identifiers. If you can't remember what mnemonic
means, you've got a problem.

While short identifiers like $gotit are probably ok, use underscores to
separate words in longer identifiers. It is generally easier to read
$var_names_1like_this than $varNamesLikeThis, especially for non-
native speakers of English. It's also a simple rule that works consistently
with VAR_NAMES_LIKE_THIS.

Package names are sometimes an exception to this rule. Perl informally
reserves lowercase module names for "pragma" modules like integer
and strict. Other modules should begin with a capital letter and use
mixed case, but probably without underscores due to limitations in
primitive file systems' representations of module names as files that must
fit into a few sparse bytes.

PerlClass.com for ACT Students 20-23 Feb 2007

perlstyle 15

You may find it helpful to use letter case to indicate the scope or nature of
a variable. For example:
$ALL_CAPS_HERE constants only (clashes with perl vars!)
$Some_Caps_Here package-wide global/static
$no_caps_here function scope my() or Tocal() variables

Function and method names seem to work best as all lowercase. E.g.,
$obj->as_string().

You can use a leading underscore to indicate that a variable or function
should not be used outside the package that defined it.

If you have a really hairy regular expression, use the /x modifier and put
in some whitespace to make it look a little less like line noise. Don't use
slash as a delimiter when your regexp has slashes or backslashes.

Use the new and and or operators to avoid having to parenthesize list
operators so much, and to reduce the incidence of punctuation operators
like & and | |. Call your subroutines as if they were functions or list
operators to avoid excessive ampersands and parentheses.

Use here documents instead of repeated print() statements.

Line up corresponding things vertically, especially if it'd be too long to fit
on one line anyway.

$IDX = $ST_MTIME;

$IDX = $ST_ATIME if $opt_u;
$IDX = $ST_CTIME if $opt_c;
$IDX = $ST_SIZE if $opt_s;

mkdir $tmpdir, 0700 or die "can't mkdir $tmpdir: $!";
chdir($tmpdir) or die "can't chdir $tmpdir: $!";
mkdir 'tmp', 0777 or die "can't mkdir $tmpdir/tmp: $!";

Always check the return codes of system calls. Good error messages
should go to STDERR, include which program caused the problem, what
the failed system call and arguments were, and (VERY IMPORTANT)
should contain the standard system error message for what went wrong.
Here's a simple but sufficient example:

opendir(p, $dir) or die "can't opendir $dir: $!";

PerlClass.com for ACT Students 20-23 Feb 2007 269

15

270

perlstyle

Line up your transliterations when it makes sense:
tr [abc]
[xyz];

Think about reusability. Why waste brainpower on a one-shot when you
might want to do something like it again? Consider generalizing your
code. Consider writing a module or object class. Consider making your
code run cleanly with use strict and use warnings (or -w) in effect.
Consider giving away your code. Consider changing your whole world
view. Consider... oh, never mind.

Try to document your code and use Pod formatting in a consistent way.
Here are commonly expected conventions:

use C<> for function, variable and module names (and more
generally anything that can be considered part of code, like
filehandles or specific values). Note that function names are
considered more readable with parentheses after their name, that is
function().

use B<> for commands names like cat or grep.

use F<> or C<> for file names. F<> should be the only Pod code for
file names, but as most Pod formatters render it as italic, Unix and
Windows paths with their slashes and backslashes may be less
readable, and better rendered with C<>.

Be consistent.

Be nice.

PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 16: About
databases

In this chapter...

This chapter talks about databases in general, and the different types
of databases which can be used with Perl.

16 About databases

16.1 What is a database?

. A database is a collection of related information.

- The data stored in a database is persistent.

272 PerlClass.com for ACT Students 20-23 Feb 2007

About databases 16

16.2 Types of databases

There are many different types of databases, including:
- Flat-file text databases

- Associative flat-file databases such as Berkeley DB
- Relational databases

- Object databases

- Network databases

- Hierarchical databases such as LDAP

Relational databases are by far the most useful type commonly available, and
this training module focusses largely on them, after looking briefly at flat file
text databases.

PerlClass.com for ACT Students 20-23 Feb 2007 273

16 About databases

16.3 Database management systems

A database management system (DBMS) is a collection of software which can
be used to create, maintain and work with databases. A client/server database
system is one in which the database is stored and managed by a database server,
and client software is used to request information from the server or to send
commands to the server.

274 PerlClass.com for ACT Students 20-23 Feb 2007

About databases 16

16.4 Uses of databases

Databases are commonly used to store bodies of data which are too large to be
managed on paper or through simple spreadsheets. Most businesses use
databases for accounts, inventory, personnel, and other record keeping.
Databases are also becoming more widely used by home users for address
books, cd collections, recipe archives, etc. There are very few fields in which
databases cannot be used.

PerlClass.com for ACT Students 20-23 Feb 2007 275

16 About databases

16.5 Chapter summary

. A database is a collection of related information.
- Data stored in a database is persistent

- There are a number of different types of databases, including flat file,
relational, and others

- Database management systems are collections of software used to manage
databases

- Databases are widely used in many fields

276 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 17: Textfiles
as databases

In this chapter...

In this chapter we investigate text-based or "flat file" databases and
how to use Perl to manipulate them. We also discuss some of the lim-
itations of this database format.

17

Textfiles as databases

17.1 Delimited text files

A delimited text file is one in which each line of text is a record, and the fields
are separated by a known character.

The character used to delimit the data varies according to the type of data.
Common delimiters include the tab character (\t in Perl) or various punctuation
characters. The delimiter should always be one which does not appear in the da-
ta.

Delimited text files are easily produced by most desktop spreadsheet and
database applications (eg Microsoft Excel, Microsoft Access). You can usually
choose "File" then "Save As" or "Export", then select the type of file you would
like to save as.

Imagine a file which contains peoples' given names, surnames, and ages, delim-
ited by the pipe (1) symbol:

Fred|Flintstone|40
wilma|Flintstone|36
Barney|Rubble|38
Betty|Rubble|34
Homer |Simpson|45
Marge|Simpson|39
Bart|Simpson|11
Lisa|Simpson|9

The file above is available in your exercises directory as delimited. txt.

17.1.1 Reading delimited text files

278

To read from a delimited text file:

#!/usr/bin/perl -w
use strict;
open (INPUT, "delimited.txt") or die "Can't open data file: $!";

while (<INPUT>) {

PerlClass.com for ACT Students 20-23 Feb 2007

Textfiles as databases 17

chomp; # remove newline
my @fields = split(/\|/, $_.);
print "$fields[1], $fields[0]: $fields[2]\n";

close INPUT;

This should print out:

Flintstone, Fred: 40
Flintstone, wWilma: 36

And so on.

17.1.2 Searching for records

One of the common uses of databases is to search for specific records.

#!/usr/bin/perl -w
use strict;

Find out what record the user wants:

print "Search for: ";
chomp (my $search_string = <STDIN>);

open (INPUT, "delimited.txt") or die "Can't open data file: $!";

while (<INPUT>) {
chomp; # remove newline

my @fields = split(/\|/, $_);

test whether the string matches given or family name
if ($fields[0] =~ /$search_string/

or $fields[1l] =~ /$search_string/) {

print "$fields[1], $fields[0]: $fields[2]\n";

PerlClass.com for ACT Students 20-23 Feb 2007 279

17

Textfiles as databases

close INPUT;

17.1.3 Sorting records

280

Sorting records from a flat text database can be quite difficult. Simply sorting
the items line by line is one simplistic approach:

#!/usr/bin/perl -w
use strict;
open (INPUT, "delimited.txt") or die "Can't open data file: $!";
my @records = sort <INPUT>;
foreach (@records) {
chomp; # remove newline

my @fields = split(/\I|/, $_);
print "$fields[1], $fields[0]: $fields[2]\n";

close INPUT;

The above technique can only sort on the first field of the data (in the case of
our example, that would be the given name) and may have difficulties when it
encounters the delimiter.

To sort by any other field, we would first need to load the data into a list of lists
(using references), then use the sort () function's optional first argument to
specify a subroutine to use for sorting:

#!/usr/bin/perl -w
use strict;
open (INPUT, "delimited.txt") or die "Can't open data file: $!";

while (<INPUT>) {

PerlClass.com for ACT Students 20-23 Feb 2007

Textfiles as databases 17

chomp;
my @this_record = split(/\|/, $_);

build a 1ist-of-1ists containing references to each record
push (@records, \@this_record);
sort takes an optional argument of what subroutine to use to sort
the data...
my @sorted = sort given_name_order @records;
foreach $record (@sorted) {

we have to print the items via a reference to the array...
print "$record->[1], $record->[0]: $record->[2]\n";

subroutine to implement sorting order
sub given_name_order {
$a->[0] cmp $b->[0];

Obviously this can be quite tricky, especially if the programmer is not totally
familiar with Perl references. It also requires loading the entire data set into
memory, which would be very inefficient for large databases.

17.1.4 Writing to delimited text files

The most useful function for writing to delimited text files is join, which is the
logical equivalent of sp1it.

#!/usr/bin/perl -w
use strict;
open OUTPUT, ">>delimited.txt" or die "Can't open output file: $!";

my @record = qw(George Jetson 35);

PerlClass.com for ACT Students 20-23 Feb 2007 281

17 Textfiles as databases

print OUTPUT join("|", @record), "\n";

282 PerlClass.com for ACT Students 20-23 Feb 2007

Textfiles as databases 17

17.2 Comma-separated variable (CSV) files

Comma separated variable files are another format commonly produced by
spreadsheet and database programs. CSV files delimit their fields with commas,
and wrap textual data in quotation marks, allowing the textual data to contain
commas if required:

"Fred","Flintstone",40
"wilma","Flintstone", 36
"Barney","Rubble", 38
"Betty","Rubble", 34

"Homer","Simpson",45

"Marge","Simpson", 39
"Bart","Simpson",11

"Lisa","Simpson",9

CSV files are harder to parse than ordinary delimited text files. The best way to
parse them is to use the Text::ParseWords module:

#!/usr/bin/perl -w

use strict;
use Text::Parsewords;

open INPUT, "csv.txt" or die "Can't open input file: $!";

while (<INPUT>) {
my @fields = quotewords("," 0, $_.);
}

The three arguments to the quotewords () routine are:

. The delimiter to use

- Whether to keep any backslashes that appear in the data (zero for no, one for
yes)

- A list of lines to parse (in our case, one line at a time)

PerlClass.com for ACT Students 20-23 Feb 2007 283

17 Textfiles as databases

17.3 Problems with flat file databases

17.3.1 Locking

When using flat file databases without locking, problems can occur if two or
more people open the files at the same time. This can cause data to be lost or
corrupted.

If you are implementing a flat file database, you will need to handle file locking
using Perl's f1ock function.

17.3.2 Complex data

If your data is more complex than a single table of scalar items, managing your
flat file database can become extremely tedious and difficult.

17.3.3 Efficiency

Flat file databases are very inefficient for large quantities of data. Searching,
sorting, and other simple activities can take a very long time and use a great
deal of memory and other system resources.

284 PerlClass.com for ACT Students 20-23 Feb 2007

Textfiles as databases 17

17.4 Chapter summary
- The two main types of text database use either delimited text or comma
separated variables to store data

- Delimited text can be read using Perl's sp1it function and written using the
j0in function

- Comma separated files are most easily read using the Text::ParseWords
module

- There are several problems with flat file databases including locking,
efficiency, and difficulties in handling more complex data

PerlClass.com for ACT Students 20-23 Feb 2007 285

Chapter 18: Relational
databases

In this chapter...

The first section of this training session focuses on database theory,
and covers relational database systems, and SQL - the language used
to talk to them.

18 Relational databases

18.1 Tables and relationships

In a relational database, data is stored in tables. Each table contains data about a
particular type of entity (either physical or conceptual).

For instance, our sample database is the inventory and sales system for Acme
Widget Co. It has tables containing data for the following entities:

Table 18-1. Acme Widget Co Tables

Table Description

stock item Inventory items

customer Customer account details

saleperson Sales people working for Acme Widget Co.
sales Sales events which occur

Tables in a database contain fields and records. Each record describes one enti-
ty. Each field describes a single item of data for that entity. You can think of it

like a spreadsheet, with the rows being the records and the columns being the
fields, thus:

Table 18-2. Sample table

ID number Description Price Quantity in stock
1 widget $9.95 12
2 gadget $3.27 20

Every table must have a primary key, which is a field which uniquely identifies
the record. In the example above, the Stock ID number is the primary key.

The following figures show the tables used in our database, along with their
field names and primary keys (in bold type).

288 PerlClass.com for ACT Students 20-23 Feb 2007

Relational databases 18

stock_item

:htdl) auto hcrem ent
descrption: varchar@0)
price: foaté,2)

quantity: nht(l1l)

d:nt(l) auto hcrem ent

/1;\ salesperson
|

|

| nam e: varchar@0)

-1
|
|

sales

d:nt(ll) auto hcrem ent
saks date:date

custom er d:nt(1)
salesperson id:nt(1l)
stock fem 1:ihtdl)
quantity: nt(l)

price: fbaté,2)

customer

d:int(l) auto_ihcrem ent
nam e:varchar@0)
address: varchar255)
subutb: varchar®0)

state: charQ)

postcode: char(0)

Hllustration 18-4: UML-style ERD of the example schema

Table 18-3. the stock item table
stock item
id
description

price

quantity

Table 18-4. the customer table
customer
id

name

address

suburb

PerlClass.com for ACT Students 20-23 Feb 2007 289

18

290

state

postcode

Table 18-5. the salesperson table

salesperson

id

name

Table 18-6. the sales table

sales

id

sale date

salesperson id

customer 1d

stock item id

quantity

price

Relational databases

PerlClass.com for ACT Students 20-23 Feb 2007

Relational databases 18

18.2 Structured Query Language

SQL is a semi-English-like language used to manipulate relational databases. It
is based on an ANSI standard, though very few SQL implementations actually
adhere to the standard.

SQL statements are mostly case insensitive these days. While most books and
references use upper-case, these notes use lower-case throughout for readabili-
ty, and because the likelihood of needing to deal with older databases which
only understand upper-case is becoming increasingly slim.

The syntax given in these course notes is cut down for simplicity; for full infor-
mation, consult your database system's documentation. The MySQL documen-
tation is available on our system in /usr/doc/mysql-doc and /usr/doc/mysql-

manual, O by pOil’ltiIlg your web browser at http://training.netizen.com.au/.

18.2.1 General syntax

SQL is case usually insensitive, apart from table and field names (which may or
may not be case sensitive depending on what platform you're on -- on UNIX
they are usually case sensitive, on Windows they usually aren't).

String data can be delimited with either double or single quotes. Numerical data
does not need to be delimited.

Wildcards may be used when searching for string data. A ¢ (percent) sign is
used to indicated multiple characters (much as an asterisk is used in DOS or
UNIX filename wildcards) while the underscore character () can be used to in-
dicate a single character, similar to the » under UNIX or DOS.

The following comparison operators may be used:

Table 18-7. Comparison Operators

Operator Meaning
= Equality

Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
<> Inequality

PerlClass.com for ACT Students 20-23 Feb 2007 291

18

292

Relational databases

like Wildcard matching

In the following syntax examples, the term condition is used as shorthand
for any expression which can be evaluated for truth, for instance 2 + 2 = 4 or

name like "AS%".

Conditions may be combined by using and and or; use round brackets to indi-
cate precedence. For instance, name 1ike "A%" or name like "B%" Will find all
records where the "'name" field starts with A or B.

18.2.1.1 SELECT

An SQL se1ect statement is used to select certain rows from a table or tables.
A select query will return as many rows as match the criteria.

select fieldl [, field?, field3] from tablel [, tablel]

where condition

order by field [desc]

select id, name from customer;
select id, name from customer order by name;
select id, name from customer order by name desc;

We can use a select statement to obtain data from multiple tables. This is re-
ferred to as a “*join".

select * from customer, sales where customer.id = sales.customer_id

18.2.1.2 INSERT

An insert query is used to add data to the database, a row at a time.
The columns names are optional to make typing queries easier. This is fine for

interactive use, however it is very bad practice to omit them in programs. Always
specify column names in insert statements.

PerlClass.com for ACT Students 20-23 Feb 2007

Relational databases 18

insert into tablename (col_namel, col_name?2, col_name3) values
(valuel, value?, value3);

insert into stock_item (id, description, price, quantity) values (O,
'doodad', 9.95, 12);

Note that since the id field is an auto_increment field in the Acme inventory
database we've set up, we don't need to specify a value to go in there, and just
use zero instead --- whatever we specify will be replaced with the auto-incre-
mented value. Auto-increment fields of some kind are available in most
database systems, and are very useful for creating unique ID numbers.

18.2.1.3 DELETE

A delete query can be used to delete rows which match a given criteria.
delete from tablename where condition

delete from stock_item where quantity = 0;

18.2.1.4 UPDATE

The update query is used to change the values of certain fields in existing
records.

update tablename set fieldl = expression, field2 = expression
where condition

update stock_item set quantity = (quantity - 1) where 1id = 4;

18.2.1.5 CREATE
The create statement is used to create new tables in the database.
create table tablename (

column coltype options,

column coltype options,

PerlClass.com for ACT Students 20-23 Feb 2007 293

18 Relational databases

primary key (colname)

)

Data types include (but are not limited to):

Table 18-8. Some data types

INT an integer number

FLOAT a floating point number

CHAR(n) character data of exactly n characters

VARCHAR(n) character data of up to n characters (field
grows/shrinks to fit)

BLOB Binary Large OBject

DATE A date in YYYY-MM-DD format

ENUM enumerated string value (eg "Male" or
"Female")

Data types vary slightly between different database systems. The full range of
MySQL data types is outlined in section 7.2 of the MySQL reference manual.

create table contactlist (
id int not null auto_increment,
name varchar(30),

phone varchar(30),
primary key (id)

18.2.1.6 DROP

The drop statement is used to delete a table from the database.
drop table tablename

drop table contactlist

294 PerlClass.com for ACT Students 20-23 Feb 2007

Relational databases 18

18.3 Chapter summary

- A database table contains fields and records of data about one entity

- SQL (Structured Query Language) can be used to manipulate and retrieve
data in a database

- A serECT query may be used to retrieve records which match certain criteria
- An 1nsERT query may be used to add new records to the database

- A pELETE query may be used to delete records from the database

- An uppaTE query may be used to modify records in the database

- A creaTE query may be used to create new tables in the database

- A prop query may be used to remove tables from the database

PerlClass.com for ACT Students 20-23 Feb 2007 295

Chapter 19: MySQL

In this chapter...

In this section we examine the popular database MySQL, which is
available for free for many platforms. MySQL is just one of many
database systems which can be accessed via Perl's DBI module.

19

MySQL

19.1 MySQL features

19.1.1

19.1.2

298

General features

. Fast
- Lightweight
. Command-line and GUI tools

- Supports a fairly large subset of SQL, including indexing, binary objects

(BLOBs), etc

- Allows changes to structure of tables while running
- Wide userbase

- Support contracts available

Cross-platform compatibility

- Available for most UNIX platforms

- Available for Windows NT/95/98 (there are license differences)

- Available for OS/2

- Programming libraries for C, Perl, Python, PHP, Java, Delphi, Tcl, Guile (a

scheme interpreter), and probably more...

- Open-source ODBC

PerlClass.com for ACT Students 20-23 Feb 2007

MySQL 19

19.2 Comparisions with other popular DBMSs

19.2.1 PostgreSQL

MySQL and PostgreSQL are very similar in many ways. MySQL is driven by
one company while PostgreSQL is an open source project with major contribu-
tions coming from a variety of companies and individuals.

More information: http://www.postgresqgl.org/

19.2.2 Oracle, Sybase, etc

MySQL will not give you the features of Oracle or other enterprise-level
database management systems. In particular, MySQL lacks triggers and views.
The price you pay for this is that Oracle costs a lot, and requires heavy hard-
ware to run on and is much more maintenance intensive. MySQL is better suit-
ed to small-to-medium database applications such as web-based database appli-
cations, and will do so happily on a common PC.

More information: http://www.oracle.com/

PerlClass.com for ACT Students 20-23 Feb 2007 299

19 MySQL

19.3 Getting MySQL

MySQL can be downloaded from nttp: //www.mysql.com/0Or mirror sites world-
wide. It is also available in packaged binary format for various operating sys-
tem distributions, including RedHat and Debian linux.

Installation instructions come with the software, but in brief:

19.3.1 Red Hat Linux

Download the appropriate RPM packages, and type rpm -i packagename. rpm

MySQL is included with Fedora, Red Hat Enterprise, CentOS, and any other
current Red Hat-derived Linuxes. So the standard package installers should
have no trouble installing this for you. For instance;

yum install mysql

19.3.2 Debian Linux

Use apt-get, dselect, OF dpkg to install the .deb packages. For instance, apt-
get install mysqgl.

19.3.3 Compiling from source

Download the tar.gz file from http://www.mysql.com/ and read the reapme file.
Then type ./configure, make, and make install.

19.3.4 Binaries for other platforms

Binaries are available for many platforms, including Windows and some com-
mercial UNIX platforms. Follow the installation instructions found in the
reADME file.

300 PerlClass.com for ACT Students 20-23 Feb 2007

MySQL

19.4 Setting up MySQL databases

A tool called mysgladmin is distributed with MySQL. This tool allows the
database administrator (DBA) to create, remove, or otherwise manage databas-

€S.

Table 19-1. Mysqladmin commands:

create databasename

Create a new database

drop databasename

Delete a database and all its tables

flush-hosts Flush all cached hosts
flush-logs Flush all logs
flush-tables Flush all tables

kill id,1id, ... Kill mysql threads

password new-password

Change old password to new-
password

processlist Show list of active threads in
server

reload Reload grant tables

refresh Flush all tables and close and
open logfiles

shutdown Take server down

status Gives a short status message from
the server

variables Prints variables available

version Get version info from server

19

More help for this command is available by typing mysgladmin --help from the
command line or by reading the MySQL reference manual.

19.4.1 Creating the Acme inventory database

PerlClass

To create a database called inventory, we would perform the following steps as
the user who has permission to run mysgladmin (€g root):

% mysgladmin create inventory
% mysgladmin reload

.com for ACT Students 20-23 Feb 2007

301

19 MySQL

19.4.2 Setting up permissions

To set up security permissions for the inventory database, we would need to
create appropriate records in the mysq1 database (that's right, it's a database
which has the same name as the database server). This is the central repository
for access control information for all databases served by your MySQL server.

Typically, you will want to:
- create an entry in the 4o table for the database
- set the default permissions for the database

- create an entry in the user table for any users who should be allowed to
access the database

- set default permissions for each user
All these are achieved by performing simple INSERT or UPDATE queries on
the tables in question.

Table 19-2. Available permissions include ...

Select May perform SELECT queries

Insert May perform INSERT queries

Update May perform UPDATE queries

Delete May perform DELETE queries

Create May create new tables

Drop May drop (delete) tables

Reload May reload the database

Shutdown May shut down the database

Process Has access to processes on the OS

File Has access to files on the OS's file system

19.4.3 Creating tables

The SQL statements used to create tables are documented in the MySQL manu-
al. creaTE statements are used to create each individual table by specifying the
fields for each table, their data types and other options.

302 PerlClass.com for ACT Students 20-23 Feb 2007

MySQL 19

Below is an example --- these SQL statements create the Acme Widget Co. ta-
bles we will be working with throughout this session. The output you see is
generated by the mysqldump program, and can be read back into a database
via command line redirection, eg mysql database < filename.

#
Table structure for table 'customer'
#
CREATE TABLE customer (
id int(11) DEFAULT 'O' NOT NULL auto_increment,
name varchar(80),
address varchar(255),
suburb varchar(50),
state char(3),
postcode char(10),
PRIMARY KEY (id)

);

#
Table structure for table 'sales'
#
CREATE TABLE sales (
id int(11) DEFAULT 'O' NOT NULL auto_increment,
sale_date date,
customer_id int(11),
salesperson_id int(11),
stock_item_id int(11l),
quantity int(11),
price float(4,2),
PRIMARY KEY (id)
)

#

Table structure for table 'salesperson'

#

CREATE TABLE salesperson (
id int(11) DEFAULT 'O' NOT NULL auto_increment,
name varchar(80),
PRIMARY KEY (id)

PerlClass.com for ACT Students 20-23 Feb 2007 303

19 MySQL

);

#
Table structure for table 'stock_item'
#
CREATE TABLE stock_item (
id int(11) DEFAULT 'O' NOT NULL auto_increment,
description varchar(80),
price float(4,2),
quantity int(11),
PRIMARY KEY (id)

304 PerlClass.com for ACT Students 20-23 Feb 2007

MySQL 19

19.5 The MySQL client

To talk to any database server, you will need to use a client of some kind.
MySQL comes with a text-based client by default, but there are graphical
clients available, as well as ODBC drivers to allow you to interact with a
MySQL database from Windows applications such as Microsoft Access.

The command line client can be invoked from the command line with the mysq1
command. The mysq1 command takes a database name as a required argument,
as well as other optional arguments such as -p, which causes the client to ask
for a password for access to the database if access controls have been set up.

You can see all the options available on the command line by typing nysq1 -
help.

ADVANCED

You can set up access controls on a database by editing the
data in the mysq1 database (i.e. type mysql mysql on the com-
mand line) or by using the mysglaccess command. Type
mysqlaccess --help for more information about this com-
mand.

$ mysql -p databasename
welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2 to server version: 3.21.33b

Type 'help' for help.

mysql>
The MySQL client allows you to type in commands on one or many lines.
When you finish a statement, type ; to end, same as for Perl.
To quit the client, type quit or \q.

For a full outline of commands available in the client, type he1p or \n. It will
give you this message:

PerlClass.com for ACT Students 20-23 Feb 2007 305

19 MySQL

mysql> \h

MySQL commands:
help (\h) Display this text

? (\h) Synonym for "help'

clear Ao Clear command

connect (\r) Reconnect to the server. Optional arguments are db
and host

edit (\e) Edit command with $EDITOR

exit AN\) Exit mysql. Same as quit

go (\g) Send command to mysqgl server

print Ap) print current command

quit A Quit mysqT
rehash (\#) Rebuild completion hash

status (\s) Get status information from the server
use Aw Use another database. Takes database name as
argument

Connection id: 1 (Can be used with mysqladmin kill)

306 PerlClass.com for ACT Students 20-23 Feb 2007

MySQL 19

19.6 Understanding the MySQL client prompts

The prompt that shows when you are using the MySQL client tells you a lot
about what's going on.

The normal prompt looks like this:

mysql>

This means it is waiting for you to enter an SQL query.

If you are in the middle of entering an SQL query, it will be waiting for a semi-
colon to terminate the query, and will look like this:

->

If you have opened a set of quotes but not closed them, you will see one of
these prompts:

PerlClass.com for ACT Students 20-23 Feb 2007 307

19

MySQL

19.7 Exercises

308

. Connect to a database which has the same name as your login (for instance,

stu01) by typing mysql -p stu01 (the -p flag causes it to ask you for your
password, which in this case is the same as your login password). The
database you are connecting to is your own personal copy of the Acme
Widget Co. inventory and sales database mentioned in the previous section

. Type show tables to show a list of tables in this database

3. Type describe customer to see a description of the fields in the table

customer

. Type select * from customer to perform a simple SQL query

5. Try selecting fields from other tables. Try both seiect * and select

fieldl, field2type queries.

. Use the where clause to limit which records you select
7. Use the order by clause to change the order in which records are returned

. Insert a record into the customer table which contains your own name and

address details

. Update the price of widgets in the stock item table to change their price to

$19.95

When developing database applications, it is often useful to keep a client pro-
gram such as this one open to test queries or check the state of your data. You
can open multiple telnet sessions to our training system to do this if you wish.

PerlClass.com for ACT Students 20-23 Feb 2007

MySQL 19

19.8 Chapter summary

- MySQL is one of many database systems which can be used as the back-end
to a web site
- MySQL can be downloaded from http://www.mysql.com/ or mirror sites

- The MySQL command line client can be used to interact with MySQL
databases

- The MySQL client allows the user to type in SQL queries and prints results
to the screen.

PerlClass.com for ACT Students 20-23 Feb 2007 309

Chapter 20: The DBI
and DBD modules

In this chapter...

In this section we look at the Perl module which can be used to inter-
act with many database servers: DBI.

20 The DBI and DBD modules

20.1 What is DBI?

Like the Perl modules discussed in last week's CGI programming course, the
DBI and DBD modules are written by Perl people and distributed for free via
CPAN (the Comprehensive Perl Archive Network).

DBI stands for "Database Interface" while DBD stands for "Database Driver".
You need both types of modules, working together, in order to access databases
using Perl.

RTFM!

12 411 - 423
DBI

14 562 - 578

B 291 light

312 PerlClass.com for ACT Students 20-23 Feb 2007

The DBI and DBD modules

20.2 DBI documentation set

C P ﬁ N Home - Authors - Recent - MNews - Mirrors - FAQ - Feedback

inIA” vl CPANSearchl

Tim Bunce = DBI-1.53

DBI-1.53
This Release DBI-1.53 [Download] [Browse] 01 Mov 2006

Other Releases [pp152 — nsAugeons -] _Goto |
Links | [CPAM Testers | [Discussion Forum | [Wiew/Report Bugs (5)][Tools |
CPAN Testers FPASS (35) [Wiew |
Rating i (27) | View | [Rate this distribution |
License Lnknown
Special Files MAMIFEST METAymI Makefile PL README

Eundle:DEI A bundle to install DBl and required madules. 11.03
DED:DBEM a DBl driver for DEM & MLDBM files 003
DED: ExampleP 11.12
DED:File Base class for wiiting DEI drivers 0.35
DBED:MullP 11.04
DED: Prosey A proxy driver far the DB 0.2004
DED: Sponge Create a DBl statement handle from Perl data 1110
DBl Database independent interface for Perl 153
DBl Const: Getinfo: ANSI ISO/EC SQALCLI Constants for Getlnfo 1.03
DBl Const: Getlnfor ODBC ODEC Caonstants far Getlnfo 1.03
DBl Const: GetinfoReturn Data and functions for describing Getlnfo results 1.04
DBl Const: GetinfoType Data describing Getlnfo type codes 1.05
CELDED Perl DBI Database Driver Writer's Guide 1122
DEI:DBD: Metadata Generate the code and data far same DEl metadata methods 1.05
DElLFAQ The Frequently Asked Questions for the Perld Database Interface 0.38
DElProfile Performance profiling and benchmarking for the DBI 1.07
DBl ProfileData manipulate DBI::ProfileDumper data dumps 1.0
DBl ProfileDumper profile DBl usage and output data to a file 1.0
DEl ProfileDumper:Apache capture DBI profiling data from Apache/mad_perl 11
DElProfileSubs Subroutines for dynamic profile Path

DBl ProwyServer a server far the DBD:: Proxy driver 0.3005
DElLSAL: MNano a very tiny SAL engine 0.03

Documentation

DEl:Changes List of significant changes ta the DEI

DEl:PureFerl a DBl emulation using pure perl (no CAXS compilation required)
DEl:Roadmap Planned Enhancements far the DEI

DEILW320DBC An experimental DB emulation layer for Win32:: ODBC
TASKS Wyant to help? These things need doing. ..

Win32 DEIODEC Win32::0DBC emulation layer far the DEI

dbiprof command-line client for DEI::PrafileData

dbiprosey A proxy server far the DED::Proxy driver

hosted by perl.org, harg\lare provided by
.

Shopping

PerlClass.com for ACT Students 20-23 Feb 2007

20

313

20 The DBI and DBD modules

20.3 Supported database types

Databases supported by Perl's DBI module include:
- Oracle

- Sybase

- Informix

- MySQL

- Msql

- Ingres

- Postgres

- Xbase

- DB2

. ... and more

314 PerlClass.com for ACT Students 20-23 Feb 2007

The DBI and DBD modules 20

20.4 How does DBI work?

DBI is a generic interface which acts as a "funnel" between the programmer
and multiple databases.

DBI protects you from needing to know the minutiae of connecting to different
databases by providing a consistent interface for the programmer. The only
thing you need to vary is the connection string, to indicate what sort of database
you wish to connect to.

To use DBI, you need to install the DBI module from CPAN, as well as any
DBD modules for the databases you use. For instance, to use MySQL you need
to install the psp: :Mysql module.

ADVANCED

To install DBI, download the DBI module from CPAN
(http://www.perl.com/CPAN), unzip it using a command like
tar -xzvf DBI.tar.gz, then follow the instructions in the
README file distributed with the module.

PerlClass.com for ACT Students 20-23 Feb 2007 315

20

The DBI and DBD modules

20.5 DBI/DBD syntax

The syntax of the database modules is best found by using the perldoc com-
mand. perldoc DBI will give you general information applicable to all DBI
scripts, while perldoc DBD::yourdatabase will give information specific
to your own database. In our case, we use perldoc DBD::mysql.

DBI is an object oriented Perl module, like the Text: :Template and
Mail::Mailer modules covered in the CGI Programming in Perl training mod-
ule. This means that when we connect to the database we will be creating an
object which is called a "database handle" which refers to a specific session
with the database. Thus we can have multiple sessions open at once by creating
multiple database handles.

We can also create statement handle objects, which are Perl objects which refer
to a previously prepared SQL statement. Once we have a statement handle, we
can use it to execute the underlying SQL as often as we want.

20.5.1 Variable name conventions

316

The following variable name conventions are used in the DBD/DBI documenta-
tion:

Table 20-1. DBI module variable naming conventions

Variable name | Meaning

$dbh database handle object

$sth statement handle object

Src Return code (boolean: true=ok, false=error)

Srv Return value (usually an integer)

Gary List of values returned from the database, typically

a row of data

Srows Number of rows processed (if available, else -1)

PerlClass.com for ACT Students 20-23 Feb 2007

The DBI and DBD modules

20.6 Connecting to the database

use DBI;

my S$driver = 'mysqgl';

my Sdatabase = 'database name'; # name of your database here
my Susername = undef; # your database username
my S$password = undef; # your database password

note that username and password should be assigned to if your
database

uses authentication (ie requires you to log in)

we set up a connection string specific to this database
my $dsn = "DBI:S$driver:database=S$database";

make the actual connection - this returns a database handle we can
use later

my $dbh = DBI->connect ($dsn, S$Susername, S$password);

when you're done (at the end of your script)
$dbh->disconnect () ;

PerlClass.com for ACT Students 20-23 Feb 2007

20

317

20

The DBI and DBD modules

20.7 Executing an SQL query

318

set up an SQL statement

my $sgl statement = "select * from customer";
my $sth = Sdbh->prepare($sgl statement)
|| die "Could not prepare: " . Sdbh->errstr();

execute it
Ssth->execute () || die "Could not execute: " . $dbh->errstr();

how many rows did we get?
my $num rows = $sth->rows();

my $num fields = $sth->{'NUM OF FIELDS'};

close the sgl query, if we don't want it any more.
$sth->finish () ;

PerlClass.com for ACT Students 20-23 Feb 2007

The DBI and DBD modules 20

20.8 Doing useful things with the data

get an array full of the next row of data that matches the query
(the most common, and simplest, case)
while (my Q@ary = $sth->fetchrow array()) {

print "The first field is S$Sary[0]\n";

get a hash reference instead

(the more complicated, but more useful, version)

while (my Shashref= $sth—>fetchrow_hashref()) {
print "Name is S$hashref->{'name'}\n";

}

you can also get an arrayref

(equally complicated and not quite as useful)

while (my Sary ref = S$sth->fetchrow arrayref ()) {
print "The first field is Sary ref->[0]\n";

ADVANCED

Of the above methods, fetchrow array () is the only one that
does not require an understanding of Perl references.
References are not a beginner-level topic, but for those who
are interested, they are documented in chapter 4 of the
Camel. They are worth learning if only for the added benefit
of being able to access fields by name when using the
fetchrow_hashrefIHﬁthOd.

PerlClass.com for ACT Students 20-23 Feb 2007 319

20 The DBI and DBD modules

20.9 An easier way to execute non-SELECT
queries

If you wish to execute a query such as INSERT, UPDATE, or DELETE, you
may find it easier to use the do () method:

Sdbh->do ("delete from sales")
|| warn("Can't delete from sales table");

This method returns the number of rows affected, or undef if there is an error.

320 PerlClass.com for ACT Students 20-23 Feb 2007

The DBI and DBD modules 20

20.10 Quoting special characters in SQL

Sometimes you want to use a value in your SQL which may contain characters
which have special behavior in SQL, such as a percent sign or a quote mark.
Luckily, there is a method which can automatically escape all special charac-

ters:

my $string = "20% off all stock";
my Sclean string = $dbh->quote (S$Sstring);

PerlClass.com for ACT Students 20-23 Feb 2007 321

20 The DBI and DBD modules

20.11 Exercises

1. Use exercises/perldb/scripts/easyconnect.pl to connect to your Acme
Widget Co. database. You will need to edit some of the lines at the top.

2. Use a while loop to output data a row at a time

3. Check all your statements for indications of failure, and output messages to
the user using warn () if any of the steps fail.

20.11.1 Advanced exercises

1. If you wish, you can use a hash reference instead of an array

2. Change the SQL in easyconnect.pl to use a non-SELECT statement, and
use the do method instead of the prepare and execute methods. Don't forget
to check the return value!

322 PerlClass.com for ACT Students 20-23 Feb 2007

The DBI and DBD modules 20

20.12 Chapter summary

- The DBI module provides a consistent interface to a variety of database
systems

- The DBI module can be downloaded from CPAN
- Documentation for the DBI module can be found by typing perldoc DBI

PerlClass.com for ACT Students 20-23 Feb 2007 323

Chapter 21: Acme
Widget Co. Exercises

In this chapter...

In the second half of this training module, we will be tying together
what we have learned about SQL and DBI, and creating a simple ap-
plication for Acme Widget Co. to assist them in inventory manage-
ment, sales, and billing.

21 Acme Widget Co. Exercises

21.1 The Acme inventory application

In your exercises/perldb/ directory you will find a subdirectory called acme/
which contains the outline of the Acme inventory application which you will
build upon for the rest of today.

326 PerlClass.com for ACT Students 20-23 Feb 2007

Acme Widget Co. Exercises 21

21.2 Listing stock items

The shell of a stock-listing script is available in your exercises/perldb/acme/
directory as stocklist.pl.

#!/usr/bin/perl -w
use strict;
use DBI;

my $driver = 'mysql’;

my $database "trainxX';

my $username "trainxXx';

my $password 'your_password_here';

my $dsn = "DBI:$driver:database=$database”;
my $dbh = DBI->connect($dsn, S$username, $password)
|| die $DBI::errstr;

my $sql_statement = "select * from stock_item";
my $sth = $dbh->prepare($sql_statement);
$sth->execute() or die ("Can't execute sQL: " . $dbh->errstr());

while (my @ary = $sth->fetchrow_array()) {
print <<"END";

ID: $ary[0]
Description: $ary[1]
Price: $ary[2]
Quantity: $ary[3]
END

}

$dbh->disconnect();

1. Fill in the variables indicated ($database, $sql_statement, €tc)
2. Test your script from the command line

3. Sort the output in alphabetical order by Description

PerlClass.com for ACT Students 20-23 Feb 2007 327

21 Acme Widget Co. Exercises

21.2.1 Advanced exercises:

1. If you are familiar with Perl references, convert the script to use
fetchrow hashref ()

2. Ask the user to specify a field to sort by, either as a command line argument
or on STDIN. If the sort order parameter is given, use it to change the sort
order in your SQL statement and re-output the result, otherwise default to
something sensible such as ID

328 PerlClass.com for ACT Students 20-23 Feb 2007

Acme Widget Co. Exercises 21

21.3 Adding new stock items

1. Write a script which prompts the user for input, asking for values for
description, quantity and price. Remember that the stock item's ID will be
automatically filled in by the database, as it is an "auto increment" field.

2. Next, create an SQL query to add a record to the database. Output a
message to the user indicating the success (or failure) of the operation. A
sample script to get you started is available in
exercises/perldb/acme/addstock.pl

21.3.1 Advanced exercises

1. Check that the price is a number (use regular expressions for these checks)
2. Check that it has two decimal places

3. Check that the number of items in stock is a number

PerlClass.com for ACT Students 20-23 Feb 2007 329

21 Acme Widget Co. Exercises

21.4 Entering a sale into the system

1. The program exercises/perldb/acme/sale.pl provides an interface which
can be used to input data pertinent to the occurence of a sale

2. Write a script which records the sale in the sales table

3. Your script will also have to update the stock_item table to reduce the
number of items still in stock.

4. What happens if you try to buy/sell more items than are available? Put in a
check to stop this from happening.

330 PerlClass.com for ACT Students 20-23 Feb 2007

Acme Widget Co. Exercises 21

21.5 Creating sales reports

1. Copy the code from the previous example's script to create a script that asks
the user for a salesperson's ID number and a start and end date.

2. Use the script to output a sales report for the chosen salesperson for the
period between the two dates.

21.5.1 Advanced exercises

1. Create an extra option for "all" sales people, which shows all the sales
people in descending order of sales made. You may need to use an SQL
group by clause to achieve this.

PerlClass.com for ACT Students 20-23 Feb 2007 331

21 Acme Widget Co. Exercises

21.6 Searching for stock items

1. Create a script which asks a user for a string to search for in a stock item's
description (eg "dynamite").

2. Allow the user to choose either "Full name", "Beginning of name" or "Part
of name" as a search type.

3. Create different SQL queries using 11xE to search the data depending on
their choices

21.6.1 Advanced exercises

1. Change the script so that people can use DOS/UNIX style wildcards (» and
?) then use their wildcard expression in your SQL query - convert the
wildcards to SQL-style wildcards by using regular expressions

332 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 22: Reference
S

In this chapter...

This section is included as an optional topic. It is intended for those
who have experience in C or other languages which use pointers and
references.

RTFM!

References are covered at length in the first chapter of the
O'Reilly book Advanced Perl Programming by Sriram Srini-
vasan (the "Panther" book). Lastly, perldoc perlref contains
online documentation related to Perl references.

22 References

22.1 Uses for Perl references

- creating complex data structures, for example multi-dimensional arrays

- passing multiple arrays and hashes to subroutines and functions without them
getting smushed together

- creating anonymous data structures

334 PerlClass.com for ACT Students 20-23 Feb 2007

References 22

22.2 Creating and deferencing

To create a reference to a scalar, array or hash, we prefix its name with a back-
slash:

"This is a scalar";

gw(a b c);

('sky' => 'blue',
‘apple' => 'red’,
'grass' => 'green'

my $scalar
my @array
my %hash

)
my $scalar_ref = \$scalar;
my $array_ref = \@array;
my $hash_ref = \%hash;

Note that all references are scalars, because they contain a single item of infor-
mation - the memory address of the actual data.

Dereferencing (getting at the value that a reference points to) is achieved by
prepending the appropriate variable-type punctuation to the name of the refer-
ence. For instance, if we have a hash reference shash reference we can deref-
erence it by looking for ¢shash reference.

$$scalar_ref;
@$array_ref;
%$hash_ref;

my $new_scalar
my @new_array
my %new_hash

In other words, wherever you would normally put a variable name (like
new_scalar) you can put a reference variable (like $scalar ref).

Here's how you access array elements or slices, and hash elements:

print $$array_ref[0]; # prints the first element of the
array referenced by $array_ref

print $$array_ref[0..2]; # prints an array slice

print $$hash_ref{'sky'}; # prints a hash element's value

PerlClass.com for ACT Students 20-23 Feb 2007 335

22 References

The other way to access the value that a reference points to is using the "arrow"
notation. This notation is usually considered to be better Perl style than the one
shown above, which can have precedence problems and is less visually clean.

print $array_ref->[0];
print $hash_ref->{'sky'};

RTFM!

The Panther book describes a good way to visualise this
method. Ask your instructor to demonstrate it or to loan you
a copy of the book if you need a better understanding of the
above syntax.

336 PerlClass.com for ACT Students 20-23 Feb 2007

References 22

22.3 Complex data structures

We can use references to create complex data structures, such as this hash in
which the values are arrays rather than scalars. Actually, they are scalars, since
the array references are scalars, but they point to arrays.

my @fruits = gqw(apple orange pear banana);
my @rodents = gw(mouse rat hamster gerbil rabbit);
my @books = qw(camel 1lama panther);

my %categories = (

"fruits' => \@fruits,
'rodents'’ => \@rodents,
'books’ => \@books,

)

to print out "gerbil"...
print $categories->{'rodents'}->[3];

PerlClass.com for ACT Students 20-23 Feb 2007 337

22 References

22.4 Passing multiple arrays/hashes as
arguments

If we were to attempt to pass two arrays together to a function or subroutine,
they would be flattened out to form one large array:

mylist(@fruit, @rodents);

print out all the fruits then all the rodents
sub mylist {
my @list = @_;
foreach (@1ist) {
print "$_\n";

}

If we want them kept separate, pass references:

myreflist(@fruit, @rodents);

sub myreflist {
my ($firstref, $secondref) = @_;
print "First Tist:\n";
foreach (@$firstref) {
print "$_\n";
}
print "Second list:\n";
foreach (@$secondref) {
print "$_\n";

338 PerlClass.com for ACT Students 20-23 Feb 2007

References 22

22.5 Anonymous data structures

Lastly, references can be used to create anonymous data structures which are
destroyed once you're done with them. An anonymous array is created by using
square brackets instead of round ones. An anonymous hash uses curly brackets
instead of round ones.

the old two-step way:
my @array = qw(a b c d);
my $array_ref = \@array;

if we get rid of $array_ref, @array will still hang round using
up memory. Here's how we do it without the intermediate step:

my $array_ref = ['a', 'b', 'c', 'd'];
look, we can still use qw() too...
my $array_ref = [gw(a b c d)];

more useful yet:

my %transport = (

'cars' => [gw(toyota ford holden porsche)],
'planes'’ => [gw(boeing harrier)],
'boats' => [qw(c1ipper skiff dinghy)],

PerlClass.com for ACT Students 20-23 Feb 2007 339

22

References

22.6 Chapter summary

340

- References may be used to create complex data structures, pass multiple

arrays and hashes to subroutines, and to create anonymous data structures

- References are created by prefixing the name of a variable with a backslash

- References are dereferenced by using the name of a reference (including the

dollar sign) where we would usually use the alphanumeric name of a
variable, or by using the arrow notation.

- References can be included in Perl data structures anywhere you might

ordinarily find scalars.

- References to anonymous arrays may be created by initialising an array using

square brackets instead of round ones.

- References to anonymous hashes may be created by initialising an hash using

curly brackets instead of round ones.

PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 23: What is
CGI?

In this chapter...

In this section we will define the term CGI and learn how web
servers use CGI to provide dynamic and interactive material. We ex-
plore the Hypertext Transfer Protocol as it applies to both static and
CGl-generated content, and examine raw HTTP requests and re-
sponses by telnetting to a web server.

23

What is CGI?

23.1 Definition of CGI

342

CGl is the Common Gateway Interface, a standard for programs to interface
with information servers such as HTTP (web) servers. CGI allows the HTTP
server to run an executable program or script in response to a user request, and
generate output on the fly. This allows web developers to create dynamic and
interactive web pages.

CGI programs can be written in any language. Perl is a very common language
for CGI programming as it is largely platform independent and the language's
features make it very easy to write powerful applications. However, some CGI
programs are written in C, shell script, or other languages.

It is important to remember that CGI is not a language in itself. CGI is merely a
type of program which can be written in any language.

PerlClass.com for ACT Students 20-23 Feb 2007

What is CGI? 23

23.2 Introduction to HTTP

To understand how CGI works, you need some understanding of how HTTP
works.

HTTP stands for HyperText Transfer Protocol, and (not very surprisingly) is
the protocol used for transferring hypertext documents such as HTML pages on
the World Wide Web.

For the purposes of this course, we will only be looking at HTTP version The
current version, 1.1, is specified in RFC 2068 and contains many more features,
but none of them are necessary for a basic understanding of CGI programming.
An HTTP cheat-sheet, containing some common terminology and a table of sta-
tus codes, appears in Appendix E.

RTFM!

RFCs, or "Request For Comment" documents, can be
obtained from the Internet Engineering Task Force (IETF)
website (http://www.ietf.org/) or from mirrors such as the
RFC mirror at Monash University
(ftp://ftp.monash.edu.au/pub/rfc/).

A simple HTTP transaction, such as a request for a static HTML page, works as
follows:

1. The user types a URL into his or her browser, or specifies a web address by
some other means such as clicking on a link, choosing a bookmark, etc

. The user agent connects to port 80 of the HTTP server
. The user agent sends a request such as GET /index.html

. The user agent may also send other headers

whn W DN

. The HTTP server receives the request and finds the requested file in its
filesystem

6. The HTTP server sends back some HTTP headers, followed by the contents
of the requested file

7. The HTTP server closes the connection

PerlClass.com for ACT Students 20-23 Feb 2007 343

ftp://ftp.monash.edu.au/pub/rfc/

23

344

What is CGI?

When a user requests a CGI program, however, the process changes slightly:

1. The user agent sends a request as above

2. The HTTP server receives the request as above

3. The HTTP server finds the requested CGI program in its file system
4. The HTTP server executes the program

5.
6
7
8

The program produces output

. The output includes HTTP headers
. The HTTP server sends back the output of the program

. The HTTP server closes the connection

PerlClass.com for ACT Students 20-23 Feb 2007

What is CGI? 23

23.3 Terminology

authentication
The process by which a client sends username and password information to
the server, in an attempt to become authorized to view a restricted resource.
client
An application program that establishes connections for the purpose of
sending requests.
Content-type
The media type of the body of the response, as given in the content-type:
header. Examples include text/html, text/plain, image/gif, etc.
method
Indicates what the server should do with a resource. Case sensitive. Valid
methods include: GET, HEAD, POST
request

An HTTP request message sent by a client to a server

resource

A network data object or service which can be identified by a URI.

response

An HTTP response message sent by a server to a client

server
An application program that accepts connections in order to service
requests by sending back responses.

status code

A 3-digit integer indicating the result of the server's attempt to understand
and satisfy the request. A table of status codes and their meanings appears
below.

PerlClass.com for ACT Students 20-23 Feb 2007 345

23 What is CGI?

Uniform Resource Identifier (URI)
URIs are formatted strings which identify - via name, location, or any other
characteristic - a network resource.

Uniform Resource Locator (URL)
A web address. May be expressed absolutely (eg

http://www.example.com/services/index.html) Or in relation to a base
URI (eg ../index.htm1) See also URI.

user agent

The client which initiates a request. These are often browsers, editors,
spiders (web-traversing robots) or other end-user tools.

346 PerlClass.com for ACT Students 20-23 Feb 2007

What is CGI?

23.4 HTTP status codes

Table 23-1. HTTP status codes

Code Meaning

200 OK

201 Created

202 Accepted

204 No Content

301 Moved Permanently
302 Moved Temporarily
304 Not Modified

400 Bad Request

401 Unauthorized

403 Forbidden

404 Not Found

500 Internal Server Error
501 Not Implemented
502 Bad Gateway

503 Service Unavailable

PerlClass.com for ACT Students 20-23 Feb 2007

23

347

23 What is CGI?

23.5 HTTP Methods

23.51.1 GET

The GET method means retrieve whatever information is identified by the re-
quest URI. If the request URI refers to a data-producing process (eg a CGI pro-
gram), it is the produced data which is returned, and not the source text of the
process.

23.5.1.2 HEAD

The HEAD method is identical to GET except that the server will only return
the headers, not the body of the resource. The meta-information contained in
the HTTP headers in response to a HEAD request should be identical to the in-
formation sent in response to a GET request. This method can be used to obtain
meta-information about the resource without transferring the body itself.

23.5.1.3 POST

The POST method is used to request that the server use the information encod-
ed in the request URI and use it to modify a resource such as:

- Annotation of an existing resource

- Posting a message to a bulletin board, newsgroup, mailing list, or similar
group of articles

- Providing data {such as the result of submitting a form} to a data-handling
process

- Updating a database

348 PerlClass.com for ACT Students 20-23 Feb 2007

What is CGI? 23

23.6 EXxercises

The HTTP request/response process is usually transparent to the user. To see
what's going on, let's connect directly to the web server and see what happens.

Login to the system as for the Introduction to Perl course:

1

. Open the telnet program, TeraTerm
2.

Connect to the training server (your instructor will give you the hostname
or IP number)

3. Login using the username and password you were given

8.

. From the UNIX command line, type telnet localhost 80 -- this connects to

port 80 of the server, where the HTTP daemon (aka the web server) is
listening. You should see something like this:

training:~> telnet localhost 80
Trying 1.2.3.4

Connected to training.netizen.com.au.
Escape character is '~]'.

. Ask the web server for a static document by typing: GET /index.html

arTe/1.0 then press enter twice to send the request. Note that this command
1S case sensitive.

. Look at the response that comes back. Do you see the headers? They should

look something like this:

HTTP/1.1 200 OK

Date: Tue, 28 Mar 2000 02:42:37 GMT
Server: Apache/1.3.6 (UNIX)
Connection: close

Content-Type: text/html

This will be followed by a blank line, then the content of the file you asked
for. Then you will see "Connection closed by foreign host", indicating that
the HTTP server has closed the connection.

If you miss seeing the headers because the body is too long, try using the HEAD
method instead of GeT.

. Telnet to port 80 again and ask the web server for a CGI script's output by

typing<3ET /cgi-bin/localtime.cgi HTTP/1.0

Now let's get some status codes other than 200 ox from the web server:

PerlClass.com for ACT Students 20-23 Feb 2007 349

23

350

What is CGI?

+ GET /not_here.html HTTP/1.0 (a file which doesn't exist)
+ GET /unreadable.html HTTP/1.0 (a file with the permissions set wrong)

+ GET /protected.ntml HTTP/1.0 (a file protected by HTTP authentication

- we cover this later on today)

+ GET /redirected.html HTTP/1.0 (a file which is redirected to a different

URL)

.+ ENCRYPT /index.html HTTP/1.0 (a method which isn't known to our serv-

er)

PerlClass.com for ACT Students 20-23 Feb 2007

What is CGI? 23

23.7 What is needed to run CGI programs?

There are several things you need in order to create and run Perl CGI programs.
. aweb server

- web server configuration which gives you permission to run CGI

- a Perl interpreter

- appropriate Perl modules, such as CGl.pm

- ashell account is extremely useful but not essential

Most of the above requirements will need your system administrator or ISP to
set them up for you. Some will be wary of allowing users to run CGI programs,
and may require you to obey certain security regulations or pay extra for the
privilege. The most common security requirement is that CGI programs must
run under cgiwrap. This is discussed later, in the section on security.

PerlClass.com for ACT Students 20-23 Feb 2007 351

23 What is CGI?

23.8 Chapter summary

- CGI stands for Common Gateway Interface

- HTTP stands for Hypertext Transfer Protocol. This is the protocol used for
transferring documents and other files via the World Wide Web.

- HTTP clients (web browsers) send requests to HTTP (web) servers, which
are answered with HTTP responses

- The request/response can be examined by telnetting to the appropriate port of
a web server and typing in requests by hand.

352 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 24: Gene-
rating web pages with
Perl

In this chapter...

In this section, we will create a simple "Hello world" CGI program
and run it, then extend upon that to integrate parts of Perl taught in
previous modules. Alternative quoting mechanisms are briefly cov-
ered, and we also discuss debugging techniques for CGI programs.

24 Generating web pages with Perl

24.1 Your public_html directory

The training server has been set up so that each user has their own web space
underneath their home directory. All files which will be accessible via the web
should be placed in the directory named public_html. This is common for most
personal home pages.

The directory ~username/public_nhtml on the UNIX file system maps to the
URL http://nostname/~username/ via the web. So if your login name is stuo3
and you are using the PerlClass.com training server at perlclass.fini.net, you
can access your web pages at http://perlclass.fini.net/~sty03. Of course,
you will need to replace both the hostname and username to match your specif-
ic setup.

354 PerlClass.com for ACT Students 20-23 Feb 2007

Generating web pages with Perl 24

24.2 The CGIl directory

CGI scripts are usually kept in a separate directory from plain HTML files. This
directory is most commonly called cgi-bin (the "bin" stands for "binary" but
really just means "executable files", whether compiled binaries or interpreted
scripts such as Perl programs). The web server is usually set up so that you only
have permission to run CGI programs from the cgi-bin directory, for security
reasons.

1. Change to your public html directory

2. If you type Is to get a directory listing, you will see that you have several
HTML files here, as well as a cgi-bin directory.

3. Change to your cgi-bin directory and type Is, and you will see that the
example scripts for this course are already installed here.

If you were setting this up for yourself, you would need to be sure of the fol-
lowing:

1. That your home directory is world executable
2. That your public_html directory is world executable
3. That all your HTML files are world readable

4. That your cgi-bin directory is world executable - note that it is not
compulsory to have a cgi-bin directory - some server configurations allow
you to execute a CGI script from any directory.

5. That all your CGI scripts are world readable and executable

PerlClass.com for ACT Students 20-23 Feb 2007 355

24 Generating web pages with Perl

24.3 The HTTP headers

Every CGI script must output an HTTP header giving a MIME content type,
such as content-type: text/html, with a blank line after it:

print "Content-type: text/html\n\n";

Put this at the top of every CGI script, as the first thing that's printed.

ADVANCED

If your output is of another MIME type, you should print out
the appropriate content-type: header - for instance, a CGI
program which outputs a random GIF image would use con-
tent-type: image/gif

356 PerlClass.com for ACT Students 20-23 Feb 2007

Generating web pages with Perl 24

24.4 HTML output

Any other output of your script will be sent back to the web browser just as you
specify. Since we're outputting content of the type text/nhtm1 we should make
our scripts output HTML:

print "<hl>Hello, world!</h1>\n";

The above example is already in your cgi-bin directory as nello.cgi.

PerlClass.com for ACT Students 20-23 Feb 2007 357

24

Generating web pages with Perl

24.5 Running and debugging CGI programs

24.5.1

358

When writing CGI programs, there are many problems which may affect their
execution. Since these will not always be easily understood by examining the
web browser output, there are other ways to check how your program is run-
ning:

1.

First, check that your program runs by running it from the command line. It
may be that you've made a syntax error, or that your program has the wrong
permissions

. Second, try opening it in a browser. If your program runs on the command
line but does not output content to the browser, you may have forgotten to
print out the content-type: text/html header, or forgotten to leave a blank

line between the header and the body, or may have made an error in your
HTML output.

. Thirdly, check the web server's log files. Where these are will vary from
system to system. On our system, they're in /var/log/apache, and you can
check them using cat, less, tail, or any other tool of your choice. If you
don't know what these commands do, check their manual pages by typing
man cat, man less, etc.

Exercises

. Look at the output of the he110.cgi script by pointing a web browser (such
as Netscape) at http://hostname/~trainXx/cgi-bin/hello.cgi (replace
hostname with the hostname or IP address of the training server, and XX
with your number)

. Modify ne11o.cgi to set a variable sname and include that name in the
greeting. (Don't forget to use strict;)

3. Run your modified he11o.cgi from the command line to ensure that it runs.

. Press the reload button in your browser to see if your modifications worked
correctly.

PerlClass.com for ACT Students 20-23 Feb 2007

Generating web pages with Perl 24

24.6 Quoting made easy

It can be annoying to output HTML using double quotes. You may find your-
self doing things like this:

print "\n";
print "A hypertext link\n";

Escaping all those quotes with backslashes can get tedious and unreadable.
Luckily, there are a couple of ways around it.

24.6.1 Here documents

91

“Here
found:

documents allow you to print everything until a certain marker is

print <<"END";

A hypertext Tink
END

You can specify what end marker you want on in the print statement.

The fact that the marker is in double quotes means that the material up until the
end marker is found will undergo interpolation in the same way as any double-
quoted string. If you use single quotes, it'll act like a single-quoted string, and
no interpolation will occur.

ADVANCED

If you use backticks, it will execute each line via the shell.

The end marker must be on a line by itself, at the very start of the line. Note
also that the print statement has a semi-colon on the end.

PerlClass.com for ACT Students 20-23 Feb 2007 359

24

Generating web pages with Perl

24.7 Pick your own quotes

360

Another way of avoiding excessive backslashes in your code is to use the qq ()
or g () operators/functions.

RTFM!

4 46
2 41
2 63 - 64
perlop
1 3
3 43 -44 qw()

print qq(\n);
print gq(A hypertext link\n);

Like the matching and substitution operators m// and s///, the quoting opera-
tors can use just about any character as a delimiter:

print qq(A hypertext link\n);
print qq'!A hypertext Tink\n!;
print gql[A hypertext link\n];
print gg#A hypertext 1link\n#;

If the opening delimiter is a bracket type character, the closing delimiter will be
the matching bracket.

Always choose a delimiter that isn't likely to be found in your quoted text. A
slash, while common in non-HTML uses of the function, is not very useful for
quoting anything containing HTML closing tags like </p>.

PerlClass.com for ACT Students 20-23 Feb 2007

Generating web pages with Perl 24

24.8 Exercises

The following exercises practice using CGI to output different Perl data types
(as taught in Introduction to Perl) such as arrays and hashes. You may use plain
double quotes, "“here" documents, or the quoting operators as you see fit.

1. Write a CGI program which creates an array then outputs the items in an
unordered list (HTML's <u1> element) using a foreach loop. If you need
help with HTML, there's a cheat sheet in Chapter 35 starting on page 457.

2. Modify your program to print out the keys and values in a hash, like this:
- Name is Fred
- Sex 1s male

. Favorite colour is blue

3. Change your CGI program so that you output a table instead of an
unordered list, with the keys in one column and the values in another. An
example of how this could be done is in cgi-bin/hashtable.cgi

PerlClass.com for ACT Students 20-23 Feb 2007 361

24

Generating web pages with Perl

24.9 Environment variables

In Perl, there is a special variable called exv which contains all the environ-
ment variables which are set.

When a web server runs a CGI program, certain environment variables are set
to provide information about the web server, the request made by the user
agent, and other pertinent information.

Examples of environment variables available to your CGI script include
HTTP_USER_AGENT which describes the user agent or browser used to make
the request, and HTTP_REFERER, which indicates the referring page (if any).

24.9.1 Exercises

362

1. Modify your table-printing script from the previous exercise to print out the
hash senv.

2. The urTP_UsSER AGENT environment variable contains the type of browser
used to request the CGI script.

- Write a script which prints out the user agent string for the requesting
browser

- Take a look at what various browsers report themselves as -- try
Netscape, Internet Explorer, or Lynx from the UNIX command line. You
will note that Microsoft browsers purport to be "Mozilla compatible" (i.e.
compatible with Netscape).

- Use a regular expression to determine when a certain browser (for
instance, Microsoft Internet Explorer) is being used, and output a
message to the user.

3. The urTe REFERER (YyeS, it's spelt incorrectly in the protocol definition)
environment variable contains the URL of the page from which the user
followed a link to your CGI program. If you call up your CGI program by
typing its URL straight into the browser, the arte_reEFERER Will be an empty
string. Create an HTML page that points to your CGI program and see what
the rREFERER environment variable says.

PerlClass.com for ACT Students 20-23 Feb 2007

Generating web pages with Perl 24

2410 Chapter summary
- CGI scripts are programs written in Perl or any other language that output
web content such as HTML pages

- CGI scripts must output a Content-type header and a blank line before
anything else

- Debugging techniques for CGI:
- Run the script from the command line
- Try opening it in the browser
- Check the logs

- Various techniques are available for quoting text, including "here" documents
and Perl quoting functions such as gq ().

- The senv special variable can be used to access environment variables via
CGI scripts, including such variables as HTTP. USER AGENT and
HTTP_REFERER

PerlClass.com for ACT Students 20-23 Feb 2007 363

Chapter 25: Process-
ing form input

In this chapter...

CGI programs are often used to accept and process data from HTML
forms. In this section, we take a quick look at HTML forms and use
the cct module to parse form data.

25 Processing form input

25.1 A quick look at HTML forms

To be able to use CGI to accept user input, you will probably need to under-
stand HTML forms. There's an HTML cheat-sheet in Chapter 34 starting on
page 455 of these notes, but here's a brief run-down of the major parts of
HTML forms:

366 PerlClass.com for ACT Students 20-23 Feb 2007

Processing form input

25.2 The FORM element

The rorM element is a block level element - that means that the browser will

present it on a new line, like it does with headings and paragraphs.

The rorM element's attributes include:

Table 25-1. FORM element attributes

Attribute

Example

Description

METHOD

METHOD="POST"

The HTTP method to use to send
the form's contents back to the web
server. It can be posT or GeT -- the
differences are explained the the
HTTP cheat sheet appendix.

ACTION

ACTION="../cgi-

bin/myscript.cgi"

The relative or absolute URL of the
CGI program which is to process
the form's data

Other attributes exist, but will not be used in this course.

PerlClass.com for ACT Students 20-23 Feb 2007

25

367

25 Processing form input

25.3 Input fields

Some of the input fields you can use in your form include:

25.3.1 TEXT

A text input field <INPUT TYPE="TEXT" NAME="email address">

25.3.2 CHECKBOX

Creates a yes/no checkbox. Saying cueckep will make it checked by default.

<INPUT TYPE="CHECKBOX" NAME="send_email" CHECKED>

25.3.3 SELECT

Creates a drop-down list of items. Saying serect murtipLe will allow for multi-
ple choices to be made.

<SELECT NAME="hobbies">
<OPTION VALUE="philately">Philately</OPTION>
<OPTION VALUE="gardening">Gardening</OPTION>
<OPTION VALUE="programming">Programming</OPTION>
<OPTION VALUE="cookery">Cookery</OPTION>
<OPTION VALUE="reading">Reading</OPTION>
<OPTION VALUE="bushwalking">Bushwalking</OPTION>
</SELECT>

25.3.4 SUBMIT

Creates a button which, when pressed, will submit the form.

<INPUT TYPE="SUBMIT" VALUE="Press me!'>

368 PerlClass.com for ACT Students 20-23 Feb 2007

Processing form input 25

25.4 The cGI module

25.4.1 What is a module?

A module is a collection of useful functions which you can use in your pro-
grams. They are written by Perl people worldwide, and distributed mostly
through CPAN, the Comprehensive Perl Archive Network.

Perl modules save you heaps of time - by using a module, you save yourself
from "reinventing the wheel". Perl modules also tend to save you from making
silly mistakes again and again while you try to figure out how to do a given
task.

One common (but fiddly) task in CGI programming is taking the parameters
given in an HTML form and turning them into variables that you can use.

The parameters from an HTML form are encoded in this "percent-encoded" for-
mat:

name=Kirrily&company=Netizen%20Pty.%20Ltd.

If you use the POST method, these parameters are passed via STDIN to the
CGI script, whereas GET passes them via the environment variable

ouery sTrRING. This means that as well as simply parsing the character string,
you need to know where to look for it as well.

The easiest way to parse this parameter line is to use cct module.

PerlClass.com for ACT Students 20-23 Feb 2007 369

25 Processing form input

RTFM!

10 376 - 398

CGlI
756 - 791

25.4.2 Using the cGI module

To use the cct module, simply put the statement use cc1; at the top of your
script, thus:

#!/usr/bin/perl -w

use strict;
use CGI;

25.4.3 Accepting parameters with ccz

To accept form parameters into our CGI script as variables, we can say that we
specifically want to use the params part of the CGI module:

#!/usr/bin/perl -w

use strict;
use CGI 'param';

This provides us with a new subroutine, param, which we can use to extract the
value of the HTML form's fields.

370 PerlClass.com for ACT Students 20-23 Feb 2007

Processing form input 25

#!/usr/bin/perl -w

use strict;
use CGI 'param';

my $name = param('name');
print "Content-type: text/html\n\n";
print "Hello, $name!";

25.4.4 Debugging with the ccx module's offline mode
When you run a CGI script from the command line, you will see a prompt like
this:
(offTline mode: enter name=value pairs on standard input)

This allows you to enter parameters in the form name=value for testing and de-
bugging purposes. Use CTRL-D (the UNIX end-of-file character) to indicate
that you are finished.

(offTine mode: enter name=value pairs on standard input)

name=fred
age=40
AD

25.4.5 Exercises

1. Write a simple form to ask the user for their name. Type in the above script
and see if it works.

2. Add some fields to your form, including a checkbox and a drop down
menu, and print out their values. What are the default true/false values for a
checkbox?

3. What happens if you use the serect mMurTipLE form functionality? Try
assigning that field's parameters from it to an array instead of a scalar, and
you will see that the data is handled smoothly by the cct module. Print
them out using a foreach loop, as in earlier exercises.

PerlClass.com for ACT Students 20-23 Feb 2007 371

25

Processing form input

25.5 Practical Exercise: Data validation

Your trainer will now demonstrate and discuss the use of cct for validation of
data entered into a web form. An example form is in your public_htm1 directo-
ry as validate.ntml and the validation CGI script is available in your cgi-bin
directory as validate.cgi.

#!/usr/bin/perl -w

use strict;
use CGI 'param';

print "Content-type: text/html\n\n";
my @errors;

push (@errors, "Year must be numeric") if param('year') =~ /\D/;
push (@errors, "You must fill in your name") if param('name') eq "";
push (@errors, "URL must begin with http://")

if param('url') !~ m!Ahttp://!;

if (@errors) {
print "<h2>Errors</h2>\n";
print "\n";
foreach (@errors) {
print "<Ti>$_\n";
}
print "\n";
} else {
print "<p>Congratulations, no errors!</p>\n";

25.5.1 Exercises

372

1. Open the form for the validation program in your browser. Try submitting
the form with various inputs.

PerlClass.com for ACT Students 20-23 Feb 2007

Processing form input 25

25.6 Practical Exercise: Multi-form "Wizard"”
interface

Your trainer will now demonstrate and discuss how you can use what you've
just learned to create a multi-form "wizard" interface, where values are remem-
bered from one form to the next and passed using hidden fields.

<INPUT TYPE="HIDDEN" VALUE="..." NAME="...">

Source code for this example is available as cgi-bin/wizard.cgi.

First, we print some headers and pick up the "step" parameter to see what step
of the wizard interface we're up to. We have four subroutines, named step1
through step4, which do the actual work for each step.

#!/usr/bin/perl -w

use strict;
use CGI 'param';

print <<"END";
Content-type: text/html

<html>

<body>

<h1l>wizard interface</hl>
END

my $step = param('step') || O;
stepl() unless $step;
step2() if $step == 2;
step3() if $step == 3;
stepd() if $step == 4;

print <<"END";
</body>

PerlClass.com for ACT Students 20-23 Feb 2007 373

25

374

Processing form input

</html>
END

Here are the subroutines. The first one is fairly straightforward, just printing out
a form:

#
Step 1 -- Name
#
sub stepl {
print qq(
<h2>Step 1: Name</h2>
<p>
what is your name?
</p>
<form method="POST" action="wizard.cgi">
<input type="hidden" name="step" value="2">
<input type="text" name="name">
<input type="submit">
</form>
);
}

Steps 2 through 4 require us to pick up the CGI parameters for each field that's
been filled in so far, and print them out again as hidden fields:

#
Step 2 -- Quest
#
sub step2 {
my $name = param('name');
print qq(
<h2>Step 2: Quest</h2>
<p>
what 1is your quest?
</p>

PerlClass.com for ACT Students 20-23 Feb 2007

Processing form input 25

<form method="POST" action="wizard.cgi">

<input type="hidden" name="step" value="3">
<input type="hidden" name="name" value="$name">
<input type="text" name="quest'">

<input type="submit'">

</form>
);
}
#
Step 3 -- favorite colour
#
sub step3 {
my $name = param('name');
my $quest = param('quest');
print qq(
<h2>Step 3: Silly Question</h2>
<p>
what 1is the airspeed velocity of an unladen swallow?
</p>
<form method="POST" action="wizard.cgi">
<input type="hidden" name="step" value="4">
<input type="hidden" name="name" value="$name">
<input type="hidden" name="quest" value="$quest'">
<input type="text" name="swallow">
<input type="submit'">
</form>
);
}

Step 4 simply prints out the values that the user entered in the previous steps:

#
Step 4 -- finish up

PerlClass.com for ACT Students 20-23 Feb 2007 375

25 Processing form input

#
sub step4 {
my $name = param('name');
my $quest = param('quest');
my $swallow = param('swallow');
print qq(
<h2>Step 4: Done!</h2>
<p>
Thank you!
</p>
<p>
Your name is $name. Your quest is $quest. The
airspeed
velocity of an unladen swallow is $swallow.
</p>
)
}

25.6.1 Exercises

1. Add another question to the wizard.cgi script.

376 PerlClass.com for ACT Students 20-23 Feb 2007

Processing form input 25

25.7 Practical Exercise: File upload

cct can also be used to allow users to upload files. Your trainer will demon-
strate and discuss this. Source code for this example is available in your cgi-
bin directory as upload.cgi

First off, you need to specify an encoding type in your form element. The at-
tribute to set is ENCTYPE="multipart/form-data".

<html>

<head>

<title>Upload a file</title>
</head>

<body>

<hl>Upload a file</hl1>

Please choose a file to upload:

<form action="upload.cgi" method="POST" enctype="multipart/form-
data">

<input type="file" name="filename">

<input type="submit" value="0K">

</form>

</body>

</html>

cct handles file uploads quite easily. Just use param() as usual. The value re-
turned is special -- in a scalar context, it gives you the filename of the file up-
loaded, but you can also use it in a filehandle.

#!/usr/bin/perl -w

use strict;
use CGI 'param';

my $filename = param('filename');
my $outfile = "outputfile";

PerlClass.com for ACT Students 20-23 Feb 2007 377

25

378

Processing form input

print "Content-type: text/html\n\n";

There will probably be permission problems with this open

statement unless you're running under cgiwrap, or your script
is setuid, or $outfile 1is world writable. But Tet's not worry
about that for now.

open (OUTFILE, ">$outfile"™) || die "Can't open output file: $!";

This bit is taken straight from the CGI.pm documentation --
you could also just use "while (<$filename>)" if you wanted

my ($buffer, $bytesread);

while ($bytesread=read($filename, $buffer,1024)) {
print OUTFILE $buffer;

close OUTFILE || die "Can't close OUTFILE: $!";

print "<p>Uploaded file and saved as $outfile</p>\n";

print "</body></html>";

PerlClass.com for ACT Students 20-23 Feb 2007

Processing form input 25

25.8 Chapter summary

- The cet module can be used to parse data from HTML forms

- Its most common use is parameter parsing; other functions are also available
- To use it, type use cGI 'param'; at the top of your script

- Obtain each item of data using the param() function

- cc1 can be used to implement web applications of any complexity, including
data validation, multi-form wizards, file upload, and more

PerlClass.com for ACT Students 20-23 Feb 2007 379

Chapter 26: Security
iIssues

In this chapter...

In this section we examine some security issues arising from the use
of CGI scripts, including authentication and access control, and the
risk of tainted data and how to avoid it.

26

Security issues

26.1 Authentication and access control for CGI
scripts

A common question asked by new CGI programmers is "How do I protect my
web site with a CGI script?" There are various ways to use CGI programs to
ask for usernames and passwords and perform authentication, but in fact the
best way to perform authentication and access control comes with your web
server and doesn't require any programming at all.

The reason that password protection is often connected with CGI programs is
that CGI programs are more likely to interact with the web server's underlying
file system, backend databases, or other things which need to be kept secure.
Many programmers assume that because CGI can be used for password protec-
tion, it is the right choice for the job. This is not necessarily true.

One of the best ways to password protect web pages is by using the web
server's own authentication and access control mechanisms. Since we're using
the Apache web server, we'll look at how to do it with that.

26.1.1 Why is CGI authentication a bad idea?

382

Authentication (i.e. username and password checking) is hard to do correctly in
CGI. Some common pitfalls include:

- Username and password strings are sent as parameters in a GET query, and
end up in the URL (eg
http://example.com/my.cgi ?username:fred&password=secret). These details
can then end up in peoples' bookmark files, other sites' referer logs, and so
on.

- Sometimes username and password details are passed back and forth using
"cookies". Many users choose to have cookies disabled due to privacy
concerns, and the website will therefore be unusable to them. No such
problem exists with HTTP authentication via the web server

On the other hand, the main disadvantage of HTTP authentication is that the au-
thentication tokens remain active until the user shuts their browser down. This

can be a problem in public computer labs and other locations where users may
share PCs.

PerlClass.com for ACT Students 20-23 Feb 2007

Security issues 26

26.2 HTTP authentication

If a web page or CGI script requires a username and password to view it, the
HTTP conversation between the client and the server goes like this:

l.

10.

The user specifies a URL

2. The user agent connects to port 80 of the HTTP server
3.
4
5

The user agent sends a request such as GET /index.html

. The user agent may also send other headers

. The HTTP server realises that authentication must be performed {usually

by looking up configuration files}

. The HTTP server returns a status code 401, meaning "Unauthorized", and

also a header saying wwi-authenticate: and the name of the authentication
domain, for instance "Acme Widget Co. Staff". This usually appears in the
browser's dialog box as "Please provide a username and password for Acme
Widget Co. Staff".

. The browser presents a dialog box or other means by which the user can

enter their username and password, which the user fills in then clicks "OK"

. The browser sends a new request, this time including an extra header saying

Authorization: and the appropriate credentials

. If the HTTP server finds that the credentials are valid, it sends back the

resource requested and closes the connection

Otherwise, it sends back another response with status code 401 (and
probably a body containing an error message), which the user agent should
recognise as meaning that the authentication failed, and display the body.

PerlClass.com for ACT Students 20-23 Feb 2007 383

26

Security issues

26.3 Access control

The way access control is handled varies from one web server to another. If
your web server 1s not Apache, you will need to contact your web server ad-
ministrator or read the documentation it came with, as only Apache is covered
in this course.

Apache implements HTTP authentication with the use of a password file and
either server configurations or a .htaccess file in the web directory, which con-
tains server configuration directives. Our server has been set up to allow you to
use the .htaccess file.

A password file has already been set up for your use. It's /etc/apache/train-
ing.passwd and uses the same usernames and passwords as your login accounts.
You can look at it by typing cat /etc/apache/training.passwd

To use this password file, create a file in your public htmi directory called
.htaccess, containing the following text:

AuthType Basic

AuthName "Secret stuff"

AuthUserFile /etc/apache/training.passwd
require valid-user

This authentication will apply to the directory in which the .nhtaccess file is
placed and any subdirectories.

26.3.1 Exercises

384

1. Create a .htaccess file in your public_html directory, as above

2. Use your web browser to request one of your HTML files or CGI scripts,
and observe the authentication process

3. Why would it be a bad idea to put the password file in the same directory as
the web pages or CGI scripts?

PerlClass.com for ACT Students 20-23 Feb 2007

Security issues 26

26.4 Tainted data

Sometimes you will want to write a CGI script which interacts with the system.
This can result in major security risks if the commands executed on the system
are based on user input. Consider the example of a finger program which asked
the user who they wanted to finger.

#!/usr/bin/perl -w

use strict;

print "who do you want to finger? ";
my $username = <STDIN>;
print ~finger $username ; # backticks execute shell command

Imagine if the user's input had been skud; cat /etc/passwd, Or worse yet,
skud; rm -rf / The system would perform both commands as though they had
been entered into the shell one after the other.

Luckily, Perl's -t flag can be used to check for unsafe user inputs.

#!/usr/bin/perl -wT

RTFM!

6 356 - 360

23 557 - 566
perlsec

19 767 - 770

B 294 light

PerlClass.com for ACT Students 20-23 Feb 2007 385

26 Security issues

-1 stands for "taint checking". Data input by the user, either via the command
line or an HTML form, is considered "tainted", and until it has been modified
by the script, may not be used to perform shell commands or system interac-
tions of any kind.

The only thing that will clear tainting is referencing substrings from a regexp
match. perldoc perlsec contains a simple example of how to do this, about 7
pages down. Read it now, and use it to complete the following exercises.

Note that you'll also have to explicitly set sexv('paTu'} to something safe (like
/bin) as well.

26.4.1 Exercises

1. The HTML file finger.html asks the user for an account name about which
to obtain information {using the UNIX system's finger command}. It calls
the CGI script cgi-bin/finger.cgi which uses taint checking.

2. Why is the data input by the user tainted?

3. Add a - flag to the shebang line of finger.cgi so that the script performs
taint checking

4. Try re-submitting the form - it should fail

5. To untaint the data, you need to clean up any unwanted characters. Use
some code similar to that in perldoc perlsec to remove anything other than
alphanumeric characters and assign the valid part of the user input to a new
variable.

386 PerlClass.com for ACT Students 20-23 Feb 2007

Security issues 26

26.5 cgiwrap

Many large sites, such as ISPs and educational institutions, require users to run
their CGI scripts using a program called cgiwrap. This program causes the CGI
script to execute as if being run by the owner, instead of the web server's user
ID. What this means is that the script will have permission to read and write the
user's files, and will not be able to cause any damage on the system that the user
could not cause.

PerlClass.com for ACT Students 20-23 Feb 2007 387

26

Security issues

26.6 Secure HTTP

388

Another somewhat related topic is secure HTTP, which uses the HTTPS proto-
col to open a secure connection and encrypts all data between the web client

and server. This is often used to make online credit card transactions more se-
cure.

CGI scripts can be run on a secure server exactly as they would run on any oth-
er server.

PerlClass.com for ACT Students 20-23 Feb 2007

Security issues 26

26.7 Chapter summary

- HTTP authentication can be used to password protect web pages

- The Apache web server implements HTTP authentication. This can be
configured via a .htaccess file

- There is a security risk from tainted data --- data entered by a user which is
used for subsequent system interaction

- Perl has built-in checking for tainted data, which can be turned on my using
the -1 command line switch

- Data can be untainted by referencing a substring in a match, as shown in
perldoc perlsec.

- Some web servers use cgiwrap to run CGI scripts under their owner's user
ID.

- Secure HTTP can be used to provide an encrypted channel of communication
between the web client and server.

PerlClass.com for ACT Students 20-23 Feb 2007 389

Chapter 27: Other
related Perl modules

In this chapter...

In this section we are briefly introduced to Perl modules which may
be useful to us in developing CGI applications, including modules for
failing gracefully, encoding and decoding URLS, and filling in tem-
plates.

27 Other related Perl modules

27.1 Useful Perl modules

There are several common problems faced by CGI programmers: failing grace-
fully, creating valid URLs from any text, using a template to insert variables
into HTML, sending email based on CGI parameters, et cetera. Since these
problems are so common, people have written modules to solve them. This sec-
tion explains some of the most useful modules to save you from having to re-in-
vent the wheel.

Each of these modules can be downloaded from CPAN (the Comprehensive
Perl Archive Network) (http://www.perl.com/CPAN) and installed either using
the CPAN module distributed with Perl, or by following the steps described in
the reapvE file distributed with each module.

392 PerlClass.com for ACT Students 20-23 Feb 2007

Other related Perl modules 27

27.2 Failing gracefully with cGI: :carp

The errors given in the web server's error logs are not always easy to read and
understand. To make life easier, we can use a Perl module called cc1::carp to
add timestamps and other handy information to the logs.

use CGI::Carp;

We can also make our errors go to a separate log, by using the carpout part of
the module. This needs to be done inside a Bec1n block in order to catch com-
piler errors as well as ones which occur at the interpretation stage.

BEGIN {
use CGI::Carp gw(carpout);
open(LOG, '">>cgi-logs/mycgi-log") ||
die("unable to open mycgi-Tog: $!\n");
carpout(LOG) ;
}

Lastly, we can cause any fatal errors to have their error messages and diagnos-
tic information output directly to the browser:

use CGI::Carp 'fatalsToBrowser';

PerlClass.com for ACT Students 20-23 Feb 2007 393

27 Other related Perl modules

RTFM!

Src Chap Pgs #
Nutshell 2™ 8 192
Camel 2™ 7 385
Camel 3" 32 878
perldoc Carp
Cookbook 2™ 12 473 - 475

Learning 3"

Learning 4™

27.2.1 Exercise

1. Use the cc1: :carp module in one of your scripts

2. Deliberately cause a syntax error, for instance by removing a semi-colon or
quote mark, or inserting a die ("aArgh!"); statement, and see what happens

394 PerlClass.com for ACT Students 20-23 Feb 2007

Other related Perl modules 27

27.3 Encoding URIs with URI: :Escape

Sometimes we want to output anchor tags referring to another
CGI script, and pass parameters along with it, thus:

O'Reilly's Programming Perl
</RA>

However, spaces and apostrophes aren't allowed in URIs, so we have to encode
them into the "percent-encoded" format. This format replaces most non-al-
phanumeric characters with two hexadecimal digits. For instance, a space be-
comes %20 and a tilde becomes %7z.

The Perl module we use to encode URIs in this manner is UrI: :Escape. Its doc-
umentation is available by typing perldoc URI::Escape.

Use it as follows:
#!/usr/bin/perl -w

use strict;
use URI::Escape;

my $book lookup =
"lookup.cgi?title=Programming Perlé&publisher=0'Reilly";

my Sencoded url = uri escape (Saddress);
my Soriginal url = uri unescape ($encoded url);

27.3.1 Exercise

1. Try out the above script cgi-bin/escape.cgi you'll need to print out the
values of sencoded url and $original url

PerlClass.com for ACT Students 20-23 Feb 2007 395

27

Other related Perl modules

27.4 Creating templates with Text: : Template

27.4.1

27.4.2

396

By this stage in the day you have probably spent a great deal of time outputting
HTML either via a long list of print statements or by using a "here document"
or other shortcut. What if you wanted to have a template HTML output file
which was filled in with the appropriate variables?

Luckily, there is a Perl module to do this, called Text: : Template. Unluckily, it
uses a concept we haven't covered yet, but which we will now explain.

Text::Template 1S different to the other modules we have used so far today, in
that it is an object oriented module. Object oriented Perl modules can be very
powerful, but require some background knowledge to understand how they
work.

Introduction to object oriented modules

Before embarking on this task, we need to have an understanding of how Perl's
object-oriented modules work. Not all modules are object oriented (ur1: :Es-
cape, for example, is not), and some can be used either way (CGI is one of
these), but some require us to work with them in this way.

A software object, like a real-life object, has attributes (things that describe the
object) and methods (things you can do with, or to, the object). Consider the
real-life example of a cup:

Table 27-1. Attributes and Methods of a cup

Object Attributes Methods
Cup - colour - drink from it
- handle (does it have one?) - fill itup
- contents (water, coffee, etc) - smash it
- fullness

Note that when you smash a cup, you aren't smashing the generic class of cups,
but rather a specific instance - this cup, not "cups in general". This is what we
call an instance of a class -- remember that, as we'll use it later.

Using the Text: : Template module
Like the cup, our text template has attributes and methods.

PerlClass.com for ACT Students 20-23 Feb 2007

Other related Perl modules 27

Table 27-2. Attributes and Methods of Text: : Template

Text::Template - TypE - the type of - £i11 in() - fill in
template it is, eg a the template

file, a string you
created earlier, etc

« SOURCE - the
filehandle or
variable name in
which the template
can be found

Before we can actually use these attributes and methods in any useful way, we
have to create a new instance of the class. This is the same as how we needed a
specific cup, rather than the general class of cups.

using the class in general
use Text::Template;

instantiating the class and setting some attributes for the new

instance

my $letter = new Text::Template{'TYPE' => 'FILE', 'SOURCE' =>
'letter.tmpl'};

We can then perform a method on it, thus:

my S$finished letter = S$letter->fill in();

This will fill in any variables found in the template file.

27.4.3 Exercise

1. Type perldoc Text::Template and look at the documentation for this
module

2. cgi-bin/letter.cgi implements the example above. Examine the source
code.

3. Make some changes to the letter template and see if they work.

PerlClass.com for ACT Students 20-23 Feb 2007 397

27

Other related Perl modules

27.5 Sending email with Mail: :Mailer

398

The Mail::Mailer module can be used to send email from a CGI script (or, for
that matter, any script). Like Text: : Template, it is an Object Oriented module.
The object it creates is a "mailer" object, which can be opened and then printed
to as if it were a filehandle.

#!/usr/bin/perl -w

use strict;
use Mail::Mailer;

my Smailer = new Mail::Mailer;

the open() method takes a hash reference with keys which are mail
header names and values which are the values of those mail headers

Smailer->open({

From => 'fred@example.com’,
To => 'barney@example.com',
Subject => 'Web form submission'

Pz

we can print to Smailer just as we would print to STDOUT or any
other file handle...

print Smailer gg(
Dear Barney,

Here is a form submission from your website:

Name: Sname
Email: Semail
Comments: Scomments

Love, Fred.

) ;

Smailer->close () ;

PerlClass.com for ACT Students 20-23 Feb 2007

Other related Perl modules 27

ADVANCED

You can also open a pipe to sendmail directly, but doing this
correctly can be difficult. This is why we recommend
Mail::Mailer to avoid re-inventing the wheel.

27.5.1 Exercises

1. Create an HTML form with fields for name, email and comment

2. Use the above script (cgi-bin/mail.cgi) to mail the results of the script to
yourself. You will need to edit it to work fully:

- Use CGIL.pm to pick up the parameters
- Change the email address to your own address

- Print out a "thank you" page once the form has been submitted -- don't
forget the Content-type header

PerlClass.com for ACT Students 20-23 Feb 2007 399

27 Other related Perl modules

27.6 Chapter Summary

- The cc1: :carp module can be used to help CGI programs fail gracefully

- The ur1: :Escape module can be used to encode and decode percent-encoded
URLs

- The Text::Template module can be used to easily fill in text templates,
including HTML templates.

. The Mail::Mailer module can be used to send email based on the information
entered in an HTML form

- All these modules can be downloaded from CPAN, the Comprehensive Perl
Archive Network

400 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 28: Con-
clusion

In the conclusion...
Summing up and various paths for further study.

28 Con-clusion

28.1 Day 1: What you've learned
Now you've completed PerlClass.com's Introduction to Perl module, you should
be confident in your knowledge of the following fields:

- What is Perl? Perl's features; Perl's main uses; where to find information
about Perl online

- Creating Perl scripts and running them from the UNIX command line,
including the use of the -w flag to enable warnings

- Perl's three main variable types: scalars, arrays and hashes

- The strict pragma, lexical scoping, and their benefits

- Perl's most common operators and functions, and their use

- Perl's concept of truth; existence and definedness of variables

- Conditional and looping constructs: if, while, foreach and others.

- Regular expressions: the matching and substitution operators; simple
metacharacters; quantifiers; alternation and grouping

402 PerlClass.com for ACT Students 20-23 Feb 2007

Con-clusion 28

28.2 Day 2: What you've learned
Now you've completed PerlClass.com's Intermediate Perl module, you should
be confident in your knowledge of the following fields:

- File I/0, including opening files and directories, opening pipes, finding
information about files, recursing down directories, file locking, and handling
binary data

- How to use advanced regular expression techniques such as multiline
matching and backreferences

. The use of various Perl functions

- System interaction, including: system calls, the backtick operator, interacting
with the file system, dealing with users and groups, dealing with processes,
network communications, and security considerations

. Advanced Perl data structures and references

PerlClass.com for ACT Students 20-23 Feb 2007 403

28 Con-clusion

28.3 Day 3: What you've learned
Now you've completed PerlClass.com's CGI Programming in Perl module, you
should be confident in your knowledge of the following fields:
- What CGl is

- How HTTP allows web user agents (browsers) to communicate with web
servers and retreive documents

- How to perform HTTP requests by using telnet to connect to the web server
- How to generate simple web pages using Perl
- How to access environment variables from CGI scripts

- Various methods of quoting text, including "here" documents and the qq ()
type functions

- How to process data from HTML forms using the CGI module

- How to use the CGI module for applications such as data validation, simple
"wizard" interfaces, and file uploads

- Security issues related to CGI programming, including authentication and
access control, dealing with tainted data, secure web servers, etc.

- The use of various Perl modules related to CGI programming, including
CGI::Carp, URI::Escape, Text::Template, and Mail::Mailer

- A basic understanding of object oriented Perl modules

404 PerlClass.com for ACT Students 20-23 Feb 2007

Con-clusion 28

28.4 Day 4: What you've learned
Now you've completed PerlClass.com's Database Programming with Perl mod-
ule, you should be confident in your knowledge of the following fields:

- Database terminology, including tables and relationships, fields and records,
etc

- Flat file database manipulation including delimited and CSV text files
- Basic SQL queries, including serECT, INSERT, DELETE, and UPDATE queries

- Features of MySQL, where to get MySQL from, and how to set up MySQL
databases

- Using the MySQL command line client to perform SQL queries
- Using Perl's DBI module to interact with databases

- Applying Perl skills from previous training modules to create database
applications

PerlClass.com for ACT Students 20-23 Feb 2007 405

28 Con-clusion

28.5 Where to now?

To further extend your knowledge of Perl, you may like to:
- Borrow or purchase the books listed in our "Further Reading" section (below)

- Follow some of the URLs given throughout these course notes, especially the
ones marked "Readme"

- Install Perl on your home or work computer
- Practice using Perl from day to day

- Install Perl and MySQL (or other database servers) on your home or work
computer

- Install Perl and a web server such as Apache on your home or work computer
- Practice using Perl for CGI programming on a daily basis
- Practice using Perl to interact with databases
- Join a Perl user group such as Perl Mongers (http://www.pm.org/)
- Richmond Perl Mongers (http://richmond.pm.org/)
- Hampton Roads Perl Mongers (http://norfolk.pm.org/)

406 PerlClass.com for ACT Students 20-23 Feb 2007

Con-clusion 28

28.6 Further reading -- books

- Alligator Descartes & Tim Bunce, "Programming the Perl DBI", O'Reilly and
Associates, 2000

- Randy Jay Yarger, George Reese & Tim King, "mSQL and MySQL",
O'Reilly and Associates, 1999

- Tom Christiansen and Nathan Torkington, The Perl Cookbook, O'Reilly and
Associates, 1998. ISBN 1-56592-243-3.

- Jeffrey Friedl, Mastering Regular Expressions, O'Reilly and Associates,
1997. ISBN 1-56592-257-3.

- Joseph N. Hall and Randal L. SchwartzEffective Perl Programming,
Addison-Wesley, 1997. ISBN 0-20141-975-0.

PerlClass.com for ACT Students 20-23 Feb 2007 407

28 Con-clusion

28.7 Online

408 PerlClass.com for ACT Students 20-23 Feb 2007

Con-clusion

28.8 The Perl home page
(http://www.perl.com/)

O'REILLY*

Perl.com
THE SOURCE FOR PERL / i,
Gt n | eI e | G

Sian In/iy Account | vie Cart

Then.

Savertizament

Perl.com

Perl.com includes resources on downloading and installing Perl, 3 six-part tutorial
on leaming Perl, the Catalyst web application framewark, and hundreds of other
articles and resources to help new and experienced programmers refine their
skills and contribute to the worldwide Perl commurity.

CPAN Review

CPAN Module Review: XML::Atom

1 recently needed to fitter and pracess some Atom feeds. 1 know enough XML that
1 could process them with my own S&x fifter, but this seemed lie a better
Gpportunity to se the XML::atom module, Fortunately, it was very easy. chromatic

I More CRAN Reviews

Perl Weblog Posts

Perl Jobs

Competition in the marketplace is a good thing right? So now we have bath
jobs.perl.arg and jobs perl.com. I'm about to start looking for 2 new Perl job - so
Iet's see which one of them is most useful. Currently the.. read mare Dave Cross

Grants: Calls for Proposals

1f you have an dea fordoing some wark for the Ferl cammunity 2nd you tink ifs
' of a grant, please send your grant entry
oy upacaleGper foumiaton oo, Sapmizan ueauhne is the last day of
February, voting starts in March.. read more Curt

London Needs Perl Programmers

Dave Cross just posted a short analysis of Perl Programmers in Londan and the
job situation there, This matches what I've heard, and what I noticed when I was
in ELrope last summer. There's plenty of work available for people.. read more
chromatic

why Do You Contribute to Community Documentation?

It's important to understand volunteer motivation to encourage further altruistic
and mutually beneficial behavior. O'Reilly Editor Andy Oram ha
survey for penple to contribute to cammunity documentation: “Da you answer
questions on mailing lists about how to.. read more chromatic

1! More ONL&mp Posts

Advanced HTML:: Template: Widgets

HTML::Template is a templating module for HTML made
powerful by its simplicity, Its minimal set of operations
enforces a strict separation between presentation and logic,
However, sometimes that minimalism makes templates
unwieldy. Philipp Janert demonstrates how to reuse
templates smaller than an entire page--and how this
simplifies your applications.

Painless Windows Module Installation with PPM

Unix and Unix-like systems often come with compilers andt
make utilities, Windows systems rarely do. Installing Perl

dules on Windows can be somewhat difficult by hand
Fortunately, ActiveState's PPM utility takes away much of the
pain, and it's highly customizable too, Josh Stroschein
demonstrates how to install Perl modules with PPM and how
to create your own repositories

Understanding P

Using Java Classes in Perl

Java has a huge amount of standard libraries and AP1s. Some
of them don't have Perl equivalents yet. Fortunately, using
Java classes from Perl is easy--with Iniine::Java. Andrew
Hanenkamp shows you how.

I Vigw the archive

Perl Recipe of the Day

Y You want the standard Exporter module to define the external
interface to your module,

site Feeds

[Subseribe to Pertcom's
MR

1! New to Rss?

Related Books

July 2005
$39.95 UsD

1" More books

Perl Jobs

St web Producer, Sebaztopol
5t O'Reilly Media, Tnc.
(sebastopol, California)

#E

Enaineer
Lo wet)

Rilly Media, Inc.
e oro Cattamin

ievs All Jobs
Post a Job

O'Reilly Learning Center

Perl for GGI Programming

In this course, partispants il
Isam nat orly

e ohosgd por T
fanausgs is gensrally regarded

< the most useful computer

language for processing and
manipulating text based data

Articles " tore

Sponsored By,

DON'T TAKE
BAD CAREER
ADVICE.

Get good tips
from tech pros at

I Do it now Dice Discussions.
Y1/ [H Z discussions
e
s b vaboas
h Dad Learn To Be Rich wi s tutorial Womble Carlyle

Verlehons RS e by vt B e s Lo pouriosd o

B e i the orfll sras vy rofassor - Lot ot o1 s

i

Contact Us | Advertise with Us | Privacy Policy | Press Center | Jobs | Submissions Guidelines

ht © 2000-2006 O'Railly Media, Tnc. All Rights Reserved.

Allradamarks and registarad Gadamarks sppeaing on the OIRally Networh re 18 property of thlr respacive ounars

For problems or assistance with this site, email help@oreillinst.com

PerlClass.com for ACT Students 20-23 Feb 2007

28

409

http://www.perl.com/

28

28.

Con-clusion

9 Perl Monks (http://www.perimonks.com/)

The Monastery Gates

(#131=superdoc: print w replies, mm1) eed Help
onations ccepte o
e ne erlMonks ——
and Create a new user
I~ temeni oerme_Login

password remindsr
“Want Mega XP7 Prepare to have your hopes dashed, join in on the: poll ideas quest (11273 days temain) Create A New User

[diotalevi): So {Tunes, this s just for suckess, right?

[iew Quest
4 replies by Cormanaz
[dvide]: anel iiots.)

ew Questions
Fork and WWW-IMechanize: Can agent be shared?
enFeb 18, 2007 at 12113 [davids] - Fortunatelys there's ome of both bom every izt
Good day monks. I am frying to get the hang of using multiple processes with WWW:Mechanize. [think T'e just about got it Sigured out except for one thing. Can cifferent processes [davids] ' questioning my sty fo continaing my XM
subseription actually. . they keep cutting out the stations |
like

share the same mech object? In other words can I

[dintalevi): O, so don't pay for that? On KM do they let

youze-lsten to things you Lked before or time-shift stuff?
Pietresh

How do Tuse this? | Otker CE chenis

[Offer your
seply]
20;
Lenn X

)

7

Many tharks

Stes

5 replis by
how would you detect a math expression Ligeielits v
Anonyrnous
Monk 5:

ot Feb 18, 2007 at 10:43

Twes having discussion with a friend on google calculator, and it soon tumed to how google could detect it was a math capression and not a query, 2-H4/6*8

28.9.1 The Perl Monks Guide to the Monastery

410

Welcome to PerlMonks, the Monastery of Perl. We hope your stay is long and
enjoyable. You are probably wondering what this is all about. Hopefully this
page will answer some of those questions.

In the words of different people, PerIMonks is:

- amedium for making Perl as non-intimidating to learn and as easy to use
as possible;

- aplace for Perl programmers (such as you) to improve your skills and
share your expertise;

- a community which allows everyone to grow and learn from each other.

PerlClass.com for ACT Students 20-23 Feb 2007

http://www.perlmonsk.com/

Con-c

28.9.1.

28.9.1.

lusion 28

1 Finding Your Way Around

The Monastery has a number of areas, called "Sections", where you can read and
contribute to discussions in a threaded messageboard-like forum format. There
are also other useful repositories of information which will assist you in your
Perl and PerIMonks endeavors.

1.1 Sections

Seekers of Perl Wisdom - The place you can go when you have got a question
on how to do something or are unsure why something just isn't working. Then
other Perl Monks can offer you their wisdom and suggestions.

Meditations - Have you found out something amazing about Perl that you just
need to share with everyone. Have you had a Perl epiphany, or found something
in Perl that just blows your mind. This is the place for those neat little tricks and
amazing discoveries.

PerlMonks Discussion - For discussions relating specifically to this web site,
and how things work around here. For example, if you think the Monastery
could be improved in some particular way, raise it for discussion here.

Categorized Questions and Answers - Our own ever-growing compendium of
"frequently asked" Perl-related questions and their answers. If you're faced with
a problem and your inclination is to think "I'm sure this has been solved a

thousand times before", then check here before you go posting to Seekers of Perl
Wisdom.

Tutorials - An ever-growing online textbook from which you can learn the
basics of Perl or some groovy stuff that you haven't tried before. This area is
managed by the Pedagogues.

Obfuscated code - Got code that it would take a Perl grand master to
understand? Put it here so we can stare at it in awe after we've run it and found
out what it does.

Perl Poetry - The name pretty much says it all.

Cool Uses for Perl - Have you automated a part of your life that wouldn't have
been possible without the power of Perl? Are you using Perl to do something

PerlClass.com for ACT Students 20-23 Feb 2007 411

http://www.perlmonks.com/index.pl?node_id=1044
http://www.perlmonks.com/index.pl?node_id=1590
http://www.perlmonks.com/index.pl?node_id=1597
http://www.perlmonks.com/index.pl?node=Pedagogues
http://www.perlmonks.com/index.pl?node_id=954
http://www.perlmonks.com/index.pl?node_id=479
http://www.perlmonks.com/index.pl?node_id=479
http://www.perlmonks.com/index.pl?node_id=1843
http://www.perlmonks.com/index.pl?node_id=1040
http://www.perlmonks.com/index.pl?node_id=480
http://www.perlmonks.com/index.pl?node_id=479

28

28.9.1.

28.9.1.

412

Con-clusion

unique and humorous that you're convinced no one else has thought of? Tell us
about it!

Snippets Section - Have you written something clever that is incredibly useful,
but hard to write the first time? Add it here so people can benefit and learn from
it.

Code Catacombs - The place to put your full-blown programs and scripts that
others might find useful.

Reviews - If you are shopping around for the Perl module or book which is just
right for your needs, read these reviews — written by your fellow Perl Monks
— to help you make an informed decision.

Conversely, if you have used a module or read a book, and you think other Perl
Monks might benefit from your experiences, please share them here by writing a
review!

Perl News - Relevant news and announcements from the Perl Community. Pulls
together items from sources such as use Perl; and O'Reilly.

1.2 Information

The PerlMonks FAQ - Your one-stop shop for Nearly Everything You Ever
Wanted To Know About PerlMonks. Maintained by the SiteDocClan.

Tidings - aka What's New at PerlMonks.

Voting/Experience System - Many newcomers are confused by this aspect of
PerlMonks. This should clear things up.

Perl FAQ and Library - Our local copy of the standard Perl documentation set,
for your convenience. Note, however, that the content is not being maintained
and is now a couple versions old.

Outside Links - Various other sites that Perl Monks might find useful. Note,
however, that this has been superceded by Where can [find more information
on.... See especially PerIMonks-Related Resources on Other Servers.

1.3 Find Interesting Nodes

The Monastery Gates - The "default" page of the web site, it shows recent

PerlClass.com for ACT Students 20-23 Feb 2007

http://www.perlmonks.com/index.pl?node=PerlMonks FAQ
http://www.perlmonks.com/index.pl?node=The Monastery Gates
http://www.perlmonks.com/index.pl?node_id=579676
http://www.perlmonks.com/index.pl?node_id=483101
http://www.perlmonks.com/index.pl?node_id=483101
http://www.perlmonks.com/index.pl?node=Outside Links
http://www.perlmonks.com/index.pl?node_id=148
http://www.perlmonks.com/index.pl?node_id=382
http://www.perlmonks.com/index.pl?node_id=5938
http://www.perlmonks.com/index.pl?node_id=545862
http://www.perlmonks.com/index.pl?node=SiteDocClan
http://www.perl.com/
http://use.perl.org/
http://www.perlmonks.com/index.pl?node_id=23771
http://www.perlmonks.com/index.pl?node_id=21144
http://www.perlmonks.com/index.pl?node_id=1747
http://www.perlmonks.com/index.pl?node_id=1967

Con-clusion 28

28.9.1.

nodes from all sections which have been deemed most worthy of public
exposure — the "face" of PerIMonks.

Super Search - Full-text and title searches, with additional filtering by section,
age, author, and many other criteria.

Newest Nodes - An up-to-the minute listing of all the nodes which were created
since "the last time you checked".

Recently Updated Home Nodes - Similar to Newest Nodes, a listing of the user
homenodes which have been modified since "the last time you checked". (Note
that only changes designated by their authors as "significant" will register in this
list.)

Recently Active Threads - A threaded view of the Monastery's active content.
It's like Newest Nodes on steroids.

Selected Best Nodes - A random selection of 50 of the top 2000 nodes, as
ranked by node reputation. The selection is re-sampled daily.

Best Nodes - The top 10 nodes of the Day, the Week, and the Month, and the
top 20 nodes of the Year.

Worst Nodes - The bottom 10 nodes of the Day, the Week, and the Month, and
the bottom 20 nodes of the Year.

Saints in our Book - "Saints" here is more figurative, or honorary; this is a list
of Monks who have at least 3000 experience points, which technically makes
them Level 13: Curate, not Level 26: Saint.

1.4 Additional Miscellany

The St. Larry Wall Shrine - A neat compendium of articles by and about the
creator of Perl.

Offering Plate - If you find this place to be of value, you can show your
appreciation by helping defray the costs of keeping the site up and running.

Awards - Accolades and other noteworthy public mentions of PerIMonks.

Craft (deprecated) - This was a place for perlsmiths to showcase their code.

PerlClass.com for ACT Students 20-23 Feb 2007 413

http://www.perlmonks.com/index.pl?node_id=481
http://www.perlmonks.com/index.pl?node=Awards
http://www.perlmonks.com/index.pl?node_id=71130
http://www.perlmonks.com/index.pl?node=The St. Larry Wall Shrine
http://www.perlmonks.com/index.pl?node_id=244022
http://www.perlmonks.com/index.pl?node_id=504005
http://www.perlmonks.com/index.pl?node_id=5938
http://www.perlmonks.com/index.pl?node_id=3559
http://www.perlmonks.com/index.pl?node_id=9488
http://www.perlmonks.com/index.pl?node_id=9066
http://www.perlmonks.com/index.pl?node_id=18538
http://www.perlmonks.com/index.pl?node_id=328478
http://www.perlmonks.com/index.pl?node=Newest Nodes
http://www.perlmonks.com/index.pl?node_id=397425
http://www.perlmonks.com/index.pl?node_id=3628
http://www.perlmonks.com/index.pl?node_id=16902
http://www.perlmonks.com/index.pl?node_id=3628
http://www.perlmonks.com/index.pl?node_id=3989

28 Con-clusion

New submissions should go in the Code Catacombs section, but Craft still
makes an interesting read.

Buy Stuff - Yes, you can actually buy Perl and PerIMonks related gear... such as
a t-shirt with the famous camel code obfu on it!

414 PerlClass.com for ACT Students 20-23 Feb 2007

http://www.perlmonks.com/index.pl?node_id=45213
http://www.perlmonks.com/index.pl?node_id=29195
http://www.perlmonks.com/index.pl?node=Craft
http://www.perlmonks.com/index.pl?node=Code Catacombs

Con-clusion 28

28.10 . The Perl Journal
(http://lwww.tpj.com/)

Founded in 1996 by Jon Orwant, The Perl Journal was published through
January 2006, and was the leading publication for and about Perl Programming.

PerlClass.com for ACT Students 20-23 Feb 2007 415

28 Con-clusion

28.11 . Perl Mongers Perl user groups
(http://www.pm.org/)

¥ Perl

mongers , . . .
OIS Ferl Mongers is a loose association of international Perl User Groups.

Perl Mongers

| act

Copyright @ 2006 The Perl Foundation.
The Perl camel image is a trademark of O'Reilly Media, Inc. Used with permission.

416 PerlClass.com for ACT Students 20-23 Feb 2007

http://www.pm.org/

Con-clusion

28.12 The Richmond Perl Mongers
(http://wiki.fini.net/bin/view/RichmondPM)

The Richmond Perl Mongers are the closest group that meets regularly.

You are here: Mwikifini > WRichmondeM web > WebHome
Edit | WiSIWYG | attach | Printsble

Hello Christopher

My home page
work

+ Eariier Meetings OurHouse
+ iki UUFP wiki

ther
websearchadvanced
Richmond Perl Mongers Fhone #

aan
This is the wiki for Richmond Perl Mongers (Richmond.prm). Some of the information on this wikiis carefuly controlled, but for the most part feel free to make
contributions and suggestions.) »

= a
Meetings
2 RichmondeM web
March Look for a meeting around Spm, Thursday, 8-Mar-2007, at Paners Bread, 1601 Willow Lawn Drive. Typically we can be found in the smal area just to Index
the left after you enter. General Discussion & 2. -~ Johningersoll - 12 Feb 2007 & search

Changes

The focus of thes mestings are on socialization, getting ta mest each other and get a chance ta talk with sameane in person about Perl (versus daing al @ notatons
communications via the Intemet). At same oint in the near future we wil focus upan farming some technical lessons for peaple to share and leam from each &
other. 2 preferences

Resources webs
W secywals

Richmand Perl Mangers has a dizcussion list. (Note: the membership fist was lost in sarly Aprl 2006. If you haven't heard anything from us recently, please Christicks
HeoM

resubserie, Thanks!)

Aticles
Per Hacks Richmand.par's faverte perl hacks.
Supplementary prototypes Discussion

~-Matt Avitable (4ugust 10, 2006)

Bundle your Perl cade into a CPAN-style distribution.

—-Steve Kirkup(May 18th, 2006)

Testing Madules A quick overview of modules that can be used to supplament your distributians.

—-Steve Kirkup(Apr 28th, 2008)

Extra note on the abovs testing modules article. Steve mentioned Test::Class last PM meeting. 1 was a bit warried it would be overkil, but it tums out that it
makes tests oasier to wiite. As an added bonus, you can group the tests logically within subroutines, and have the benefit of simple setup/teardown hooks.
‘This madule is definitely worth a look If you ara testing lats of cads.

Qn (very minor) gotcha is that Test::Class uses Attribute::Handlers. That's not 2 bad thing, but If you had the masochistic idea of running your tests fram 3
mod_perl environment, dorit expect it to work. Attribute::Handlers uses CHECK blocks, which never run in mod_per.

-watt avitable
Historic

Earlier Meetings

February 2007 On 8-Feb-2007 we had 3 discussion of varieus topics and a dema of writing 0O Perl fram scratch.

January 2007: We met araund Spm, Thursday, 11-January-2007, at Panera Bread, 1601 Wilow Lawn Drive. The discussions included use of references, esp.
hash raferences.

December 2006: A sacial meating ran from ~ § to 7pm, December 14, 2006 at Panara Braad, 1601 Willow Lawn Drive. Allan waked us through an application
using XML Twig.

November 2006: Our meeting at Panera Bread, Willaw Lawn had a brief discussion of Templata Toalkit fallawed by 3 demo by Allan of mod-perl in his warking
wab site hitp://tihs.net/.

October 2006: A sacial meating occured around Spm, October 12th, 2006, 3t the new Panra bread at 1601 Willow Lawn Drive. Matt provided us with a good
intro to Mod_perl basics, -~ Johningersoll - 13 Oct 2008

September: 4 social meeting was held at 5pm, September 14th, 2006, at Panera Bread, 1601 Wilow Lawn Drive. The primary topic was Perl regular
expressions and discussion regarding what would suit the group best regarding & more permanent place. -~ John Ingersoll

August: & social meeting occured on or about Spm, August 10th, 2006 at the Tnnsbrook Panera Bread lacation. One result of the mesting was the beginning
of a Perl Hacks section in the wiki,

3uly: &5 of July Sth, we expect to hold yet snother social mesting at 5pm, July 13th, 2006 st Panera Bread on Broad Strest, sbout midway betwsen Gaskins
and Cox Roads. Topics and futurs programs welcome.

3June: At Spm on June Bth, we held 3 (very sparse) social mesting at Paners Bread, Innsbrook, on Broad Street.

May: At Spm on May 11th, we held a social mesting at Panera Bread on Broad Strest.

April: We held a social meeting at Spm, April 13th, 2006 at Panera Bread on Eraad Street, about midway betwesn Gaskins and Cax Roads.

March: This meeting was canceled.

Febuary: Originally scheduled for the Sth, it was moved to the 16th at 4pm. To leam more please read MeetingP=b2006,

January: Notes fram the first meeting are available at MeetingJan2a0,

Wiki

. Search (More options in wabsear:h)

- WebChanges: Display recent changes to the RichmondPM v

 Wablncix: Lit 21 Rehmonde tepies n alshasetical erder, Soe alsa the faster WesTopicLit

- Webllotify: Subseribe ta an e-mail alert sant when samething changes in the RichmandPi web

- WebStatistios: View access statisties of the RichmandPM wab

+ Webbreferences: Preferences of the RichmondPM web (Twikireferances has site-wide praferences)

wiki.find TWiki Web:

- Twiki.WelcomeGuest: Look here first to get you rolling on wikl.fini
- Twiksite: Explains what a wiki.fini site is
* Al Pl ety €re3te youraecount i order o et opies.
- How to edit
. eadstate: Things to consider when changing text.
» TestFormattingRules: Easy to learn rules for editing text
» TestFormattingFAO: Answers to frequently asked questions sbout text formatting.

Notes:

- 1f you are nat familiar with the wii. fni callaboration platform, please visit Walcomatuest first

Edit | WYSIWYG | Attach | Erintable | Raw View | Backlinks: Web, All Webs | History: 61 < r60 < rS3 < rS8 < 157 | More topic actions

a Twiki

Hllustration 5: The Richmond Perl Mongers Home Page

The Richmond.PM site is powered by Twiki.

PerlClass.com for ACT Students 20-23 Feb 2007

28

417

http://wiki.fini.net/bin/view/RichmondPM

28 Con-clusion

28.13 O'Reilly's Perl books

O'Reilly is the leading technical publisher of books about Perl, and many other
wonderful Internet technologies. Their Perl books are written by core folks who
have developed the language.

O’REILLY" P e

Home i r fari Boo line Co C emic Solutions

out of Print | ©

TOPICS Perl

b Business & Culture

b Databases

Buy Direct and Save
} Design & Graphics PUBLICATION DATE ¥
* Digital Audio & ideo R w Mastering Reqgular Expressions, Third Edition G Elilzﬁ ZSBSOIEEIEE'
¥ Digital Photagraphy e By Jeffrey E. F. Friedl e ; e 3r i -
August 2006 Use discount code "opell
¥ Hardware p 444,99 USD All arders auer $29.95 qualify
. o o TEN for free shipping within
Home & Office E‘(}”}L‘i&mq written in the lucid, entertaining tone that makes a complex, dry topic the Us.
¥ Networking & Sys Admin - . become crystal-clear to programmers, and sprinkled with solutions to
' o fing Sret om complex real-world problems, Mastering Regular Expressions, 3rd Edition,
perating Systems
: offers a wealth of . Read mare. Radar Web 2.0 Report
= Prograrmming
NET & Windows web 2.0
Programming . . o Principles and
Building Tag Clouds in Perl and PHP Wbt | Best Practices
Ajax By Jim Bumgardner — what does
c# May 2006 Web 2.0 mean
$9.99 USD for your
CAC+H+ - company? Get
— e Tag clouds are everywhere on the web these days, First popularized by the = the latest on
Certification \ web sites Flickr, Technarati, and del.icio.us, these amorphous clumps of the why, what,
Games wards now appear on a slew of . Read mare. wha, and how of web 2.0 in
this O'Reilly Radar Repart.
Java Read more,
Other Programrming
Farl PERL| Perl Hacks
H Ks By chroratic, Darmian Conway, Curtis Poe
PHP = | May 2008 Short Cuts
- 429,99 USD
Project & Career
Management | | Perl Hacks taps into the collective wisdaorn of the world's most crestive Perl Good. Fast. Cheap.
Pythan y gurus, so you can learn from their experiences, It's the perfect book for O'Reilly Short Cuts
experienced developers looking for... Read more.
Ruby om —=muE POF docurnents on cutting

edge topics. Focused

Secure Programming
information in an easy-to-use,

Visual Basic portable package.
Intermediate Perl .

eb Services By Randal L. Schwartz, brian d foy, Tom Phoenix Mesw titles include:

AML ;f';;“;fﬁgg + CompTIA A+Essentials
F Science & Math ' 220-601 Exam Guide
b Securit Perl prograrmmers need a clear roadmap for improving their skills, « Lead Generation on the

¥ Intermediate Perl teaches a working knowledge of Perl's objects, Web

¥ Software Engineering o references, and modules -- all of which makes the language so... Read

.

rmore, what's New in Apache
¥ The web Weh Server 2,27

INTERMATIOMAL SITES I wiew all Short Cuts

BT |

Wicked Cool Perl Scripts
By Stewe Oualline

WICKED COOL
PERLSCRIPTS | [ebruary 2006 Local Bookstores
$29,95 UsD

Hllustration 6: http://www.oreilly.com/pub/topic/perl

418 PerlClass.com for ACT Students 20-23 Feb 2007

Con-clusion

TopICS
» Business & Culture
» Databases
» Desion & Graphics
» Digital Audio & Video
» Digital Photography
» Hardware
» Home & Office
» Hetwarking & Sys Admin
» Operating Systems
~ Programming

NET & Windaws
Frogramming

Ajax
c#

cicH+

Certification
Games

Java

Other Programming
perl

PHP

Froject & Carzer
Management

Python
Ruby
Secure Frogramming
visual Basic
Web Services
KL

b Science & Math

b Security

» Software Engineering

» The Web

INTERNATIONAL SITES

=

BESTSELLING

Learning Perl, Fourth Edition
By Randal L, Schwartz, Tem Phoenix, brian d foy
July 2005

$39.95 USD

Informed by their years of success at teaching Perl as consultants, the
authors have re-engineered the Lama to better mateh the pace and scope
appropriate for readers getting started with . Read more

Programming Perl, Third Edition
By Larry Wall, Tom Christiansen, Jon Orwant
July 2000

$49.55 USD

Frogramming Fer is not just & book about Perl; it is slso & unique
introduction to the language and its culture, as one might expect only from
its authors, This... Read more,

Mastering Regular Expressions, Third Edition
By Jefrey €. F. Fried]
August 2006
444,95 USD

written in the lusid, entertaining tone that makes a complex, dry topic
became erystal-clear to programmers, and sprinkled with sclutions to
camplex real-world problems, Mastering Regular Expressions, rd Edition,
offers 3 weslth of . Read more.

Perl Cookbook, 8econd Edition
By Tom Christiansen, Nathan Torkington
August 2003

$49.95 USD

Find a Perl programmer, and you'llfind o copy of Perl Cookbook nearby.
Perl Cookbook is a comprehensive collection of problems, solutions, and
practicsl examples for anyone programrming in Ferl... Read more

Regular Expression Pocket Reference
By Tony Stubblebine

Algust 2003

$9.95 USD

Ideal as an introduction for beqinners and 3 quick reference for advanced
programmers, Reqular Expression Fockst Refersnce is & comprehensive
auids to reqular expressian APTs for G, Perl, PHF, Java, . Read mors.

Perl Pocket Reference, Fourth Edition
By Johan vromans

uly 2002

$2.95 USD

The Perl Pocket Reference, 4th Edition provides & complete overview of the
Perl programming language, all packed into 2 convenient, carry-aroun
booklet. Tt is updated for Perl 5.8, and covers.. Read more.

Perl Best Practices
By Damian Canway
5

$39.95 USD

Perl Best Practices offers a collection of 256 guidelines on the art of coding
t0 help you write better Perl code--in fact, the best Perl cade you possibly
can, The... Read more,

Perl in a Nutshell, Second Edition

By Stephen Spainhour, Ellen Sisver, Nathan Patwardhan
June 2002

$39.95 USD

This complete guide to Perl includes the basics of the programrming
language itself, plus CGI programeming, XML processing, netwerk
programming, database interaction, and graphical user interfaces. The
expanded second edition... Read more

Intermediate Perl

By Randal L. Schwartz, brian d foy, Tom Phoenix
Harch 2006

$39.99 USD

Perl programmers need o clear roadmap far improving their skills
Intermediste Perl teaches & working knowledge of Perl's obiects,
references, and madules - al of which makes the language so.. Read

Beginning Perl for Bioinformatics

$39.95 USD

This book shows bialogists with little or no programming experience how to
use Perl, the ideal language for biological data analysis. Each chapter
focuses on salving a particular problem or... Read more,

Perl Hacks

By chromatic, Damian Conway, Curtis Poe
tay 2006

$28.99 USD

Parl Hacks taps into the sollestive wisdom of the world's most oreative Perl
qurus, 50 you can learn from their experiences, Its the perfect baok for
experienced developers loaking for... Read mare

About O'Reilly | Contact | Jobs | Fress Room | How to Advertise | Privacy Policy

2007, O'Reilly Media, Inc.

e —

=T

Buy Direct and Save

BHK 2 Books,
Get the 3rd FREE!
Use discount code "ape10°
All orders over $29,95 qualify
o free shipping WA
et

Radar Web 2.0 Report

web 2.0
Principles and
Wi | Best Practices

web 2.0 mean

= the latest on
the why, what,
ho, and how of Web 2.0 in
this O'Reilly Radar Report
Read more,

Short Cuts

Good. Fast. Cheap.
0O'Reilly Short Cuts

POF documents on cutting
edge tapics. Fasuse
information in an easy-to-use,
portable packags.

New titles incude

+ CompTIA A+Essentials
220-601 Exam Guide

o Lead Generation on the
web

« What's New in Apache
Web Server 2.27

I vien all Short Cuts

Local Bookstores

Team O'Reilly (US/CA) and
Club O'Reilly (International)
are stores who have joined in
partnership with C'Reilly to
ensure plentiful stock of
current and earlier titles.

®
All trademarks and registered trademarks appearing on oreilly.com are the property of their respective awners.

Hllustration 7: The most significant O'Reilly Perl books

PerlClass.com for ACT Students 20-23 Feb 2007

28

419

28 Con-clusion

28.14 Newsgroups

- comp.lang.perl.announce newsgroup
- comp.lang.perl.moderated newsgroup

- comp.lang.perl.misc newsgroup

420 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 29: Win32::-
EventlLog

In this chapter...

We will show how to use Win32::EventLog to derive various kinds of
informatoin from the Windows Event Log. You will also see how to
use Perl to backup your EventLog and create your own events.

B

CH, 02/14/07
add intro to windows event logs

29

Win32::EventLog

29.1 Win32::EventLog Examples

422

The following example illustrates the way in which the Win32::EventLog
module can be used. It opens the System Event Log and reads through it from
oldest to newest. For each record from the source event log it extracts the full
text of the entry and prints out the event log message text.

use Win32::EventLog;

my $handle = win32::EventLog->new("System", $ENV{ComputerName})
or die "Can't open System EventLog";

$handle->GetNumber($recs) or die "can't get number of recs";

$handle->GetOldest($base) or die "can't get index of oldest rec";

while ($x < $recs) {

$handle->Read (EVENTLOG_FORWARDS_READ | EVENTLOG_SEEK_READ,
$base + $x, $hashref

) or die "Can't read EventLog entry #$x";

if ($hashref->{Source} eq "EventLog") {
win32::EventLog: :GetMessageText($hashref);
print "Entry $x: $hashrRef->{Message}\n";

}

$X++:

To backup and clear the event logs on a remote machine do the following:

use Win32::EventLog;
my $my_server = '\\my-server'; # your server name here
my ($date) = join('-"',

(
(split /\s+/, scalar Tlocaltime)[0,1,2,4]

PerlClass.com for ACT Students 20-23 Feb 2007

Win32::EventlLog 29

)
my $dest;

for my $event_log (qw(Application System Security)) {
$handle = win32::EventLog-new($event_log, $my_server)
or die "Can't open $event_log event log on $my_server";
$dest = 'C:\BackupEventLogs\$event_log\' . $date . '.evt';
$handle->Backup($dest) or warn "Could not backup and clear"
" the $event_log event log on \\\\$my_server ($AE)\n";
$handle->Close;

PerlClass.com for ACT Students 20-23 Feb 2007 423

29 Win32::EventLog

29.2 Win32::EventLog Reference

This module implements most of the functionality available from the Win32
API for accessing and manipulating Win32 Event Logs. The access to the
EventLog routines is divided into those that relate to an EventLog object and its
associated methods and those that relate other EventLog tasks (like adding an
EventLog record).

29.2.1 The EventLog Object and its Methods

The following methods are available to open, read, close and backup EventLogs.

Win32: :EventLog->new(SOURCENAME [,SERVERNAME]);

The new() method creates a new EventLog object and returns a handle to it.
This hande is then used to call the methods below.

The method is overloaded in that if the supplied SOURCENAME argument
contains one or more literal "\' characters (an illegal character in a
SOURCENAME), it assumes that you are trying to open a backup eventlog
and uses SOURCENAME as the backup eventlog to open. Note that when
opening a backup eventlog, the SERVERNAME argument is ignored (as it
is in the underlying Win32 API). For EventLogs on remote machines, the
SOURCENAME parameter must therefore be specified as a UNC path.

$handle->Backup (FILENAME) ;

The Backup() method backs up the EventLog represented by $handle. It
takes a single arguemt, FILENAME. When $handle represents an
EventLog on a remote machine, FILENAME is filename on the remote
machine and cannot be a UNC path (i.e you must use C:\TEMP\App.EVT).
The method will fail if the log file already exists.

$handle->Read (FLAGS, OFFSET, HASHREF);

424 PerlClass.com for ACT Students 20-23 Feb 2007

Win32::EventlLog 29

The Read() method read an EventLog entry from the EventLog represented
by $handle.

$handle->Close();

The Close() method closes the EventLog represented by $handle. After
Close() has been called, any further attempt to use the EventLog
represented by $handle will fail.

$handle->GetOldest (SCALARREF) ;

The GetOldest() method number of the the oldest EventLog record in the
EventLog represented by $handle. This is required to correctly compute the
OFFSET required by the Read() method.

$handle->GetNumber (SCALARREF) ;

The GetNumber() method returns the number of EventLog records in the
EventLog represented by $handle. The number of the most recent record in
the EventLog 1s therefore computed by

$handle->GetOldest($oldest);
$handle->GetNumber($1astRec);
$1astRecoffset=%$o0ldest+$1astRec;

$handle->Clear (FILENAME) ;

The Clear() method clears the EventLog represented by $handle. If you
provide a non-null FILENAME, the EventLog will be backed up into
FILENAME before the EventLog is cleared. The method will fail if
FILENAME is specified and the file refered to exists. Note also that
FILENAME specifies a file local to the machine on which the EventLog
resides and cannot be specified as a UNC name.

PerlClass.com for ACT Students 20-23 Feb 2007 425

29

426

Win32::EventLog

$handle->Report (HASHREF) ;

The Report() method generates an EventLog entry. The HASHREF should
contain the following keys:

Computer

The computer field specfies which computer you want the EventLog
entry recorded. If this key doesn't exist, the server name used to create
the $handle is used.

Source

The Source field specifies the source that generated the EventLog
entry. If this key doesn't exist, the source name used to create the
$handle is used.

EventType

The EventType ficld should be one of the constants
EVENTLOG_ERROR_TYPE = An Error event is being logged.
EVENTLOG_WARNING_TYPE = A Warning event is being logged.

EVENTLOG_INFORMATION_TYPE = An Information event is
being logged.

EVENTLOG_AUDIT_SUCCESS = A Success Audit event is being
logged (typically in the Security EventLog).

EVENTLOG_AUDIT_FAILURE = A Failure Audit event is being
logged (typically in the Security EventLog).

PerlClass.com for ACT Students 20-23 Feb 2007

Win32::EventlLog 29

These constants are exported into the main namespace by default.

Category = The category field can have any value you want. It is
specific to the particular Source.

EventID = The EventID field should contain the ID of the message that
this event pertains too. This assumes that you have an associated message
file (indirectly referenced by the field Source).

Data = The Data field contains raw data associated with this event.

strings = The Strings field contains the single string that itself
contains NUL terminated sub-strings. This are used with the EventID to
generate the message as seen from (for example) the Event Viewer
application.

29.2.2 Other Win32::EventLog functions

The following functions are part of the Win32::EventLog package but are not
callable from an EventLog object.

GetMessageText (HASHREF) ;

The GetMessageText() function assumes that HASHREF was obtained by
a call to $handle->Read (). It returns the formatted string that represents
the fully resolved text of the EventLog message (such as would be seen in
the Windows NT Event Viewer). For convenience, the key 'Message' in the
supplied HASHREEF is also set to the return value of this function.

If you set the variable $Win32::EventLog::GetMessageText to 1 then each
call to $handTe->Read () will call this function automatically.

PerlClass.com for ACT Students 20-23 Feb 2007 427

Chapter 30: Win32::Ne
tAdmin

In this chapter...

You will learn how to manage Windows network groups and users in
Perl.

The Win32::NetAdmin module offers control over the administratoin
of Windows groups and user over a Windows network.

30 Win32::NetAdmin

30.1 Example

Simple script using wWin32::NetAdmin to set the login script for
all members of the NT group "Domain Users". oOnly works if you
run it on the PDC. (From Robert Spier <rspier@seas.upenn.edu>)

FILTER_TEMP_DUPLICATE_ACCOUNTS
Enumerates local user account data on a domain controller.

FILTER_NORMAL_ACCOUNT
Enumerates global user account data on a computer.

FILTER_INTERDOMAIN_TRUST_ACCOUNT
Enumerates domain trust account data on a domain controller.

FILTER_WORKSTATION_TRUST_ACCOUNT
Enumerates workstation or member server account data on a domain
controller.

FILTER_SERVER_TRUST_ACCOUNT
Enumerates domain controller account data on domain controller.

HOoH O H OH OH OH H W W W O OH OH OH OH OH H K K

use wWin32::NetAdmin qw(GetUsers GroupIsMember
UserGetAttributes UserSetAttributes);

my %hash;
GetUsers("", FILTER_NORMAL_ACCOUNT , \%hash)
or die "GetUsers() failed: $AE";

foreach (keys %hash) {
my ($password, $passwordAge, $privilege,
$homeDir, $comment, $flags, $scriptpPath);
if (GroupIsMember("", "Domain Users", $_)) {
print "Updating $_ ($hash{$_3})\n";
UserGetAttributes("", $_, $password, $passwordAge,
$privilege, $homeDir, $comment,
$flags, $scriptpPath)

430 PerlClass.com for ACT Students 20-23 Feb 2007

Win32::NetAdmin 30

or die "UserGetAttributes() failed: $AE";
$scriptPath = "dnx_login.bat"; # the new login script
UserSetAttributes("", $_, $password, $passwordAge,
$privilege, $homeDir, $comment, $flags, $scriptpPath)
or die "UserSetAttributes() failed: $AE";

PerlClass.com for ACT Students 20-23 Feb 2007 431

30

Win32::NetAdmin

30.2 Win32::NetAdmin provided functions

432

Note: All of the functions return false if they fail, unless otherwise noted. When
a function fails call Win32::NetAdmin::GetError() rather than GetLastError() or
$”E to retrieve the error code.

server is optional for all the calls below. If not given the local machine is
assumed.

GetError()

Returns the error code of the last call to this module.

GetDomainController(server, domain, returnedName)

Returns the name of the domain controller for server.

GetAnyDomainController(server, domain, returnedName)

Returns the name of any domain controller for a domain that is directly
trusted by the server.

UserCreate(server, userName, password, passwordAge, privilege,
homeDir, comment, flags, scriptPath)

Creates a user on server with password, passwordAge, privilege, homeDir,
comment, flags, and scriptPath.

UserDelete(server, user)

Deletes a user from server.

UserGetAttributes(server, userName, password, passwordAge,
privilege, homeDir, comment, flags, scriptPath)

Gets password, passwordAge, privilege, homeDir, comment, flags, and
scriptPath for user.

PerlClass.com for ACT Students 20-23 Feb 2007

Win32::NetAdmin 30

UserSetAttributes(server, userName, password, passwordAge,
privilege, homeDir, comment, flags, scriptPath)

Sets password, passwordAge, privilege, homeDir, comment, flags, and
scriptPath for user.

UserchangePassword(domainname, username, oldpassword, newpassword)

Changes a users password. Can be run under any account.

Usersexist(server, userName)

Checks if a user exists.

GetUsers(server, filter, userref)

Fills userRef with user names if it is an array reference and with the user
names and the full names if it is a hash reference.

GroupCreate(server, group, comment)

Creates a group.

GroupbDelete(server, group)

Deletes a group.

GroupGetAttributes(server, groupName, comment)

Gets the comment.

GroupSetAttributes(server, groupName, comment)

Sets the comment.

GroupAddusers(server, groupName, users)

PerlClass.com for ACT Students 20-23 Feb 2007 433

30 Win32::NetAdmin

Adds a user to a group.

GroupDeleteUsers(server, groupName, users)

Deletes a users from a group.

GroupIsMember(server, groupName, user)

Returns TRUE if user is a member of groupName.

GroupGetMembers(server, groupName, userArrayRef)

Fills userArrayRef with the members of groupName.

LocalGroupCreate(server, group, comment)

Creates a local group.

LocalGroupDelete(server, group)

Deletes a local group.

LocalGroupGetAttributes(server, groupName, comment)

Gets the comment.

LocalGroupSetAttributes(server, groupName, comment)

Sets the comment.

LocalGroupIsMember(server, groupName, user)

Returns TRUE if user is a member of groupName.

LocalGroupGetMembers(server, groupName, userArrayRef)

Fills userArrayRef with the members of groupName.

434 PerlClass.com for ACT Students 20-23 Feb 2007

Win32::NetAdmin 30

LocalGroupGetMemberswithbDomain(server, groupName, userRef)

This function is similar LocalGroupGetMembers but accepts an array or a
hash reference. Unlike LocalGroupGetMembers it returns each user name
as DOMAIN\USERNAME. If a hash reference is given, the function returns to
each user or group name the type (group, user, alias etc.). The possible
types are as follows:
$sidTypeUser = 1;
$SidTypeGroup = 2;
$sidTypebomain = 3;
$sidTypeAlias = 4;
$sidTypewel1KnownGroup
$sidTypeDeletedAccount = 6;
$sidTypeInvalid = 7;
$sidTypeunknown = 8;

Il
Ul

LocalGroupAddusers(server, groupName, users)

Adds a user to a group.

LocalGroupDeleteUsers(server, groupName, users)

Deletes a users from a group.

GetServers(server, domain, flags, serverRef)

Gets an array of server names or an hash with the server names and the
comments as seen in the Network Neighborhood or the server manager. For
flags, see SV._TYPE * constants.

GetTransports(server, transportRef)

Enumerates the network transports of a computer. If transportRef is an
array reference, it is filled with the transport names. If transportRef is a
hash reference then a hash of hashes is filled with the data for the
transports.

PerlClass.com for ACT Students 20-23 Feb 2007 435

30

436

Win32::NetAdmin

LoggedonUsers(server, userRef)

Gets an array or hash with the users logged on at the specified computer. If
userRef is a hash reference, the value is a semikolon separated string of
username, logon domain and logon server.

GetAliasFromRID(server, RID, returnedName)
GetUserGroupFromRID(server, RID, returnedName)

Retrieves the name of an alias (i.e local group) or a user group for a RID
from the specified server. These functions can be used for example to get
the account name for the administrator account if it is renamed or localized.

Possible values for RID:
DOMAIN_ALIAS_RID_ACCOUNT_OPS
DOMAIN_ALIAS_RID_ADMINS
DOMAIN_ALIAS_RID_BACKUP_OPS
DOMAIN_ALIAS_RID_GUESTS
DOMAIN_ALIAS_RID_POWER_USERS
DOMAIN_ALIAS_RID_PRINT_OPS
DOMAIN_ALIAS_RID_REPLICATOR
DOMAIN_ALIAS_RID_SYSTEM_OPS
DOMAIN_ALIAS_RID_USERS
DOMAIN_GROUP_RID_ADMINS
DOMAIN_GROUP_RID_GUESTS
DOMAIN_GROUP_RID_USERS
DOMAIN_USER_RID_ADMIN
DOMAIN_USER_RID_GUEST

GetServerDisks(server, arrayRef)

Returns an array with the disk drives of the specified server. The array
contains two-character strings (drive letter followed by a colon).

PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 31: Other Perl
Win32 Modules

In this chapter...

This section documents three other modules that are useful for
Windows NT administration.

31

Other Perl Win32 Modules

31.1 Win32::NetResource

This module offers control over the network resources of Win32.Disks, printers etc can
be shared over a network.

31141

438

Examples

Enumerating all resources on the network

#

This example displays all the share points in the entire
visible part of the network.

#

use strict;
use Win32::NetResource qw(:DEFAULT GetSharedResources GetError);
my $resources = [];
unless(GetSharedResources($resources, RESOURCETYPE_ANY)) {
my $err;
GetError($err);
warn wWin32::FormatMessage($err);

foreach my $href (@$resources) {
next if ($$href{DisplayType} != RESOURCEDISPLAYTYPE_SHARE);
print "----- \n";
foreach(keys %$href) {
print "$_: $href->{$_}\n";

}

Enumerating all resources on a particular host

#

This example displays all the share points exported by the
local host.

#

use strict;

PerlClass.com for ACT Students 20-23 Feb 2007

Other Perl Win32 Modules

31

use wWin32::NetResource qw(:DEFAULT GetSharedResources GetError);
if (GetSharedResources(my $resources, RESOURCETYPE_ANY,

) o

{ RemoteName => "\\\\"
win32::NodeName() }

foreach my $href (@$resources) {

print

foreach(keys %$href) { print "$_: $href->{$_}\n"; }

31.1.2 Data Types

There are two main data types required to control network resources. In Perl these are

represented by hash types.

31.1.21 %NETRESOURCE

Key

Value

Scope

Scope of an Enumeration:
RESOURCE_CONNECTED,
RESOURCE GLOBALNET,
RESOURCE_REMEMBERED.

Type

The type of resource to Enum:
RESOURCETYPE ANY All resources
RESOURCETYPE_DISK Disk resources
RESOURCETYPE PRINT Print resources

DisplayType

The way the resource should be displayed.
RESOURCEDISPLAYTYPE DOMAIN

The object should be displayed as a domain.
RESOURCEDISPLAYTYPE GENERIC

The method used to display the object does not matter.
RESOURCEDISPLAYTYPE _SERVER

The object should be displayed as a server.

PerlClass.com for ACT Students 20-23 Feb 2007 439

31 Other Perl Win32 Modules
Key Value
RESOURCEDISPLAYTYPE SHARE
The object should be displayed as a sharepoint.
Usage Specifies the Resources usage:
RESOURCEUSAGE CONNECTABLE,
RESOURCEUSAGE CONTAINER.
LocalName Name of the local device the resource is connected to.
RemoteName The network name of the resource.
Comment A string comment.
Provider Name of the provider of the resource

31.1.2.2 %SHARE_INFO

This hash represents the SHARE INFO_502 struct.

31.1.3 Functions

Key Value
netname Name of the share.
type type of share.
remark A string comment.
permissions Permissions value
maxusers the max # of users.
current-users the current # of users.
path The path of the share.
passwd A password if one is req'd

Note: All of the functions return false if they fail.

GetSharedResources (\@Resources,dwType, \%NetResource = NULL)

440

PerlClass.com for ACT Students 20-23 Feb 2007

Other Perl Win32 Modules 31

Creates a list in @Resources of %NETRESOURCE hash references.

The return value indicates whether there was an error in accessing any of
the shared resources. All the shared resources that were encountered (until
the point of an error, if any) are pushed into @Resources as references to
%NETRESOURCE hashes. See example below. The \%NetResource
argument is optional. If it is not supplied, the root (that is, the topmost
container) of the network is assumed, and all network resources available
from the toplevel container will be enumerated.

AddConnection (A\%NETRESOURCE, $Password, $UserName, $Connection)

Makes a connection to a network resource specified by %NETRESOURCE

CancelcConnection($Name, $Connection, $Force)

Cancels a connection to a network resource connected to local device
$name.$Connection is either 1 - persistent connection or 0, non-persistent.

WNetGetLastError($ErrorcCode, $Description, $Name)
Gets the Extended Network Error.

GetError($ErrorcCode)

Gets the last Error for a Win32::NetResource call.

GetUNCName($UNCName, $LocalpPath);

Returns the UNC name of the disk share connected to $LocalPath in
$UNCName. $LocalPath should be a drive based path. e.g.
"C:\\share\\subdir"

Note: $servername is optional for all the calls below. (if not given the local
machine is assumed.)

NetShareAdd (\%SHARE, $parm_err,$servername = NULL)

PerlClass.com for ACT Students 20-23 Feb 2007 441

file://share//subdir

31 Other Perl Win32 Modules

Add a share for sharing.

NetSharecheck($device, $type, $servername = NULL)

Check if a directory or a device is available for connection from the
network through a share. This includes all directories that are reachable
through a shared directory or device, meaning that if C:\foo is shared,
C:\foo\bar 1s also available for sharing. This means that this function is
pretty useless, given that by default every disk volume has an
administrative share such as "C$" associated with its root directory.

$device must be a drive name, directory, or a device. For example, "C:",
"C:\dir", "LPT1", "D$", "IPCS$" are all valid as the $device argument. $type
is an output argument that will be set to one of the following constants that
describe the type of share:

STYPE DISKTREE |Disk drive

STYPE PRINTQ Print queue

STYPE DEVICE Communication device

STYPE IPC Interprocess communication (IPC)

STYPE SPECIAL Special ghare; reserved for interprocess
- communication (IPC$) or remote
administration of the server (ADMINS).
Can also refer to administrative shares

such as C$, DS$, etc.

NetShareDel($netname, $servername = NULL)

Remove a share from a machines list of shares.

NetShareGetInfo($netname, \%SHARE,$servername=NULL)

Get the %SHARE INFO information about the share $netname on the
server $servername.

442 PerlClass.com for ACT Students 20-23 Feb 2007

Other Perl Win32 Modules 31

NetShareSetInfo($netname,\%SHARE, $parm_err,$servername=NULL)

Set the information for share $netname.

PerlClass.com for ACT Students 20-23 Feb 2007 443

31

Other Perl Win32 Modules

31.2 Win32::Service

31.21

444

Examples

The first script gets a hashref that contains information about all of the services
on the current host. It then retrieves status information for each of those into
another hashref.

use Win32::Service;
my (%service, %status);
win32::Service::GetServices('',\%services);

foreach my $key (sort keys %services) {
print "Display Name\t: $key, $services{$key}\n";
win32::Service::GetStatus('', $sercices{$key}, \%status);
foreach my $part (keys %status) {
print "\t$part : $status{$part}i\n";

The next script checks the status of NetDDE. If it's already running, it dies with
an error. Otherwise, it tries to start it.

use win32::Service;
use wWin32;

my %status;

win32::Service::GetStatus('', 'NetDDE', \%status);
die "service is already started\n"
if ($status{CurrentState} == 4); # running
win32::Service::StartService(Win32::NodeName(), 'NetDDE"')
or die "can't start service\n";

PerlClass.com for ACT Students 20-23 Feb 2007

Other Perl Win32 Modules 31

print "Service started\n";

31.2.2 Functions

Note: All of the functions return false if they fail, unless otherwise noted. If
hostName is an empty string, the local machine is assumed.

StartService(hostName, serviceName)

Start the service serviceName on machine hostName.

StopService(hostName, serviceName)

Stop the service serviceName on the machine hostName.

GetStatus (hostName, serviceName, status)

Get the status of a service. The third argument must be a hash reference
that will be populated with entries corresponding to the

SERVICE STATUS structure of the Win32 API. See the Win32 Platform
SDK documentation for details of this structure.

PauseService(hostName, serviceName)
ResumeService(hostName, serviceName)
GetServices(hostName, hashref)

Enumerates both active and inactive Win32 services at the specified host.
The hashref is populated with the descriptive service names as keys and the
short names as the values.

PerlClass.com for ACT Students 20-23 Feb 2007 445

31

31.3 Win32::Sound

31.31

446

Quick Sample

Other Perl Win32 Modules

A sampling of Perl playing sounds and adjusting the volume:

use Win32::Sound;

win32::Sound

::volume('50%"');

set volume for Teft and right seperately
win32::Sound: :volume('100%"','50%"');

($1eft,$right) = win32::Sound::volume(Q);

win32::Sound
win32::Sound

win32::Sound
win32::Sound

win32::Sound

::volume(0); # mute

::volume($left,$right); # restore prior values

::Play("example.wav") # arbitrary
::Play("SystemQuestion"); # symbolic

::Stop(Q);

PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 32: *NIX
cheat sheet

32 *NIX cheat sheet

32.1 Some UNIX commands

A brief run-down for those whose UNIX skills are rusty:

Table 32-1. Simple UNIX commands

ddd

448

Action Command
Change to home directory cd

Change to directory cd directory
Change to directory above current | cd ..

directory

Show current directory pwd

Directory listing Is

Wide directory listing, showing Is -al

hidden files

Showing file permissions Is -al

Making a file executable

chmod +x filename

Printing a long file a screenful at a
time

more £ilename or less
filename

Getting help for command

man command

dddd

PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 33: Editor
cheat sheet

In this chapter...
you will find an editor summary which is laid out as follows:

Table 33-1. Layout of editor cheat sheets

Running Recommended command line for
starting it.
Using Really basic howto. This is not even

an attempt at a detailed howto.

Exiting How to quit.
Gotchas Oddities to watch for.

33

Editor cheat sheet

33.1 vi

vi is the classic UNIX editor. It is strange but beautiful. It is very powerful in
educated hands and is universally available in the UNIX world.

A version of vi known as vim is available that can esaily be installed in
Windows and many other strange operating systems. Check out
http://www.vim.org/ for more information.

33.1.1 Running

o)

% vi filename

33.1.2 Using

- i to enter insert mode, then type text, press ESC to leave insert mode.
- x to delete character below cursor.
- dd to delete the current line
- Cursor keys should move the cursor while not in insert mode.
. Ifnot, try njk1, n = left, 1 = right, 5 = down, x = up.
-/, then a string, then ENTER to search for text.
:w then ENTER to save.

33.1.3 Exiting

- Press ESC if necessary to leave insert mode.
:q then ENTER to exit.
:q! ENTER to exit without saving.

:wq to exit with save.

33.1.4 Gotchas

450

vi has an insert mode and a command mode. Text entry only works in insert
mode, and cursor motion only works in command mode. If you get confused
about what mode you are in, pressing ESC twice is guaranteed to get you back
to command mode (from where you press i to insert text, etc).

PerlClass.com for ACT Students 20-23 Feb 2007

http://www.vim.org/

Editor cheat sheet 33

33.1.5 Help
:nelp ENTER might work. If not, then see the man page.

33.1.6 vim

VOTE BUY HELP LEARN

Vim development for features

‘ SPONSOR

the Vim book Uganda Vim

% the editor

notlogged in doging

Home
Search

About Vim
Community
News
Sponsoring
Trivia
Documentation
Download

Scripts
Tips
My Account

Site Help

News Wim 7.0.192 is the current varsion

Vim presentation in Mountain View

[2007-0z-05 Tuesday, February 13th, 1will be giving a presentation at the Google offices in Mountain View. The title is
"Seven habits for effective text editing, 2.0". [t will start at 7 pm. More information can be found on the Google code
site. For instructions how to get there click on "Mountain View headquarters”. But pay attention to the building
number 41, there are many Google buildings -). Hope to see many of you there! (Bram Moolenaar)

@vim.org email back

[2007-02-04] The problem in the @wim org email has been solved, we're backl (Bram Moolanaar)

MOore News... Find Wimmers on Frapprl OWD and wideo about Vim's charity project

What is Vim?

Yim is a highly configurable
text editor built to enable
efficient text editing. It is an
improved version of the vi
editor distributed with most
UNE systemns. Yim is
distributed free as
charityware. If you find %im a
useful addition to your life
please consider helping
needy children in Uganda.

What is Vim online?

Yim online is a central place
for the %im community to
store useful Yim tips and
tools. %im has a scripting
language that allows for
plugin like extensions ta
enable IDE behaviar, syntax
highlighting, colorization as
well as other advanced
features. These scripts can
be uploaded and maintained
using %im online.

listed at inwio.com

Recent Script Updates 1,784 scripts, 1,702,071 downloads
[2007-02-16] surround vim © Delete/changefadd parentheses/quotesfxML-tagsimuch more with ease
{1.23) xmap rather than wvmap, to avoid interfering with select mode. surround_insert_tail to specify a
universal suffix for use ininsert mode. - Tim Pope
[2007-02-15] pokyclvim - Polyhedra CL syntax
{0.9.1) Major fixes (typos). Fixed string escapes. Started highlighting of operators and split of reserved
wiord in multiple classes. - Qlivier Mengue
f2007-02-18] pobkcfgvim © Polyvhedra configuration syntax
{1.0) Initial upload - Oilvier Mengue
f2007-02-18 fesh tools | you can compile as and mxml files from wvim via fosh © Flex Comipler SHell
(0.2} added more quotes. - mike rowe

more recent | most downloaded | top rated

Recent Tip Additions 1,304 tips, 3,657,456 tip views

[2007-02-08] tip #1504 - External commands on Windows (Tim Keating)
[e007-0z-02) tip #1501 - substitute last search (Jerome)

[zo07-02-07) tip #1500 - By default, when opening files in Mac OS X, a new vim window is opened. This shows you
how to have only one window. {2dit in a single window in Mac OS X)

[2007-02-04] tip #1499 - Jump back to spell checked words (john AT beever DOT nl)

mare recent | most viewed | top rated

Ifyou have guestions or remarks about this site, visit the vimonlineg development pages. Flease use this site

respansibly

Questions ahout¥im should go to vim@wim.org after searching the archive. Help Bram help Uganda.

Special thanks to our sponsors:

stats

Idealo - Preisvergleich in Ssterreich

Test und Preisvergleich
Price Comparison
Yatego Shopping

Hllustration 8: http://www.vim.org/

PerlClass.com for ACT Students 20-23 Feb 2007

451

33 Editor cheat sheet

33.2 pico

pico is the editor from pine turned into an external command. pine is no longer
supported by some Linux distributions so you may have to type "nano" to get
"pico", but you can always make an alias.

33.2.1 Running

% pico -w filename

33.2.2 Using

- Cursor keys should work to move the cursor.
- Type to insert text under the cursor.

. The menu bar has ~x commands listed. This means hold down CTRL and
press the letter involved, eg CTRL-W to search for text.

. CTRL-Oto save.

33.2.3 Exiting

Follow the menu bar, if you are in the midst of a command. Use CTRL-X from
the main menu.

33.2.4 Gotchas

Line wraps are automatically inserted unless the -w flag is given on the com-
mand line. This often causes problems when strings are wrapped in the middle
of code and similar. \\ \hline

33.2.5 Help

CTRL-G from the main menu, or just read the menu bar.

452 PerlClass.com for ACT Students 20-23 Feb 2007

Editor cheat sheet 33

33.3 joe
33.3.1 Running

o)

% joe filename

33.3.2 Using

- Cursor keys to move the cursor.
- Type to insert text under the cursor.
- CTRL-K then S to save.

33.3.3 Exiting

. CTRL-C to exit without save.
. CTRL-K then X to save and exit.

33.3.4 Gotchas

Nothing in particular.

33.3.5 Help
CTRL-K then H.

PerlClass.com for ACT Students 20-23 Feb 2007 453

33 Editor cheat sheet

33.4 jed
33.4.1 Running

% jed

33.4.2 Using

- Defaults to the emacs emulation mode.
- Cursor keys to move the cursor.

- Type to insert text under the cursor.

- CTRL-X then S to save.

33.4.3 Exiting
CTRL-X then CTRL-C to exit.

33.4.4 Gotchas

Nothing in particular.

33.4.5 Help
- Read the menu bar at the top.

. Press ESC then ? then H from the main menu.

454 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 34: ASCII
Pronunciation Guide

In this chapter...

It is widely recognized that speaking about computing topics requires
some common set of terms for communications, so computerese or
technobabble describe this dialect. But it is less widely recognized
that a dialect is necessary for unambiguously communicating about
individual characters.

34 ASCII Pronunciation Guide

Table 34-1. ASCII Pronunciation Guide
Character Pronunciation
! bang, exlamation

* star, asterisk
$ dollar

@ at

% percent

& ampersand

" double quote

' single quote, tick, or forward quote

() open/close bracket, parentheses

< less than, left angle bracket

> greater than, right angle bracket

- dash, hyphen, n-dash

dot, period

, comma
/ slash, forward slash
\ backslash
colon
semicolon
= equals
? question mark
~ caret (pron. "carrot")
underscore

[] open/close square bracket

{} open/close curly brackets, brace,
squigglies, or squiggly brackets

pipe, bar, or vertical bar

~ tilde (pron."til-duh"), wiggle
backtick, backquote (below ~)

456 PerlClass.com for ACT Students 20-23 Feb 2007

Chapter 35: HTML
Cheat Sheet

In this chapter....

The following table outlines a few HTML elements which may be
useful to you. For more detail or for information about elements
which are not listed here, consult one of the references listed below.

35 HTML Cheat Sheet

Table D-1. Basic HTML elements

Type of information Markup

Paragraph <P> ... </P>

Heading level 1 <H1>This is a level 1 heading</H1>
Heading level 2 <H2>This is a level 2 heading</H2>
Heading level 3 <H3>This is a level 3 heading</H3>
Heading level 4 <H4>This is a level 4 heading</H4>
Unordered (bulleted) list

List item 1

List item 2

List item 3

Ordered (numbered) list
List item 1

List item 2
List item 3

</0L>
Table <TABLE BORDER>
<TR> <-- "table row" -- >
<TH>Heading column 1</TH>
<TH>Heading column 2</TH>
<TH>Heading column 3</TH>
</TR>
<TR> <-- "table row" -- >
<TD>row 1, column 1</TD>
<TD>row 1, column 2</TD>
<TD>row 1, column 3</TD>
</TR>
<TR> <-- "table row" -- >
<TD>row 2, column 1</TD>
<TD>row 2, column 2</TD>
<TD>row 2, column 3</TD>
</TR>
</TABLE>
Horizontal rule <HR>

Anchor tag (hypertext link) <A HREF="http://example.com/"
>Descriptive text

For more information...

458 PerlClass.com for ACT Students 20-23 Feb 2007

HTML Cheat Sheet 35

- HTMLhelp.org (http://htmlhelp.org/)
- The World Wide Web Consortium (W3C) (http://w3.org/)

PerlClass.com for ACT Students 20-23 Feb 2007 459

http://w3.org/

Chapter 36: The
Regex Coach

In this chapter....

What follows is the nearly verbatim extract of

http:// www.weitz.de/regex-coach which you can go to directly if
you're viewing this online, but for those die-hard fans of killing trees
to make reading easier (such as your humble author), here's some
information on a neat utility.

http://www.weitz.de/regex-coach

36

The Regex Coach

36.1 Abstract

462

The Regex Coach is a graphical application for
Windows which can be used to experiment
with (Perl-compatible) regular expressions
interactively. It has the following features:

It shows whether a regular expression
matches a particular target string.

It can also show which parts of the target
string correspond to captured register groups or to arbitrary parts of the
regular expression.

It can "walk" through the target string one match at a time.
It can simulate Perl's sp1it and s/// (substitution) operators.
It tries to describe the regular expression in plain English.

It can show a graphical representation of the regular expression's parse
tree.

It can single-step through the matching process as performed by the regex
engine.

Everything happens in "real time", i.e. as soon as you make a change
somewhere in the application all other parts are instantly updated.

If you find this software useful then please consider making a small donation
towards the ongoing development costs. Website hosting costs money, as do
compilers and development tools.

PerlClass.com for ACT Students 20-23 Feb 2007

http://www.lispworks.com/

The Regex Coach

36.2 Contents

Download and installation
Older versions, Linux, FreeBSD, Mac
License
- Support, bug reports, mailing list
How to report bugs
Quick start tutorial
(An Italian version is available thanks to Lorenzo Marcon)
How to use The Regex Coach
The main panes
The message areas
- Highlighting selected parts of the match
- The highlight buttons
The highlight messages
- Walking through the target string
- Narrowing the scan
The info pane
The parse tree
Replacing text
Splitting text
- Single-stepping through the matching process
- Modifiers
- Resizing
Saving to and loading from files
- Autoscroll
- Known bugs and limitations
Technical information
Compatibility with Perl

- Acknowledgements

PerlClass.com for ACT Students 20-23 Feb 2007

36

463

http://www.weitz.de/regex-coach/#ack
http://www.weitz.de/regex-coach/#perl
http://www.weitz.de/regex-coach/#technical
http://www.weitz.de/regex-coach/#bugs
http://www.weitz.de/regex-coach/#autoscroll
http://www.weitz.de/regex-coach/#file
http://www.weitz.de/regex-coach/#resize
http://www.weitz.de/regex-coach/#modifiers
http://www.weitz.de/regex-coach/#step
http://www.weitz.de/regex-coach/#split
http://www.weitz.de/regex-coach/#replace
http://www.weitz.de/regex-coach/#parse-tree
http://www.weitz.de/regex-coach/#info
http://www.weitz.de/regex-coach/#narrow
http://www.weitz.de/regex-coach/#walking
http://www.weitz.de/regex-coach/#highlight-messages
http://www.weitz.de/regex-coach/#highlight-buttons
http://www.weitz.de/regex-coach/#highlight
http://www.weitz.de/regex-coach/#messages
http://www.weitz.de/regex-coach/#panes
http://www.weitz.de/regex-coach/#howto
http://ldphq.zapto.org/regexcoach_it/
http://www.weitz.de/regex-coach/tutorial1.html
http://www.weitz.de/regex-coach/#report
http://www.weitz.de/regex-coach/#mail
http://www.weitz.de/regex-coach/#license
http://www.weitz.de/regex-coach/#older
http://www.weitz.de/regex-coach/#install

36

The Regex Coach

36.3 Download and installation

36.3.1

464

The Regex Coach together with this documentation can be downloaded from
http://weitz.de/files/regex-coach.exe. The current version is 0.9.1 - see the
changelog for what's new. The file (an installer) is about 2MB in size.

You should use Windows 2000 or Windows XP with all updates and service
packs installed. The program might work with older or unpatched Windows
versions, but don't expect support for these configurations. See also below.

You also must have the Microsoft runtime library msvcr80.d11 installed. If
you don't have it or if you aren't sure, you can get it from
http://www.microsoft.com/downloads/details.aspx?familyid=32BC1BEE-A3F9-

4C13-9C99-220B62A 191 EE&displaylang=en.

If you have a previous version (0.8.5 or earlier) of The Regex Coach installed,
uninstall 1t first before you install the new version! If you haven't done this, and
the new application won't start, remove the file

The Regex Coach.exe.manifest from the application directory.

Older versions, Linux, FreeBSD, Mac

Beginning with version 0.9.0, there will no longer be a Linux version of The
Regex Coach - too few people were using it, and it's simply too much work for
me to maintain both versions. You can still download the last (now unsupported)
Linux release from http://weitz.de/files/regex-coach-0.8.5.tgz - it will also run
on FreeBSD, see documentation.

If you have an older version of Windows and the current version of 7he Regex
Coach doesn't work for you, you can try the last release which was built with
LispWorks 4.4.6 - it is at http://weitz.de/files/regex-coach-0.8.5.exe. If that
works for you - fine. Don't expect support or updates, though.

There 1s no Mac version and I have no plans to release one. Sending me email
and begging for it won't change that. And, no, I don't want to open source the
application or send the source code to you privately - no need to ask...

License

PerlClass.com for ACT Students 20-23 Feb 2007

http://www.weitz.de/regex-coach/changelog.txt
http://weitz.de/files/regex-coach.exe
http://www.weitz.de/regex-coach/#mail
http://weitz.de/files/regex-coach-0.8.5.exe
http://www.weitz.de/regex-coach/#technical
http://weitz.de/files/regex-coach-0.8.5.tgz
http://www.microsoft.com/downloads/details.aspx?familyid=32BC1BEE-A3F9-4C13-9C99-220B62A191EE&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=32BC1BEE-A3F9-4C13-9C99-220B62A191EE&displaylang=en
http://www.weitz.de/regex-coach/#older
http://update.microsoft.com/
http://update.microsoft.com/

The Regex Coach 36

The Regex Coach is Copyright © 2003-2006 Dr. Edmund Weitz - All Rights
Reserved.

The Regex Coach is free for private or non-commercial use but if you like and
use it it'd be nice if you could donate a small amount to fund further
development. The Regex Coach is also free for commercial use but you are not
allowed to re-distribute it and/or charge money for it without written permission
by the author - email me at edi@weitz.de for details.

The program is provided 'as is' with no warranty - use at your own risk.

PerlClass.com for ACT Students 20-23 Feb 2007 465

mailto:edi@weitz.de
http://www.weitz.de/regex-coach/#paypal

36

The Regex Coach

36.4 Support, bug reports, mailing list

36.4.1

466

If you want to be notified about new releases of The Regex Coach please
subscribe to the "regex-coach" mailing list using the web frontend at

http://common-lisp.net/mailman/listinfo/regex-coach. You can search the
mailing list archives using this Google Custom Search Engine.

You should also use this list for questions, bug reports, and feature requests.

How to report bugs

If you've found a bug in The Regex Coach, I'm happy if you report it and I'll try
to fix it. However, please follow the following procedure:

Make sure you're using the latest version of 7The Regex Coach on
Windows. Older versions and other operating systems are no longer
supported.

Make sure you have msvcr80.d11 installed - see above.
Make sure you don't have the old manifest file anymore - see above.

Provide information about the Windows version (including service pack)
you're using.

Try to reduce the problem you're encountering to a simple, self-contained
test case, so that I can reproduce the bug easily.

Send bug reports to the mailing list and not to me privately. [might simpy
ignore reports not sent to the list.

If you have five minutes, read this text by Simon Tatham.

If you think this is asking too much, please keep in mind that you get The Regex
Coach for free and nobody pays me for fixing bugs or answering questions. If
it's too much work for you to send a decent bug report to the right place, then I
think it's only fair if I consider it too much work for me to answer.

PerlClass.com for ACT Students 20-23 Feb 2007

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://www.weitz.de/regex-coach/#mail
http://www.weitz.de/regex-coach/#manifest
http://www.weitz.de/regex-coach/#msvcr
http://www.weitz.de/regex-coach/#install
http://google.com/coop/cse?cx=000682109305866939995%3A7v26m29hxc0
http://common-lisp.net/mailman/listinfo/regex-coach

The Regex Coach

36.5 How to use The Regex Coach

36

The Regex Coach enables you to try out the behaviour of Perl's regular
expression operators (namely m//, s///, and sp1it) interactively and in "real
time", i.e. as soon as you make changes somewhere the results are instantly
displayed. You can also query the regex engine about selected parts of your
regular expression and watch how it parses your input.

Of course, this application should also be useful to programmers using Perl-
compatible regex toolkits like PCRE (which is used by projects like Python,
Apache, and PHP) or CL-PPCRE. Also, Java's regular expressions and those of

XML Schema are very similar to Perl's.

modifier checkboxes

i The Regex Coach

File Autoscroll Help

B[(=1[Ed

regex Reqular expression:

message area a(b|cd=)+e /

target _

message area i Om Os O Ca
Target string: Kk\
®yzabexxabbcddbcdest

tabs
\

~kritrol |Ir|f|:| Tree || Replace | Split Step

Highlight (grey background):
(%) selection
highlight -15]

messages O nathing

[15-17]

Scan #2 from & Start of string: 0 End of string: -

regex pana

target pane

B rasize dividers

~ highlight buttons

e

scan buttons

border buttons

The following descriptions will use the notions introduced by this annotated

screenshot.

PerlClass.com for ACT Students 20-23 Feb 2007

467

http://www.xmlschemareference.com/regularExpression.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html
http://weitz.de/cl-ppcre/
http://www.php.net/
http://httpd.apache.org/
http://www.python.org/
http://www.pcre.org/

36 The Regex Coach

36.5.1 The main panes

The main area of the application is inhabitated by two panes which are always
visible. Both behave like simple editors, i.e. you can type text into them and
modify it. You can also copy and paste text between these panes and other
applications. On Windows, the keybindings resemble those of typical Windows
editors, on Linux the keybindings are those of GNU _Emacs. (If you have never
used Emacs you might know a couple of these keybindings from the bash shell.)
You can use the TAB key to switch between these editors. This will also cycle
through the replacement pane if it's visible.

The upper pane is the regex pane. Here you'll type the regular expression you
want to investigate.

The second pane is the target pane. Here you'll type the text (the target string)
the regular expression will try to match.

If there's a match, the part of the target string that matched will be emphasized
by a yellow background. (If you also check the 'g' modifier checkbox all matches
will be emphasized - the "current" one in yellow, the others in green.)

36.5.2 The message areas

Both of the afore-mentioned panes have message areas directly below them.
The regex message area is usually empty but it will show an error message in
red letters if the regular expression isn't syntactically correct. It'll also show a
warning in grey letters if the content of the regex pane ends with whitespace
because this might not be what you want. You can of course ignore this warning
if you typed the whitespace characters on purpose.

The target message area will show the extent of the match (or notify you that
there isn't a match at all). This is particularly useful if there's a zero-length
match because you won't see any highlighted characters in the target pane in this
case. The message "Match from #n to m" means that the characters starting from
position n up to m (exclusively) belong to the match. The first character of the
string is character 0 (zero) as usual.

36.5.3 Highlighting selected parts of the match

If there's a match you can highlight selected parts of the match which are shown

468 PerlClass.com for ACT Students 20-23 Feb 2007

http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#walking
http://www.weitz.de/regex-coach/#modifiers
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#replace
http://www.gnu.org/software/emacs/emacs.html

The Regex Coach 36

in orange. The default setting is to reflect the selection you've made in the regex
pane. It works like this: If you've selected a valid subexpression of the regular
expression in the regex pane the corresponding part of the target string is shown
in orange. You see an example in the screen shot above where the 'b' in the
regular expression was selected which corresponds to the fourth 'b' in the target
string.

If you've made an invalid selection the selection highlight button is disabled.
You'll also see a message about your selection being invalid in the info pane.

If you have no idea what a "valid subexpression" of the regular expression could
be consider the following rule of thumb: Every part of the regular expression
which can be wrapped in a non-capturing group - i.e. with (?:...) - without
altering the meaning of the expression is valid.

(A more precise description of this would be: Consider the parse tree of the
regular expression and assume that every leaf of the tree which is a string is
further divided into the single characters which together constitute the string.
Now, every contiguous part of the regular expression which can be completely
and exactly covered by nodes of the parse tree is a valid subexpression.)

36.5.4 The highlight buttons

Apart from highlighting the part of the target string which corresponds to the
selected area in the regex pane you can also highlight the parts which
correspond to captured register groups (enclosed by parentheses) in the regular
expression. This is done by selecting one of the highlight buttons. These are
only enabled if there are any captured registers.

Press the "nothing" button to disable highlighting.

36.5.5 The highlight messages

Each of the highlight buttons has a small highlight message associated with it
(similar to the message area of the target pane) which shows which part would
be highlighted if the corresponding button were selected. Again, this is
particularly useful in the case of zero-length (sub-)matches.

PerlClass.com for ACT Students 20-23 Feb 2007 469

http://www.weitz.de/regex-coach/#messages
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#highlight-buttons
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#parse-tree
http://www.weitz.de/regex-coach/#info
http://www.weitz.de/regex-coach/#highlight-buttons
http://www.weitz.de/regex-coach/#shot

36

The Regex Coach

36.5.6 Walking through the target string

Usually, the application will try to find the first match beginning from position 0
of the target string. You can use the scan buttons to move forward (or backward)
one match at a time if there's more than one match. (This is how the Perl regex
engine would behave in case of 'global' matches - i.e. those with a 'g' modifier -
or if you apply the split operator.)

The headline above the scan buttons which usually says "Scan from 0" will
change accordingly showing a message like "Scan #n from m" which means that
the regex engine is trying to find the nth match starting at character m of the
target string. The target message area will be changed as well - it'll say

"Match #n from k to /" instead of "Match from £ to /" (or it'll say "No further
match" instead of "No match" if you've pressed the scan forward button too
often).

36.5.7 Narrowing the scan

By using the border buttons you can narrow the scan to a part of the target

string. This effectively hides characters from the start and/or end of the target
string from the regex engine. The characters which are masked thusly are
covered with a dark grey color in the target pane. Note that the effect of the scan
buttons is reset by the border buttons.

36.5.8 The info pane

Choosing the "Info" tab will reveal the info pane which is an area where the
application tries to explain what the regular expression is supposed to do in plain
English. If you've selected a part of the regular expression only this part will be
explained.

36.5.9 The parse tree

470

If you select the "Tree" tab you'll see a (simplified) graphical representation of
the parse tree of the regular expression. This is how the regex engine "sees" the
expression and it might help you to understand what's going on (or why the
regular expression isn't interpreted as you intended it to be).

PerlClass.com for ACT Students 20-23 Feb 2007

http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#highlight
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#walking
http://www.weitz.de/regex-coach/#walking
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#messages
http://www.weitz.de/regex-coach/#split
http://www.weitz.de/regex-coach/#modifiers
http://www.weitz.de/regex-coach/#shot

The Regex Coach 36

36.5.10 Replacing text

By choosing the "Replace" fab you'll open up an area with two panes. The first
one includes a simple editor like the ones in the main panes. Here you can type a
replacement string which acts like the second argument to Perl's s///
(substitution) operator. The second pane will show the result of the substitution.
The contents of these panes are meaningless if the regular expression has
syntactical errors.

Note that you'll have to use "\&", "\ "", "\'"" and "\ n" instead of Perl's "$&",
"$ ", "$"" and "$n" - see the CL-PPCRE documentation for the gory details.

36.5.11 Splitting text

The "Split" tab will reveal a pane which shows the result of applying Perl's
sp1it operator to the target string. As this result is usually an array of strings
the elements of this array are visually divided by vertical lines the size of a
space character. (This implies that two vertical lines in a row denote that there's
a zero-length string between them. And it also follows that the array has only
one element if there's no vertical line at all.)

You can use the radio buttons below the pane to select another divider if the
vertical line happens to be a part of your target string. But note that choosing the
"block" option might significantly slow down the program if your target strings
are long.

You can type a non-negative integer into the "Limit" field. This corresponds to
the optional third argument to Perl's sp11t operator.

36.5.12 Single-stepping through the matching process

Finally, the "Step" tab will lead you to two panes which have the same content
as the two main panes. However, here you can watch the regex engine "at
work". This is best explained with an example, so see the corresponding part of
the tutorial.

Note that many of the optimizations done by the CL-PPCRE engine are turned
off here for pedagogical reasons. (For example, when trying to match the regex
a*abc against the target string aaaabd the "real" engine wouldn't even start
because it'll first use a Boyer-Moore-Horspool search to check if the constant

PerlClass.com for ACT Students 20-23 Feb 2007 471

http://weitz.de/cl-ppcre/
http://www.weitz.de/regex-coach/tutorial18.html
http://www.weitz.de/regex-coach/tutorial18.html
http://www.weitz.de/regex-coach/#panes
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#shot
http://weitz.de/cl-ppcre/#regex-replace
http://www.weitz.de/regex-coach/#panes
http://www.weitz.de/regex-coach/#shot

36

The Regex Coach

string abc is somewhere in the target.) Some of them remain, however: The
engine will only try to match from position 0 if the regex starts with . * and is in
single-line mode. Also, as you'll see, the stepper tries to match constant strings
as a whole (instead of single characters which would be quite boring).

36.5.13 Modifiers

Pressing one of the modifier checkboxes is equivalent to using the corresponding
modifier character in Perl. For example, the "i" checkbox toggles between case-
sensitive and case-insensitive matching. Note that the "g" ('global') modifier
only affects the replacement operation - it has no effect on the match itself. If it's
enabled other matches the engine would find are highlighted in green in the

target pane, though.

36.5.14 Resizing

You can resize the application window as usual by dragging the lower right
corner. But you can also resize the panes relative to each other by dragging one
of the resize dividers. These aren't visible in the Windows version but you'll note
that the cursor changes if you position the mouse above them. There's also a
resize divider between the two replacement panes. The Regex Coach will
remember the size and position of its main window between two invocations.

36.5.15 Saving to and loading from files

If one of the two main panes has the focus you can - from the file menu - insert
the contents of a text file into this pane or save the contents of this pane to disk.
The latter can also be done by pressing Ctrl-s (or Ctr1-x Ctrl-s on Linux).
The contents of these two panes will also remain persistent between two
invocations of The Regex Coach.

Note: Due to the way Motif works, the file menu can't be used like this on
Linux. Instead you can use the Emacs key sequences Ctr1-x Ctrl-wand
ctril-x 1.

36.5.16 Autoscroll

472

The Regex Coach has an Autoscroll feature which can be switched on and off
via the corresponding menu. If Autoscroll is on, then each time the target string
is parsed the scrollbar of the target pane will be moved such that the start (or end

PerlClass.com for ACT Students 20-23 Feb 2007

http://www.weitz.de/regex-coach/#panes
http://www.weitz.de/regex-coach/#replace
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#replace
http://www.weitz.de/regex-coach/#shot

The Regex Coach 36

- depending on what you've chosen) of the match is visible more or less in the
middle of the pane. If you've chosen to highlight specific parts of the match,
then the scrollbar will move to the start or end of the highlighted region instead.
This is of course only meaningful if the target string is too large to fit into the

pane.

No automatic scrolling occurs while the target pane has the input focus.

PerlClass.com for ACT Students 20-23 Feb 2007 473

http://www.weitz.de/regex-coach/#highlight

36 The Regex Coach

36.6 Known bugs and limitations

The regex engine might give up with a stack overflow on relatively long regular
expressions. (This will happen much earlier as with CL-PPCRE alone as the
parsing process is interwoven with code specific to The Regex Coach.) Although
maybe counter-intuitive, it might help to add some non-capturing groups, i.e.
"aa...abb...b" (with enough characters inbetween) might fail while
"(?:aa...a)(?:bb...b)" doesn't.

Also, there seem to be problems with Eastern European versions of Windows,
specifically with "character set 1250" or similar. Sorry, I currently don't have the
time and resources to investigate this any further.

If you encounter any other bugs or problems please send them to the mailing
List.

474 PerlClass.com for ACT Students 20-23 Feb 2007

http://www.weitz.de/regex-coach/#mail
http://www.weitz.de/regex-coach/#mail
http://weitz.de/cl-ppcre/

The Regex Coach 36

36.7 Technical information

36.7.1

The Regex Coach is written in Common Lisp and was developed using the
LispWorks development environment. The regex engine used is CL-PPCRE.

It might be worthwhile to note that due to the dynamic nature of Lisp The Regex
Coach could be written without changing a single line of code in the CL-PPCRE
engine itself although the application has to track information and query the
engine while the regular expressions is parsed and the scanners are built. All this
could be done 'after the fact' by using facilities like defadvice and :around
methods. Imagine writing this application in Perl without touching Perl's regex
engine... :)

Also, thanks to LispWork's cross-platform CAPI toolkit the code for the
Windows and Linux versions is nearly identical without any platform-specific
parts (except for some lines regarding different fonts and keybindings).

Compatibility with Perl

See the CL-PPCRE documentation.

PerlClass.com for ACT Students 20-23 Feb 2007 475

http://weitz.de/cl-ppcre/
http://perl.plover.com/Rx/paper/
http://weitz.de/cl-ppcre/
http://www.lispworks.com/
http://www.lisp.org/

36 The Regex Coach

36.8 Acknowledgements

The script to compile the Windows installer was kindly provided by lan H. The
icon for the Windows application was created by André Derouaux. The PNG
included with the Linux distribution was contributed by John Troy Hurteau and
is based on André's icon. The Lisp logo was designed by Manfred Spiller.
Thanks to Alex Wood for RPM information. Thanks to Jim Prewett for
FreeBSD info.

Brigitte Bovy from LispWorks ("Xanalys" at that time) support helped with the
tricky interaction between the editor panes. I also got a couple of helpful tips

from the Lispworks mailing list, specifically from Jeff Caldwell, John DeSoi,
David Fox, and Nick Levine.

Thanks to the guys at "Café Ol¢" in Hamburg where I wrote most of the code.

Development of the The Regex Coach has been supported by Euphemismen.de.

476 PerlClass.com for ACT Students 20-23 Feb 2007

http://euphemismen.de/
http://www.weinhandel-ottensen.de/
http://normal-null.de/
http://www.digiserv.net/

Chapter 37: Ack-
nowledgements

In this section...

I will try to thank a few of the folks and projects that made this
possible

37 Acknowledgements

37.1 Folks

First and foremost my wife, Cynthia Manuel has been an able and fun
companion in life and work for years. Nothing would be possible without her.

Thanks to John Lundin for vast contriutions of systems administration, content
comments, and wonderful stir fries.

Thanks to Stephen Johnson for supporting my instruction and content creation
efforts for many years now. Ifit weren't for Stephen I would never have taught
this course for US News & World Report, Circuit City, or a lot of other folks.

Thanks to all of the folks who have survived my instruction of this course and
others. Your ideas, comments, complaints, and foolishness have all helped
make this class what it is.

Thanks to Mark Whittington for automotive wisdom and other random
surprises.

Thanks to Kirrily "skud" Robert for creating the DocBook version of this conent
and sharing it with the world. If only DocBook weren't such a pain. (Writing
LISP to make style sheets? Ick.)

Thanks to Carl Hicks, Thomas St. Jacques, Buffy Boke, and Jonathan Collie for
varied non-technical contributions.

478 PerlClass.com for ACT Students 20-23 Feb 2007

Acknowledgements 37

37.2 Projects

Title:000-logo(col-rgh).eps
OpenOffice.org for providing a nice free yyord, RESEHRREt0rR) 12
CreationDate:12/13/2006

dia for easy ERD editing.
LanguageLevel:2

Fedora for a damn fine desktop Linux.
CentOS and Red Hat for a damn fine server Linux.

TWiki for a mighty fine wiki. Written in Perl naturally.

Perl for being there to teach. Larry, Randal, and a cast of thousands work

together to produce art and technology that looks less like a committee product
than most geeks would expect.

PerlClass.com for ACT Students 20-23 Feb 2007 479

	Chapter 1: Intro­duction
	1.1 Assumed knowledge
	1.2 Day 1 rough outline
	1.3 Day 1 objectives
	1.4 Day 2 outline
	1.5 Day 2 objectives
	1.6 Day 3 outline
	1.7 Day 3 objectives
	1.8 Day 4 outline
	1.9 Day 4 objectives
	1.10 Other topics we can discuss
	1.11 Platform and version details
	1.12 The course notes
	1.13 Other materials

	Chapter 2: What is Perl
	2.1 Perl's name
	2.2 Typical uses of Perl
	2.2.1 Text processing
	2.2.2 System administration tasks
	2.2.3 CGI and web programming
	2.2.4 Database interaction
	2.2.5 Other Internet programming
	2.2.6 Less typical uses of Perl

	2.3 What is Perl like?
	2.4 The Perl Philosophy
	2.4.1 There's more than one way to do it
	2.4.2 A correct Perl program...
	2.4.3 Three virtues of a programmer
	2.4.3.1 Laziness
	2.4.3.2 Impatience
	2.4.3.3 Hubris

	2.4.4 Three more virtues
	2.4.5 Share and enjoy!

	2.5 Parts of Perl
	2.5.1 The Perl interpreter
	2.5.2 Manuals
	2.5.3 Perl Modules

	2.6 CPAN
	2.7 Slashdot
	2.8 Chapter summary

	Chapter 3: Creating a a Perl program
	3.1 Logging into your account
	3.2 Using perldoc
	3.3 Using the editor
	3.4 Our first Perl program
	3.5 Running a Perl program from the command line
	3.6 The "shebang" line
	3.7 Comments
	3.8 Command line options
	3.9 Chapter summary

	Chapter 4: Perl variables
	4.1 What is a variable?
	4.2 Variable names
	4.3 Variable scoping and the strict pragma
	4.3.1 Arguments in favour of strictness
	4.3.2 Arguments against strictness

	4.4 Using the strict pragma
	4.5 Scalars
	4.6 Double and single quotes
	4.7 Exercises
	4.8 Answers
	4.9 Arrays
	4.9.1 A quick look at context
	4.9.2 What's the difference between a list and an array?

	4.10 Exercises
	4.10.1 Advanced exercises

	4.11 Answers
	4.11.1 Advanced Answer

	4.12 Hashes
	4.12.1 Initialising a hash
	4.12.2 Reading hash values
	4.12.3 Adding new hash elements
	4.12.4 Other things about hashes
	4.12.5 What's the difference between a hash and an associative array?

	4.13 Exercises
	4.14 Answers
	4.15 Special variables
	4.16 The first special variable, $_
	4.16.1 Exercises

	4.17 Answer
	4.18 @ARGV - a special array
	4.18.1.1 Exercises

	4.19 Answers
	4.20 %ENV - a special hash
	4.20.1.1 Exercises

	4.21 Answer
	4.22 Chapter summary

	Chapter 5: Operators and functions
	5.1 What are operators and functions?
	5.2 Arithmetic operators
	5.3 String operators
	5.3.1 Exercises

	5.4 Answers
	5.4.1 Exercise 1
	5.4.2 Exercise 2
	5.4.3 Source to operate.pl

	5.5 File operators
	5.6 Other operators
	5.7 Functions
	5.7.1 Types of arguments
	5.7.2 Return values

	5.8 More about context
	5.9 String manipulation
	5.9.1.1 Finding the length of a string
	5.9.1.2 Case conversion
	5.9.1.3 chop() and chomp()
	5.9.1.4 String substitutions with substr()

	5.10 Numeric functions
	5.11 Type conversions
	5.12 Manipulating lists and arrays
	5.12.1 Stacks and queues
	5.12.2 Sorting lists
	5.12.3 Converting lists to strings, and vice versa

	5.13 Hash processing
	5.14 Reading and writing files
	5.15 Time
	5.16 Exercises
	5.17 Answers
	5.17.1 Exercise 1
	5.17.2 Exercise 3
	5.17.3 Exercise 4
	5.17.4 Exercise 5
	5.17.5 Exercise 6

	5.18 Chapter summary

	Chapter 6: Condi­tional constructs
	6.1 What is a block?
	6.2 Scope
	6.3 What is a conditional statement?
	6.4 What is truth?
	6.5 Comparison operators
	6.5.1 Existence and Defined-ness
	6.5.2 Boolean logic operators
	6.5.3 Using boolean logic operators as short circuit operators

	6.6 Types of conditional constructs
	6.6.1 if statements
	6.6.2 while loops
	6.6.3 for and foreach
	6.6.4 Exercises

	6.7 Answer
	6.8 Practical uses of while loops: taking input from STDIN
	6.9 Best practices template for file manipulation
	6.10 Named blocks
	6.11 Breaking out of loops
	6.12 Chapter summary

	Chapter 7: Sub­routines
	7.1 Introducing subroutines
	7.2 Calling a subroutine
	7.3 Passing arguments to a subroutine
	7.4 Returning values from a subroutine
	7.5 Exercises
	7.6 Answers
	7.6.1 Exercise 1
	7.6.2 Exercise 2
	7.6.3 Exercise 3

	7.7 Chapter summary

	Chapter 8: Regular expressions
	8.1 What are regular expressions?
	8.2 Regular expression operators and functions
	8.2.1 m/PATTERN/ - the match operator
	8.2.2 s/PATTERN/REPLACEMENT/ - the substitution operator

	8.3 Binding operators
	8.4 Metacharacters
	8.4.1 Some easy metacharacters

	8.5 Quantifiers
	8.6 Greediness
	8.7 Exercises
	8.8 Answers
	8.8.1 Exercise 1
	8.8.2 Exercise 2
	8.8.3 Exercise 3

	8.9 Character classes
	8.9.1 Exercises as a group

	8.10 Alternation
	8.11 The concept of atoms
	8.12 Exercises
	8.13 Answers
	8.13.1 Exercise 1
	8.13.2 Exercise 2
	8.13.3 Exercise 3

	8.14 split() function
	8.15 Exercises
	8.16 Answers
	8.16.1 Exercise 1
	8.16.2 Exercise 2

	8.17 Chapter summary

	Chapter 9: Practical exercises
	9.1 Exercises

	Chapter 10: File I/O
	10.1 Assumed knowledge
	10.2 Angle brackets - the line input and globbing operators
	10.2.1 Exercises
	10.2.1.1 Advanced exercises

	10.3 Answers
	10.3.1 Exercise 2
	10.3.2 Exercise 3
	10.3.3 Advanced Exercise 1

	10.4 open() and friends - the gory details
	10.4.1 Opening a file for reading, writing or appending
	10.4.2 Exercises

	10.5 Answers
	10.5.1 Exercise 3
	10.5.2 Exercise 4
	10.5.3 Exercise 5

	10.6 Reading directories
	10.7 Exercises
	10.8 Answer to #2
	10.9 Opening files for simultaneous read/write
	10.9.1 Exercises

	10.10 Answer
	10.11 Opening pipes
	10.11.1.1 Exercises

	10.12 Answers
	10.12.1 Exercise 2
	10.12.2 Exercise 3

	10.13 Finding information about files
	10.14 Exercises
	10.15 Answers
	10.15.1 Exercise 1
	10.15.2 Exercise 2
	10.15.3 Exercise 3

	10.16 Recursing down directories
	10.16.1 Exercises

	10.17 Answer to Exercise #2
	10.18 File locking
	10.19 Handling binary data
	10.20 Chapter summary

	Chapter 11: Advanced regular expressions
	11.1 Assumed knowledge
	11.2 Review exercises
	11.3 More metacharacters
	11.4 Working with multiline strings
	11.4.1 Exercises

	11.5 Answer
	11.6 Regexp modifiers for multiline data
	11.7 Backreferences
	11.7.1 Special variables

	11.8 Exercises
	11.8.1 Advanced

	11.9 Answers
	11.9.1 Exercise 1
	11.9.2 Exercise 2
	11.9.3 Advanced Exercise 1

	11.10 Section summary

	Chapter 12: More functions
	12.1 The grep() function
	12.1.1 Exercises

	12.2 Answers
	12.2.1 Exercise 1
	12.2.2 Exercise 2a
	12.2.3 Exercise 2b

	12.3 The map() function
	12.3.1 Exercises

	12.4 Chapter summary

	Chapter 13: System interaction
	13.1 system() and exec()
	13.1.1 Exercises

	13.2 Answer
	13.3 Using backticks
	13.3.1 Exercises

	13.4 Answers
	13.4.1 Exercise 1
	13.4.2 Exercise 2
	13.4.3 Exercise 3

	13.5 Platform dependency issues
	13.6 Security considerations
	13.6.1 Exercises

	13.7 Answers
	13.7.1 Exercise 1
	13.7.2 Exercise 2

	13.8 Section summary

	Chapter 14: Refer­ences and data structures
	14.1 Assumed knowledge
	14.2 Introduction to references
	14.3 Uses for references
	14.3.1 Creating complex data structures
	14.3.2 Passing arrays and hashes to subroutines and functions
	14.3.3 Object oriented Perl

	14.4 Creating and dereferencing references
	14.5 Passing multiple arrays/hashes as arguments
	14.6 Complex data structures
	14.7 Anonymous data structures
	14.8 Exercises
	14.9 Answers
	14.9.1 Exercise 1
	14.9.2 Exercise 2

	14.10 Section summary

	Chapter 15: perlstyle
	15.1 perlstyle 5.8.8

	Chapter 16: About databases
	16.1 What is a database?
	16.2 Types of databases
	16.3 Database management systems
	16.4 Uses of databases
	16.5 Chapter summary

	Chapter 17: Textfiles as databases
	17.1 Delimited text files
	17.1.1 Reading delimited text files
	17.1.2 Searching for records
	17.1.3 Sorting records
	17.1.4 Writing to delimited text files

	17.2 Comma-separated variable (CSV) files
	17.3 Problems with flat file databases
	17.3.1 Locking
	17.3.2 Complex data
	17.3.3 Efficiency

	17.4 Chapter summary

	Chapter 18: Relational databases
	18.1 Tables and relationships
	18.2 Structured Query Language
	18.2.1 General syntax
	18.2.1.1 SELECT
	18.2.1.2 INSERT
	18.2.1.3 DELETE
	18.2.1.4 UPDATE
	18.2.1.5 CREATE
	18.2.1.6 DROP

	18.3 Chapter summary

	Chapter 19: MySQL
	19.1 MySQL features
	19.1.1 General features
	19.1.2 Cross-platform compatibility

	19.2 Comparisions with other popular DBMSs
	19.2.1 PostgreSQL
	19.2.2 Oracle, Sybase, etc

	19.3 Getting MySQL
	19.3.1 Red Hat Linux
	19.3.2 Debian Linux
	19.3.3 Compiling from source
	19.3.4 Binaries for other platforms

	19.4 Setting up MySQL databases
	19.4.1 Creating the Acme inventory database
	19.4.2 Setting up permissions
	19.4.3 Creating tables

	19.5 The MySQL client
	19.6 Understanding the MySQL client prompts
	19.7 Exercises
	19.8 Chapter summary

	Chapter 20: The DBI and DBD modules
	20.1 What is DBI?
	20.2 DBI documentation set
	20.3 Supported database types
	20.4 How does DBI work?
	20.5 DBI/DBD syntax
	20.5.1 Variable name conventions

	20.6 Connecting to the database
	20.7 Executing an SQL query
	20.8 Doing useful things with the data
	20.9 An easier way to execute non-SELECT queries
	20.10 Quoting special characters in SQL
	20.11 Exercises
	20.11.1 Advanced exercises

	20.12 Chapter summary

	Chapter 21: Acme Widget Co. Exercises
	21.1 The Acme inventory application
	21.2 Listing stock items
	21.2.1 Advanced exercises:

	21.3 Adding new stock items
	21.3.1 Advanced exercises

	21.4 Entering a sale into the system
	21.5 Creating sales reports
	21.5.1 Advanced exercises

	21.6 Searching for stock items
	21.6.1 Advanced exercises

	Chapter 22: References
	22.1 Uses for Perl references
	22.2 Creating and deferencing
	22.3 Complex data structures
	22.4 Passing multiple arrays/hashes as arguments
	22.5 Anonymous data structures
	22.6 Chapter summary

	Chapter 23: What is CGI?
	23.1 Definition of CGI
	23.2 Introduction to HTTP
	23.3 Terminology
	23.4 HTTP status codes
	23.5 HTTP Methods
	23.5.1.1 GET
	23.5.1.2 HEAD
	23.5.1.3 POST

	23.6 Exercises
	23.7 What is needed to run CGI programs?
	23.8 Chapter summary

	Chapter 24: Gene­rating web pages with Perl
	24.1 Your public_html directory
	24.2 The CGI directory
	24.3 The HTTP headers
	24.4 HTML output
	24.5 Running and debugging CGI programs
	24.5.1 Exercises

	24.6 Quoting made easy
	24.6.1 Here documents

	24.7 Pick your own quotes
	24.8 Exercises
	24.9 Environment variables
	24.9.1 Exercises

	24.10 Chapter summary

	Chapter 25: Process­ing form input
	25.1 A quick look at HTML forms
	25.2 The FORM element
	25.3 Input fields
	25.3.1 TEXT
	25.3.2 CHECKBOX
	25.3.3 SELECT
	25.3.4 SUBMIT

	25.4 The CGI module
	25.4.1 What is a module?
	25.4.2 Using the CGI module
	25.4.3 Accepting parameters with CGI
	25.4.4 Debugging with the CGI module's offline mode
	25.4.5 Exercises

	25.5 Practical Exercise: Data validation
	25.5.1 Exercises

	25.6 Practical Exercise: Multi-form "Wizard" interface
	25.6.1 Exercises

	25.7 Practical Exercise: File upload
	25.8 Chapter summary

	Chapter 26: Security issues
	26.1 Authentication and access control for CGI scripts
	26.1.1 Why is CGI authentication a bad idea?

	26.2 HTTP authentication
	26.3 Access control
	26.3.1 Exercises

	26.4 Tainted data
	26.4.1 Exercises

	26.5 cgiwrap
	26.6 Secure HTTP
	26.7 Chapter summary

	Chapter 27: Other related Perl modules
	27.1 Useful Perl modules
	27.2 Failing gracefully with CGI::Carp
	27.2.1 Exercise

	27.3 Encoding URIs with URI::Escape
	27.3.1 Exercise

	27.4 Creating templates with Text::Template
	27.4.1 Introduction to object oriented modules
	27.4.2 Using the Text::Template module
	27.4.3 Exercise

	27.5 Sending email with Mail::Mailer
	27.5.1 Exercises

	27.6 Chapter Summary

	Chapter 28: Con-clusion
	28.1 Day 1: What you've learned
	28.2 Day 2: What you've learned
	28.3 Day 3: What you've learned
	28.4 Day 4: What you've learned
	28.5 Where to now?
	28.6 Further reading -- books
	28.7 Online
	28.8 The Perl home page (http://www.perl.com/)
	28.9 Perl Monks (http://www.perlmonks.com/)
	28.9.1 The Perl Monks Guide to the Monastery
	28.9.1.1 Finding Your Way Around
	28.9.1.1.1Sections
	28.9.1.1.2Information
	28.9.1.1.3Find Interesting Nodes
	28.9.1.1.4Additional Miscellany

	28.10 •	The Perl Journal (http://www.tpj.com/)
	28.11 •	Perl Mongers Perl user groups (http://www.pm.org/)
	28.12 The Richmond Perl Mongers (http://wiki.fini.net/bin/view/RichmondPM)
	28.13 O'Reilly's Perl books
	28.14 Newsgroups

	Chapter 29: Win32::­EventLog
	29.1 Win32::EventLog Examples
	29.2 Win32::EventLog Reference
	29.2.1 The EventLog Object and its Methods
	29.2.2 Other Win32::EventLog functions

	Chapter 30: Win32::NetAdmin
	30.1 Example
	30.2 Win32::NetAdmin provided functions

	Chapter 31: Other Perl Win32 Modules
	31.1 Win32::NetResource
	31.1.1 Examples
	31.1.2 Data Types
	31.1.2.1 %NETRESOURCE
	31.1.2.2 %SHARE_INFO

	31.1.3 Functions

	31.2 Win32::Service
	31.2.1 Examples
	31.2.2 Functions

	31.3 Win32::Sound
	31.3.1 Quick Sample

	Chapter 32: *NIX cheat sheet
	32.1 Some UNIX commands

	Chapter 33: Editor cheat sheet
	33.1 vi
	33.1.1 Running
	33.1.2 Using
	33.1.3 Exiting
	33.1.4 Gotchas
	33.1.5 Help
	33.1.6 vim

	33.2 pico
	33.2.1 Running
	33.2.2 Using
	33.2.3 Exiting
	33.2.4 Gotchas
	33.2.5 Help

	33.3 joe
	33.3.1 Running
	33.3.2 Using
	33.3.3 Exiting
	33.3.4 Gotchas
	33.3.5 Help

	33.4 jed
	33.4.1 Running
	33.4.2 Using
	33.4.3 Exiting
	33.4.4 Gotchas
	33.4.5 Help

	Chapter 34: ASCII Pronunciation Guide
	Chapter 35: HTML Cheat Sheet
	Chapter 36: The Regex Coach
	36.1 Abstract
	36.2 Contents
	36.3 Download and installation
	36.3.1 Older versions, Linux, FreeBSD, Mac

	36.4 Support, bug reports, mailing list
	36.4.1 How to report bugs

	36.5 How to use The Regex Coach
	36.5.1 The main panes
	36.5.2 The message areas
	36.5.3 Highlighting selected parts of the match
	36.5.4 The highlight buttons
	36.5.5 The highlight messages
	36.5.6 Walking through the target string
	36.5.7 Narrowing the scan
	36.5.8 The info pane
	36.5.9 The parse tree
	36.5.10 Replacing text
	36.5.11 Splitting text
	36.5.12 Single-stepping through the matching process
	36.5.13 Modifiers
	36.5.14 Resizing
	36.5.15 Saving to and loading from files
	36.5.16 Autoscroll

	36.6 Known bugs and limitations
	36.7 Technical information
	36.7.1 Compatibility with Perl

	36.8 Acknowledgements

	Chapter 37: Ack­nowledgements
	37.1 Folks
	37.2 Projects

