PeriClass.com'’'s

Perl Training Materi-
als

Christopher Hicks
and
Kirrily Robert

Perl Training Materials
by Christopher Hicks

Copyright ©

1999-2000, Netizen Pty Ltd
2000 by Kirrily Robert
2001-2007 by Christopher Hicks

License

This book is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License version 2 as published by the Free Software..

This book is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY:; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more de-
tails.

You should have received a copy of the GNU General Public License along with this
book; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
Boston, MA 02110-1301 USA or goto http://www.gnu.org/ .

This book was based on material under the Open Publications License available at
http://www.content.org/openpub/ .

File and Version Info

02/15/07 12:10:35 PM 515 pages

/home/chicks/Desktop/perlClass-0.63.0dt

2 PerlClass.com for ACT Students August Feb 2007

Table of Contents

Chapter 1: INtrodUCTION......cooiiieeee e 19
1.1 Assumed KNOWIEAEZE.......ccceeereiiiiiiiieeiiiiee ettt e e e e e e e e 20
1.2 Day 1 rough OULHNE........ccoooiiiiieiiiie et e eeae e e e e 21
1.3 DAY 1 ODJECTIVES. ..uviiiiieiiiiiieee ettt e ettt e e e et e e e e e st ee e e e esnsaaeeeeeennnnes 22
1.4 DAY 2 OULHNE. ...ceoiiieiiieeiiee ettt ettt ettt e s e st st ese e 23
1.5 DAY 2 ODJECTIVES. ..eetiiiieiiiiiiiee ettt ettt e ettt e e e e st e e e e s sttt e e e e e ensbbaeeeeesnnnnes 25
1.6 DAY 3 OULIINE. ...ttt ettt e e et e e s ae e 26
1.7 DAY 3 ODJECHIVES. ...uviieeiiiieeeiiieeeeiitee et ee e et e e e eitee e et eeesnteeeesaseeessnsseeesnsnseessnnneens 27
1.8 DAY 4 OULIINE.ceiiiieeiiiiiiee et e et e e e e e e s e e e e e e abteeeeeessnbaaeeeeesaaneennns 28
1.9 DAY 4 ODJECHIVES. ...uveieiiiiieeeiiee ettt et ee ettt e ettt e e et e e e ite e e et ee e sabeeessanneeesnnneeas 29
1.10 Other topiCS WE CAN AISCUSS......uuiieeieriiiiiieeeeiiiiieeeeeeiieeeeeeeeeerrreeeessenrereeeeanns 30
1.11 Platform and version details..............ccooiiiiiiiiiiiiiniiiee e 31
1.12 THE COUISE NMOLES. ...ceeurieruiieiiiieiitee ettt ettt ettt ettt e s et e e e e ebeeeeanees 32
1.13 Other MAaterials.......ccooiiiiiiiiiiiiie ettt et e e 34

Chapter 2: What is Perl.......cooo i 35
2.1 PeIl'S MAIME....cuutiiiiiiiiie ettt ettt et et 36
2.2 Typical uses Of Perl..........ooiiiiiiiiiiii e 37

2.2.1 TEXE PIOCESSINE. ..eeeeeerieeeririeeeriiieeeeirteeeatteeeesseeeeasseeessssreesansseeesssseeessnseemmmens 37
2.2.2 System adminiStration tasks............eeeeeeeiiuiiiereiiriiiiieee e 37
2.2.3 CGI and web Programming...........ccccueeeeeueeeeerueeeesnueeeesimeeeeesnseeeesssseesssseeesns 37

PerlClass.com for ACT Students August 2007 3

2.2.4 DatabDase INEETACTION.eeeeeeeeeeeeeee et e e e e eteeeeeeaeeeaaeeeaaeseanaesenaeaeeeeanaeeenaeseennns 37

2.2.5 Other Internet programming...........c..ceeerueeeeeiieeeeriieeeenieeeeeieeeemieeeessareeeens 37
2.2.6 Less typical uses Of Perl........ccoooiiiiiiiiiiiiiiiieeeeeeeee et 37
2.3 What 18 Per]l TIKE?....ccoeiiiiiiie ettt et s 38
2.4 The Perl PhiloSOPRY.....cocuiiiiiiiiiiiieeeee e 39
2.4.1 There's more than one way to dO it........ccccviereriiieiriiie e e 39
2.4.2 A correct Perl programi.............cccooviiiiiiiiiiiiiiiieeetee e 39
2.4.3 Three virtues of @ PrOZramMIMET..........ccueteeriuiieeriiieeeriieeeerieeeesimreeeereeeesereeeens 39
2.4.3.1 LAZINESS. e uittiiieiiiee ettt ettt ettt e et e e eee et e et e e e 39
2.4.3.2 TMPALICIICE.eeeeeniiieeeeiiieeeeiieeeeitte e et eeesitteeessbeeesssanbteeesanbeeesnaseeessnseeas 40
2.4.3.3 HUDTIS. ¢ttt ettt sttt s 40
2.4.4 TRICE MOTE VITTUCS.ueieeeiiiieeeiiieeeeitee e et eeeeitteesebeeeeemeteeesabeeessneeeesaseeeens 40
2.4.5 Share and €NJOY !cccuiiiieiiiie et e e e e s ee e 40
2.5 Parts OF PETl.....coooiiiii et e e e 42
2.5.1 The Per] INterPreter.....ccouriiiiiniiieieiiieeeriiieeeieeeeeiieeeseieeeesireeeesvveeeenvneeeen s A2
2.5.2 MANUALS. ...ttt ettt e e e et e e e e et e e e e e brenneaaeeas 42
2.5.3 Perl MOQUIES.......eeiiiiiiiiiieeiteeee ettt 42
2.0 CPAN ...ttt et st ettt e sttt e e 43
2.7 SIASRAOL. ..ttt et e s eee e e 44
2.8 Chapter SUMIMATYcccocuieeeriieeeeiiieeeeiteeeesteeeessereeesesreeessaseeeesssseeesssseessssssemmnses 45
Chapter 3: Creating a a Perl program..........ooooieeeee e 47
3.1 LOZEING INLO YOUT ACCOUNL....eeuttiririeriieeniieeeiteenteeenitee ettt e sbeeemmaeeeseeesareeenmneesanees 48
3.2 USING PEITAOC. ..ceeeiiiieeiiiiie ettt e eeitee et e ettt e e ettt e e ettt e e e setaeeeeareeeesnsseessmmmeeesennneas 50
3.3 USING the ©dITOT.....ceiiiiiiiiiiiiee ettt et e e e eeeas 61
3.4 Our first Per] programi...........coooeiiiiiiiiiiiiie et 62
3.5 Running a Perl program from the command line.............occoviieeiiiniiiieeeniienee, 63
3.6 The "shebang" HNe..........coouiiiiiiiiiiii e e 64
3.7 COMIMENLS.uvteiitieeiieeette ettt ettt ettt e et e e st e e it e e bteeeabteesastemmteeeabbeesabeeenabeeeanees 65
3.8 Command 11NE OPLIONS.uuiiieiiiieieiiiee ettt e et e et e et e e e 66
3.9 Chapter SUMIMATYccccutteeriieeeeiiieeeeiteeeesiteeesareeessnsreeesaseeessnsseeesssseeessssseessnnaees 67
Chapter 4: Perl variables...........cocuuiieiiieeec e 69
4.1 What 1S @ variable?.........cooiiiiiiiiiee et 70

4 PerlClass.com for ACT Students August Feb 2007

4.2 VaIaDIE NAIMNES. ... oot e e et e e e e eeae e e e e e e e e e aaaeeennans 71

4.3 Variable scoping and the Strict Pragma...........ccceeeeeveeeeriiieeeeniiieriieeerieeeeeireee e 72
4.3.1 Arguments in favour Of StHICINESS.cccevvriuiiieeeeriiiieee et e e eee e 72
4.3.2 Arguments against SEIICINESS......eeeerurieeeriieeeriiieeeeiieeeeseeseteeeesnreeessaneeeesnneeas 72

4.4 Using the StriCt Pragma.........cceeeeeeviieeeriniiiiieeeeeeiiiieeeesessiereeeessssnsseeessssssnsneeessensemd 4

i AN Yo | F2 4SS 75

4.6 Double and SINGIE QUOLES.........eeiiriiiieiiiie ettt et e e eree e e e e 77

AT B XOTCISES . eeeeeieeietiieeeeeeiireteeeeeestateeeeeeasarareeeesasnsseeeeseennssaeeessessmmesesnsssaaessessnssseeens 79

4.8 ANSWETS. . iuiiiieeiite ettt ettt ettt e ettt e e et e e ettt e e st e e st e e sbb et e e et e e e enbeneanee 80

4O ATTAYS ..ttt ettt e ettt e ettt e e e e e bt e e e aab bt e e e nee e e e 81
4.9.1 A qUICK 100K @t CONEEXL...ceeruriiiiiiiiieeniiite ettt e et e e e e 83
4.9.2 What's the difference between a list and an array?.........cccceeeevveeeriieeeeneeennenn. 84

i O 2) (3 1 USSR 85
4.10.1 AdVANCEA EXEICISES. ...eeeeuvreeirieriieeniieeritee et e et e ettt e stte et esbteesaeeesabeesieeens 85

o B N R G PSPPSR 86
4.11.1 AdVANCEA ANSWET ...ceiuiiiiiiiiiiiieiieeette ettt ee et e s 86

A T2 HASRES. ...ttt ettt e e e et e e e e e sttt e e e e e e nnaaaee s 88
4.12.1 Initialising @ hash.........cccooiiiiii e 88
4.12.2 Reading hash values..........ccueiiiiiiiiiiiiiieeiiee et 89
4.12.3 Adding new hash elements...........ccoocuieiiiiiiiiiiiiii e 89
4.12.4 Other things about hashes...........ccoooiiiiiiiiiiiiiie e 89
4.12.5 What's the difference between a hash and an associative array?.................. 90

413 EXCTCISES cuuuvtieeuiitieeeiitee et ee e ettt e e ettt e e ettt e e saatte e e aateeeeaabeee s asatemmnseeeennseeesanneeeennne 91

AT ADSWETS. ...ttt ettt ettt e e ettt e ettt e sttt e s et e e st e e et e e e e eneeeenee 92

4.15 Special variabIes.ooouiiiiiiiiii e e 93

4.16 The first special variable, $_........ccoooiiiiiiiiiiiieicee e 94
i ST B 25 () (o T USRI PPP 94

A7 ADISWET ..ttt ettt ettt et et ettt ettt e e 95

4.18 @ARGYV - 2 SPECIal AITAYcceiiveiiiiiiieieiiiiiee ettt e e e et e e s e aaneeeas 96

418 1.1 EXCICISES..uuuiiieieeiiiiiiieeeesiititeeeeesitteeeeeesntreeeseessnnsreeaeeessnssseaeessssmmenssses 96
AT ANSWETS. .ttt ettt e e ettt e ettt e sttt e st e e sttt e s b e e e enb e e nee 97
4.20 %ENV - a special hash.........cooooiiiiii e 98

4.20.1. T EXEICISES...ueeuttieiteeriieeniieeeiteeette ettt e sttt e st e eite e st e e sbteesbteesasee e s e 98
) B N 1 R OSSP 99

PerlClass.com for ACT Students August 2007 5

4.22 CRAPLEr SUIMIMATYvvteeeeeeiiiiieeeeeniiieteeesesiitteeeesesstreaeeesssssnsreeeessssssseeeesssssssseeeans 100

Chapter 5: Operators and fuNCLIONS...........oooiiiiiii i 103
5.1 What are operators and functions?..........coccceeevieeriieinieeniienieeeee e 104
5.2 ATItRMEIC OPETALOTS. ...eeieirrieeeiiieeeeitieeeiteeeeiteeeeetteeeeirreeeeareeessnnseeeesseessmmeeens 105
5.3 SHINE OPETALOTS.eeeeeeiieieeeiitee e et tee ettt e e e ettt e e et ee e ettt e e saabbeeeeaabbeeesbeeeessabneeeennas 106

53,1 EXETCISES. cenuitiiiiieiiieeette ettt ettt et ettt ettt ettt 106
R N I G USSP 107
ST EXETCISE Luiiiuiiiiiiiiiiiiieieeee ettt sttt ee 107
SA2 BXEICISE 2uuniiiiiieeeeeiiiieeeeeeeiittee e e eeitteee e s e sttt e e e s ssaatbeeeesesnnsbaeeessennsssaeeeesans 107
5.4.3 SOUTICE 10 OPETALE.PL....ceiiiiiiiiiiiiieeiee ettt e 107
5.5 FAIE OPCTALOTS. ...ceeiiiiieieiiiee ettt ee ettt ee e et e e e et e e e e areeessmmasseeeennseeeennnseeeenn 108
5.6 OtRET OPETALOTS.eeiiiuiiiiiiiiitee ettt e et e s ettt e e sibbees e e e seabbeeseaeeeeeas 109
5.7 FUNCHOMNS ...ttt ettt ettt et e st s bt esabe e e eeaareeenaee 110
5.77.1 Types Of arUIMENTS........cccvviiiuiiiiiiiieiiiiiieeeeeiieee e et e e e e e sevaeareee e s e seaaeeees 110
S5.7.2 REIUIN VAIUES.eiiiiiiiiiiiiiee ettt ettt et eee e e e e e 111
5.8 MOTE aDOUL COMEEXL.....eeruiieriieiiiiieiiee ettt ettt et ettt e et e et e e 112
5.9 String ManIPUIALION. ...cccouuiiiiiiiii ittt ettt e e e 113
5.9.1.1 Finding the length of @ String..........ccccevviiiiiiniiiiie oo 113
5.9.1.2 CaSE COMVETSION.....ceeeeerriiriiieeeeeiiirieeeeeeeitrreeeeeennmmnenssreeesessnssaeeesesnsnsnns 113
5.9.1.3 chop() and chOMP().....c.uveeiriiiiiiiiieeeee e 113
5.9.1.4 String substitutions With SUDSII().......ceeierriiiiieieiriiiieeeeeeiieee e 114
5.10 NUMETIC fUNCHONS. . ceciiieiiiiiieeeeeciiieeeeeeeeiiee e e e e et e e e eeerareeeeesssraaeeeeesnnsssaeaeens 115
S5.11 TYPE CONVETSIONS. ...uuviieeriiieeeriieeeeiieeeeiteeeestteeeesnseeeessseeeesnsseessnseeesesssmmnsseesens 116
5.12 Manipulating 1ists and arrays..........ccoeeueeeeriiieeiniiee ettt 117
5.12.1 Stacks and QUEUES.........eeeeeriiieieiiiee ettt et ee e e et e e e e e s 117
S5.12.2 SOTHINE TISES.cceuiiiiiiieeeeiieiee ettt e et e e e e et e e e s esesb e e e sssaaeee s 118
5.12.3 Converting lists to strings, and VICE VEISA.........ceevruveeerriieeerieeeeenieeeeeiimees 118
5.13 HaSh PrOCESSING. ..cccuvviiieiiiieeeiiieeeeitte et e et e e et e e et e e s e areee e naaeeessmmre e ssnneeeens 119
5.14 Reading and Writing fIles.........cooviiiriiiiiiiiiiececee e 120
SIS TIMIC. .ttt ettt ettt ettt e 121
I SN 5 () (& L ST PP PP 122
517 ADSWETS ...ttt ettt ettt e st et s enne 123
I A B 2 (5 (el 1 PP USRPP 123

6 PerlClass.com for ACT Students August Feb 2007

S.17.2 BXEICISE 3ot e e ee e e e e et e e e e e e eae e e e e e eaaeaanns 123

ST 3 EXEICISE Aottt ettt st et 123
S.TT A EXEICTISE Suunniiiiiiieeeeiiiieee e eeiieee e e ettt e e e e ettt e e e e e e sanabeeeeesesnasaaeeesennnnsneeens 124
SAT.5 EXEICISE Ottt ettt et 124
5.18 ChapLer SUMIMIATYcceteeruiriieeeeeriiiieeeeeeseirreeeeessaatreeeeessssrreeeeessssssrreeessssssssseeans 125
Chapter 6: Conditional CONSTIUCTS........ceoviiiiiiiiiiie e 127
6.1 What 1S @ BIOCK?.....cooiiiiiiiiie et 128
0.2 SCOPE. ..ttt ettt ettt ettt e ettt e e et e et e e et e e e bt aeneeeenabeeeeeanee 129
6.3 What is a conditional Statement?.............oocueeiiiiieeiniiieeeiiee et 130
6.4 What 1S trULh?...couiiiiiiiiie ettt et e see e 131
6.5 COMPATISON OPETALOTS.ceeeurteeeririeeeriiteeeeitteeeetteeeesiteeeessmmaeeesabeeeesabaeeeenaseeesennee 132
6.5.1 Existence and Defined-ness.........ccceervieiriiiiniiiiiiiiniieeiecceeceee e 133
6.5.2 B0Olean 10ZIC OPETALOrS.cceiiiiiiiiieeeeeiiiieeeeeeiiieeeeeesimreeeeeesarreeeesesnsseeeeens 135
6.5.3 Using boolean logic operators as short circuit Operators..........cccecveeeeueeenn.. 136
6.6 Types of conditional CONSLIUCES..........ceiiieriiiiiiieeeiiiiteee et ee s e e e e ssiiereeeeeeaes 138
(O OIS F211E) 14 1S) 1L ST 138
6.0.2 WHIlE LOOPS. .. eeiiiiiiieieiiiie ettt et e et e e et e e et e e e e e e e e sse e mmmeseeas 139
6.6.3 for and fOreach.........ccuvviiiiieie e e 139
6.0.4 EXETCISES. .ecuuvtiiiiiieiieeeite ettt ettt ettt ettt ettt e et e et e et e st e e e e eneees 140
0.7 ANSWET ...eeieieiiiiiieieeeeeittteeeeesitteeeeeesattaeeeeeesstaaeeeeeasssssaeeeesassssmsseeesessnssssaeesennns 141
6.8 Practical uses of while loops: taking input from STDIN.............cccevviiiiiieinnnne. 142
6.9 Best practices template for file manipulation.............ccceeeeeiiiieniiiieeeniiie e 144
6.10 Named DIOCKS........uuiiiiiiiiiiiee et e et e e e e baaeeeeeenes 145
6.11 Breaking out Of 10OPS. ...ccuviiiiiiiieeiieeete et ee e e 146
6.12 Chapter SUMIMATYcceecuvviieeeeeiiiiieeeeesiiieeeeeeeetraeeeeesserreeeeeeesnssseeessssssssseeessanns 147
Chapter 7: SUDBIOULINES.......ueiiiiiiiiieeeeeeeeeeeeee e 149
7.1 IntroducCing SUDTOULINES.vieiiiiiieieiiiie ettt e ettt e e s mereee e 150
7.2 Calling @ SUDTOULINE.ceiiiiiieieiiieeeeiiee e et ee et e e et eeeite e e e et e e essbeeeesnssee e 151
7.3 Passing arguments t0 @ SUDTOULINE..........cveeerriiuiiieeeeeniiiiieeeeeeiiiieeeeeeeniiereeeanaeeeess 152
7.4 Returning values from a SUDTOULINE..........covueiiiiiiniiieenieeeiieeiee e 153
7.5 EXEICISES . ..eeiuiteeiite ettt ettt ettt ettt et e ettt e ettt e st e e abe e s st e et eeeabeesbaeeeaee 154
700 ANISWETS. . eeniiiiiiiee e ettt e e e ettt e e e e ettt e e e e s nearteeeeeansabeeeessessssaeeessasnnssaeaeesesssnanns 155

PerlClass.com for ACT Students August 2007 7

T.0.1 EXEICISE L.nneeeeeeeee et e et e e e ee e e aee e e e e e e ea e e e e e e aaaeeanaeennaesanaaeann 155

T.6.2 EXEICISE 2..niiiiiieeeeeiiiiieeeeeeiiteeeeeeeeitteeeeeesataaeaeseesnssaeeeesensnssaaeessensssseaessans 155
T.0.3 EXETCISE 3.ttt ettt ettt ettt e sttt ettt e s e e eabee e 155
7.7 CRAPLET SUIMIMATYvvviieeeeeiiiiieeeeeeiiirreeeeessitaeeeesesssrteeeessasnssreeessssssssseeesssnnssssanns 157
Chapter 8: Regular EXPpreSSIONS.ueeeieeeiiieeiiieeeeee e e e e e e e 159
8.1 What are regular @XpreSSIONS?......couuieeeiieeeeiiieeeiieeeeiteeeesveeeessmmereeeesereeeesneeens 160
8.2 Regular expression operators and funCtionsS...........cc.ueeeeeveeiiieeeeeeniiiieeeeeeeeeee e 161
8.2.1 m/PATTERNY/ - the match Operator.............cceeveuiiiiiiiiciiiieiiiee e 161
8.2.2 sS’IPATTERN/REPLACEMENTY/ - the substitution operator........................ 161
8.3 BINAING OPETALOTS. ..ccuveeiiiiiriiiiiiteeite ettt ettt ee ettt e sbeeesbeeesanees 163
8.4 MEtACRATACIEIS.eeeiiiiiiiie ettt ettt et ettt 164
8.4.1 Some easy MetaCharaCters.ueeivuuieiiiiiieeeiiiee ettt e e 164
8.5 QUANTIFIETS. .. .uvviiiiiiiiiieeee et e e e e e e et eeeeeeeeeeeeeeeesaassssseeeeeeees 166
8.0 GIEEAINESS. ... uveeeeeeiiiiieeeeeeiit et e e e ettt e e e e ettt e e e e e e sabateeeeessasbreeeesessnssseeeeesnnsnnnnsnnes 167
8.7 EXBTCISES . . teeeuitieeeiitee e ettt e ettt e e ettt e e ettt e e et e e e et e e e atteeeeaabeeesammr e e bt eeeennbeeeeaanaeas 168
B8 AMISWETS ...ttt ettt ettt ettt et e st e et e et e e e bt e e bt e e bt e e e et e enees 169
B.8. 1 EXEICISE L..uuiiiiiiiiiiiiiiiie ettt ettt e ettt e e e ettt e e e e e e sestbaeeeeeesnsnbaeaeeeennnnns 169
B.8.2 EXEICISE 2...uutiiiiiieiiieeiiee ettt ettt ettt ettt e e e et e sttt e st e st e s bt e e satee e 169
B.8.3 EXEICISE 3...uiiiiieeeiiiiiiieeeeiiiiiieeeeesitttteeeeestttteeeeeesastbaeeeesessssbaaeeeessnssaeeesennsnsns 169
8.9 CharacCter CLASSES.uueieeiieriiiiiiieeeite ettt ettt e e e 170
8.9.1 EXEICISES QS @ ZIOUP...ceeeieruuririieeeariiiieeeeeenirrrteeeeenarreeeeseannrsreeeesssssnssseeesennnns 170
8.10 AILETNALION.uviiiieieeiiiiiie ettt e e eeeie e e e e e rtte e e e e eesabaeeeeeeessssemme e eesssaeaaeeennnssnes 171
8.11 The conCept Of AtOIMS.uiiieiiieieiiiee ettt e e e e e e e e e eaeeas 172
ST B B S (el 1L PRSPPI 173
B 13 AN SWETS...eeiiiiiiiiiiiiee ettt ettt e ettt e e et e st e e s e e e eane 174
B 13,1 EXETICISE L.uviiiiiiiiiiiiiieeeeieee ettt e e e e e e eitare e e e e e nebaeeeeeenes 174

B 13.2 EXEICISE 2..unniiiiieeiiiieeeiiie et ee ettt e ettt e ettt e e et e e e s ettt e e e bt ee e sareeessnsneeeens 174

B 13.3 EXEICISE 3uiinniiiiieeiiiie et et ete e ettt e e e tte e e et e e e s ensaeesesnsaeeesnnseeesensneeeans 174
8.14 SPIIL() TUNCHOMN....cciiiiiiiiiee ettt e et e e e e e e e e serae e e e e e snnaaeaeeeennnnnns 176
B I5 EXOTCISES. cnuvteiniiieeiteeeiite ettt ettt et ettt et ettt e st e bt e e 177
B.10 ANSWETS....eiiiieeeeiiiiiiee e ettt e e e e ttte e e e e e ebateeeesesnsaeeeessesnssreeessasanssaaeessensnssseeesnns 178
B.10.1 EXEICISE 1..ueiioiiiiiiiiiiiiieiieec ettt ettt et 178
B.160.2 EXETCISE 2.eeiiieieiiiiieeeeeeiiieeeeeeetttt e e e e ettt e e s esitbaeeaeeeeessntbaeeeeeennnssaeeeeennns 178

8 PerlClass.com for ACT Students August Feb 2007

8.17 ChapLer SUIMIMATYcuuvteieiiiieeiiiiieeeeitee e et ee e ettt e e e eibteeeeibteesebteeessabteessabbeeesaaseane 179

Chapter 9: PractiCal EXErCISES. . .ccuiii e a e e e e e e e 181
1 B 25 S & 1L ORI 182
Chapter 10: Fil@ 1/O. ...t e e e aeaaaaaaaaaeas 183
10.1 Assumed KNOWIEAEE.......cccoevuiiiiiieiiiiiiee et e e e e e s 184
10.2 Angle brackets - the line input and globbing operators............cccceevevcieerniuneennn. 185
JO.2. 1 EXEICISES...uvttieiiiiiiiieeeeeriiiiieeeeeesitteeeeseeitteeeesesiatteeeesenssbaeeeesessm e snssseeeeens 187
10.2.1.1 AAVANCEA EXECICTISES. . uuvrrreeeereriiieeeeeiiiireeeeeertrreeeeeessrreeeeeesnnrneeessnnsees 187

TO.3 ADSWETS .ttt e e e ettt e e e e ettt e e e e e saabbt e e e e e esaabbbeeeeesnaasraes 188
TO.3.1 EXEITISE 2..nuiviiiiieeeeiiiieeeeeeeiiteeeeeeitteeeeeeeittteeeesesnsanasaeeessennssseeessesnnssneeens 188
TO.3.2 EXEICISE 3..iiieiiiieeeiiiee et etee et e ettt e e ettt e e st e e e e ebae e e sabeee e nnneeesnneeas 188
10.3.3 Advanced EXErCiSe 1......cuuiiiiiiiiiiiiiiiiiiiiieee ettt 189
10.4 open() and friends - the gory detailS............ccovveeriiiiiiiniiiiniicecee e 190
10.4.1 Opening a file for reading, writing or appending...........ccceeevvveeeecnreeennnnen. 190
JO.4.2 EXCICISES..uutvtieeeeiirrieeeeeniiiieeeeeessirraeeeeessassseeeesesssssaeeesesssssseessessmmensssseeees 192
TOLS ADSWETS. ettt ettt e e e ettt e e e e ettt e e e e ettt e e e e e saassaeas 193
TO.5.1 EXEICISE 3...niiiiiiieeeeiiiieee e eeiitee e e ettt e e e e ettt e e e s e e eaataeeeeseennsaaeessennnnaeeeas 193
TO.5.2 EXEICISE 4.ttt ettt ettt e et e e e et e e et e e e bteeesaaaeas 193
TO.5.3 EXEICISE S..unuiiiiniiieeiiieeiiee ettt ettt ettt et e st e st eeeabe e e 193
10.6 Reading dir€CLOTIES. ..cceeuurteeiriiiieeeiiiee et et ee ettt e et e et e e et e e e et emm e e e eas 195
LO.7 EXETCISES . uvteeeutiieeeiiieeeeiieeeesitte e e tteesetteeeesaaaeeesasteeesssaeeennsssammnseessnsseessennseeeans 196
TO.8 ANSWET L0 H2.ceieiiiiieee ettt e ettt e e e e ettt e e e e e e baeeeeesssnssaaeeeessmmmsseeeess 197
10.9 Opening files for simultaneous read/Write..........cccoovueeeeriiieeerieriiiee e 198
JO.9.T EXEICISES...uuttiiiiiiiiiiieeeeeiiiteeeeeeiiteeeeeeeitteeeesesstreeeesesassaeeessessm e ssnsaeeeens 198
O LN 1 1) PP PRSP 199
TO.1T OPENING PIPES..uuurrreirrrieeaiirieeaiiieeerirteeesrreeeeserreeeassseeesssreesssssessmmensseessssseesens 200
L0 I B T B 2 S5 (1 £ PSP 201
LOLT2 ADSWETS ...ttt ettt e e e ettt e e e e ettt e e e e ssasbbbeeeeesaasseees 202
TOT2.T EXEICISE 2..uvviiieeeeeiiiiieeeeeeeiiiteeeeeeitteeeeeeeitteeeesesnabraeaeeessesnssaeeessennnsseeeens 202
TO.12.2 EXEICISE 3B.nniiiieieiiiee ettt ettt ettt e et e e s et e e et e e e anteeesnneeas 202
10.13 Finding information about files..........cccccvieiiiiiiiieiiiieeciee e 203
JO. 14 EXEICISES .. uvvriieeeeeiiiiieeeeeeiiiteeeeeeseraeeeeeessasteeaesesssssreeesssssssssessmmssseeessesssssseeens 205

PerlClass.com for ACT Students August 2007 9

10.15 AHS VV ers .. 206

TOIS5.T EXEICISE Loeiiiiiiiiiieeee et ee e e e e e e e e e 206
TO.15.2 EXEICISE 2..uuviiiieieeiiiiiieeeeeciieee e e eeivte e e e e eeiateeeeeeeaabsanaaeeeeesnaaseeaeeennnssneeeas 206
TOIS5.3 EXEICISE 3ueiiiiiiiieeeeeeittee ettt e e e e e ettt e e e e e e e aeeeeeeaeeee e e e e e nnnnsnnssanees 206
10.16 Recursing dOWN dIT€CLOTIES.eerrurieriiieiiieeiieeeiee ettt ettt s 208
JO.16.1 EXCICISES..ueiiiiiiiiiiiiieeeeiiitieeeeeeeite e e e e eerte e e e e eetraeeeeeeeataaeeeeeeenessmnnasaeeaens 209
10.17 ANSWET t0 EXCICISE H2...ooviiiiiiieiiiiieeecccteee et re e e e e e e e e e e e e e e 210
1018 File IOCKING. ...cceeuiiiiiiiieeeiiie ettt e e e e eer e s e e e e ennneeeens 211
10.19 Handling binary data..........coooueeeiiiiiiiiiiiee ettt ee ettt 212
10.20 Chapter SUMIMATYccouvveeeeiiieeeiiieeeeiieeeesiteeeesiteeeessteeessareeesssnseessssseessnsseesans 214
Chapter 11: Advanced regular eXpreSSIONS.ccooocoeiriiririme e 215
11.1 Assumed KNOWIEAEE.......cuueeiiiiiiiiiiiii ettt 216
T1.2 REVIEW EXEICISES...ueeiiieeeiuiiiireeeeeiiriieeeeeeeitreeeeeeesarareeeeeessssreeaeessssnssreeeeesssssseeeens 217
11.3 More metaCharacCters.uuuiiiiiieiiiieecccccee e eeee e e e e e ee s 218
11.4 Working with multiling SIrings...........coovveiriiiiiniiiiiieiiceeceeee e 219
| B B B S (o3 1 S RSP 221
L1.5 ADSWET ...uviiiiiieeeeeee ettt e e e e e e e e e et b e e e e e eeaeeeeee e e s e e e e e nannsnnssaeees 222
11.6 Regexp modifiers for multiline data.............occeeeeriiiiiiniiiiiniiie e 223
11.7 BACKICIETENCES.ueeiiiiiiiiiiieeee et e e e e e e e e e e e e e aean 225
11.7.1 Special variables..........coooruiiiiiiiiiiiiieeeee et e 225

| R B S (o) 1 PRSP 227
T1.8.1 AdVANCEA.....oevviiiiiiiiiiiieeeeeee e e e e e e e e e 227
L1.9 ADSWETS.ccciiiee ittt e et e e e e e e e e e e e e e aaaabbaaaeeeaeeaaeaeeeesasnnnnrnns 228
T1.9.1 EXEICISE L.ueriiiiiiiiiiiieeeeeee ettt ee e e e e e e e e e e e e e aaanaraees 228
T1.9.2 EXEITISE 2...uuvtiiiieieeiiiieeeeeeciite e e e e ettt e e e e eeiata e e e e e e aenaasaeeeeeesnnaaeeaesennssaaeeas 228
11.9.3 Advanced EXErcise l.......cooiiiiiiiiiiiiiiiiiieeeeee e e 228
11.10 SECION SUMIMATY ...ceiiutiieieiiieeeeiiieeeriteeeetteeeeieteeesiteeeeibeeeesaeeeessabeeeesnaneeeeans 230
Chapter 12: More fUNCHONS.......ooii i 231
12.1 The grep() fUNCLION.....cccoiuiiiiiiiie ettt te e et e e etee e e e s e e e 232
| B B S (o3 1 SRR 233
L2.2 ADSWETS...ceiiiiieeeeitteeee et e e e e e e e e e e ettt r e e e e e eeeeeeeeeeeeeasssassaasraeeeeaeeaeeeeeeannnnnrnns 234
12.2.1 EXEICISE L.uuuiiiiiiiiiieiiiieee ettt e e e aaa e e e e e aanaaee s 234

10 PerlClass.com for ACT Students August Feb 2007

12.2.2 EXEICISE 20 e e e e e e e ee e et e e e aee e eee e e e e e eaeecaens 234

12.2.3 EXETCISE 2D...eiiniiiiiiiieiieeeite ettt ettt et e 234
12.3 The Map() fUNCHON.......cciiiiiiiiiiiee et e e e e e s smme e e e eaaeeeee s 235
12,301 EXETCISES..uvteeitieeiieeeiteeeiite ettt ettt ettt ettt ettt e st sat e et e st e e 235
12.4 Chapter SUMIMATYcceieeriuriieeeeeriieeeeeeessireeeeeesssnrreeeeesssnssaeeessssssssseeessssssseeens 236
Chapter 13: System interaction..........ccccueiiiiiiie e 237
13.1 SYStEM() ANA EXEC().eeeuvrreeerrreeeeiiieeeeitieeeeitteeeriteeeeateeeesateeessabeeesenreeessasseeesmnn 238
|G T B B 2 (5 (el 1P 238
I3.2 ADISWET ..ottt ettt ettt e ettt e e et e e ettt e e ettt e e e st e e e e bt e e e enaeeeens 239
13.3 USING DACKUICKS. ..ceuvviiieiiieeeiieeeeite et e ettt e e etee e e steee e et e e s seaeeeessnaeeesnnsemnns 240
T TN B 2 (G (a1 S 241
T34 ANISWETS. ...ttt ettt ettt e st e ettt e e sttt e e et e e s e e sareean 242
I3.4.1 EXEICISE L.uuiiiiiiiiiiiiiiiiee ettt ettt e e e s e aaae e e e s e sennaaeees 242
I3.4.2 EXETCISE 2...uueiieiiiieieeeeiiee ettt ettt ettt ettt sb e e st e it e st e e sabeeeneeesanees 242
I3.4.3 EXEITISE 3..nniiiiiiieeeiiiiieee e ettt ee e e eeiite e e e e e ettt e e e e e e s iaaabteeeesesaabaeeeesennnnneeens 242
13.5 Platform dependency 1SSUES.cocueiruierrieeriiieeniieeriie et esiree et me e 243
13.6 Security CONSIACTAtIONS.c..viieeeiiieeeeiieeeeieeeeeiieeeeieee e e eeesareeesnnnneessnnseeesnns 244
I3.6.1 EXCICISES..uuuiiieieiiiiiiieeeeeiiiiieeeeeesitteeeeeeesetteeeesesassreeeesennssseeeesessmmensssseeeens 245
I3.7 ADSWETS ...ttt ettt ettt sttt e sttt e st e st e s bt e sabaean 246
I3.7. 1 EXEICISE Luuuueiiiiiiiiiiiiiiiee ettt ettt et e e e s e tae e e e s e snnaaeeees 246
I3.7.2 BXEICISE 2..ieiiniiiieeeiiiee et ettt ettt e e ettt e e et e e e e e itte e e e bt e e e anbeeeenneeas 246
13.8 SECTION SUMIMIATYeeeiiiiiiiiiieeeeieiiiiieeeeeeiteeeeeeeiitteeeesesibbeeeeesssanbreeeessnanseeeeess 248
Chapter 14: References and data Structures...........ccooveveviiiiiicicieee e 249
14.1 Assumed KNOWIEAEE......cccoovriiiiiiiiiiiiiiee ettt e 250
14.2 Introduction tO TefEIENCES.uviiieeeiiiiiieeeeeciieee e ettt e e e e earre e e e e eseabaeeee s 251
14.3 USES fOr TEIETENCES. ...ceuvieiiiieiiiiiiiie ettt 252
14.3.1 Creating compleXx data STrUCTUTES........ccoocueeieriiieeiiiiieeeiiee et 252
14.3.2 Passing arrays and hashes to subroutines and functions.............ccccceeueen... 252
14.3.3 Object oriented Perl...........coooviiiiiiiiiiiiiiee e 252
14.4 Creating and dereferencing references.ccevveerrieenieienieeniiieeniee e 253
14.5 Passing multiple arrays/hashes as arguments............cccceeeecuveeeeriieeeniieeeerimeee s 256
14.6 Complex data SIIUCTUTES.ceuvteeiiiiieeeritie et ee et e et e e et e e et e e e sneeeseieeeeens 257

PerlClass.com for ACT Students August 2007 11

14.7 AnoOnymous data SIIUCTUTES..........veeeierriiiiieeeeeriiieeeeeeeiittee e e s et eee e e ssseiaeeeeee s 258

T4.8 EXOICISES . uuuvivieeeeeeiiiiieeeeeeittteeeeeettateeeeessaaaeeeeeeesansaseeeseessssssommnsssseeessesnsssneeens 260
T4.9 ADSWETS. ...eeiieiieiite ettt ettt ettt sttt e st et e e sttt e s e e et esabaean 261

| I B 2 (5 (el 1 TP 261
T4.9.2 EXETCISE 2...uuviiiiiieeiiieeeiiee ettt ettt ettt ettt sttt e s ettt e s e e s e e seeesanees 262
14.10 SECION SUMIMATY ...eeeiuvrieeeiiieeeriieeeenireeeesreeesaereeeessreessssseesssssseesssssseessssseessans 264
Chapter 15: PErISTYIE. ..o e e e 265
I5.1 PETISLYLE 5.8.8. . ettt ettt e et e e e araee e eaane 266
Chapter 16: About databases........c.ceeviiiiiiiiiiiiiee e 271
16.1 What 1S @ database?........ccooueiiiiiiniiiiiieeteeee ettt 272
16.2 Types Of databases.ceveevriiiiiiiiiieiiieee ettt e e s 273
16.3 Database management SYSLEIMS.c..utiirrrreeerriiieeeriieeeeriteeessireeeesireeeenaramareeeenns 274
16.4 USES Of databDases.......eeevuuieiriiieiiieeiiee ettt ettt ettt e 275
16.5 Chapter SUMIMATYcccoouuteiiriiieeeiiteeeeieee e et e e ettt ee s et eeeeeabteeeesabteeesbeeeeenaneeeens 276
Chapter 17: Textfiles as databases.........cccceeeeeieiiii 277
17.1 Delimited teXt fIIES.....couuiiiiieiiiiiiiee et e e s 278
17.1.1 Reading delimited teXt flles.......cceorieiriiiiniiiiiiieiicccemec e 278
17.1.2 Searching for T€COTAS.cccuuiiiiriiieeiiie e e e 279
17.1.3 SOTtING TECOTAS.eeeiiiiiieeeiitee ettt et et e et ee e 280
17.1.4 Writing to delimited text flles..........cceeirriiiiiiniiiieeiiieeeeee e 281

17.2 Comma-separated variable (CSV) files.......cccvvivviiiiiiiiiiii e 283
17.3 Problems with flat file databases..........cccceeerveeriiiiniiiiiiiinicimecceceecee 284
17.3.1 LOCKING. ..ciiiiiiiieeiiee ettt ettt e et e e e eaae e e et e e s e e ee e ennnneas 284
17.3.2 ComPlIeX data.....c..eeeeieiiieiiiiee et s s 284
17.3.3 BAfICIENCY ... ueiiieeiiiee ettt ettt et e e et e et e e e nea s 284

17.4 Chapter SUMIMATYccceeereurieeeeeereirreeeeeesaatreeeeeeasnsrreeeessssssseeeesssssssseeesssssssseenn 285
Chapter 18: Relational databases.............uuuuuiiiiiiiiiiiiiiia 287
18.1 Tables and relationShIPS.c..uieiiiiiiiiiiiiee e 288
18.2 Structured Query Language...........ccoeecuvieeiriiieieiieeeeiieeeeiteeeeemee et e e eiaee e 291
18.2.1 GENETAl SYNLAX....ceeruriiiiiiiieeeiitee ettt ettt e e et e s mere e e sieeees 291

12 PerlClass.com for ACT Students August Feb 2007

I8.2.1.1 SELECT ...ttt ettt ettt s 292

I8.2.1.2 INSERT ...ttt ettt s 292
I8.2.1.3 DELETE ...ttt et et s 293
I18.2.1.4 UPDATE..... ittt st 293
18.2.1.5 CREATE.....co ittt 293
I18.2.1.6 DROP......ceiiieiie ettt ettt et e et e e 294

18.3 Chapter SUMIMATYccccuteeeeiiieeeriieeeesieeeesateeesseseeesasreeessnsreeessssseessssseesssssseeens 295
Chapter 19: MySQIL......co oo e e e e e e e e e e e e e e ea 297
19.1 MYSQL fRALUTES....ccoutiiiiiiiiiieiiieeiee ettt sttt s 298
19.1.1 General fEATUIES.eevuiiiiieiiieerite ettt st ettt s 298
19.1.2 Cross-platform compatibility.........ccoccueeeeiiiiiiniiiieiniieeeiee e e, 298
19.2 Comparisions with other popular DBMSS.........ccoooiiiiiiiiiiiieiiiiieeeiee e 299
19.2.1 POStZIESQL...cniiiiiiiieee ettt et 299
19.2.2 Oracle, SYDaSE, €LC....cccuuiiiiiiiiieiiiieeeitee ettt e et e e e e e 299
19.3 Getting MYSQL.......eiiiiiieeeeeeteee ettt e e et e e e e et eeeebtreeeesesnsbaeeeas 300
19.3.1 Red Hat LINUX.......uviiiiiiiiiiiec ettt e e e se e e e vaee e e e e eeenaee s 300
19.3.2 Debian LINUX......ccccueeiiiiiiiiiiiiieniieeiee ettt senit e st 300
19.3.3 Compiling frOm SOUICE.......c.uiiiiiiiiiiiiiiieeitee et 300
19.3.4 Binaries for other platfOorms...........ccoeeiiiiiriiiiieniie e, 300
19.4 Setting up MySQL databases.........cc.eeeeeruiiiiniiiieiniiieeeiee et ee e 301
19.4.1 Creating the Acme inventory database...........ccoccueervueeenieeriieeniieeenieeneee o 301
19.4.2 Setting UP PETMISSIONS...ccevruvrireeeerriirieeeeeeriireteeeeesrirreeeesemmenanrreeeessssonseeeens 302
19.4.3 Creating tables.ocuuiii ittt st 302
19.5 The MySQL CHENL........viiiiiiiieeiiie ettt et e e e e e e esre e s nneee e 305
19.6 Understanding the MySQL client prompts............cooeveeeeiieiiiiiniiieenniiee e 307
LO.7 EXEICISES. ..eeeuuteiuiteeiieeeitee ettt et e ettt e ettt ettt st e sttt s bt e s o e e e e e sabeeeabeeenaee 308
19.8 Chapter SUMIMIATYccceeiriiriieeeeeniiieeeeeeeeiireeeeesesarteeeeesesastaeeessassssseeaessensnsseeens 309
Chapter 20: The DBI and DBD modules........cccooieiiiiiiiiineeeeeeeeeeeeeeeeeeeeeeeeeee, 311
20.1 What 1S DBI7.....coiiiiieee ettt 312
20.2 DBI dOCUMENTALION SEL.....cccuveeriiieiieeriieeniieeeiteeeieeesireeetteeereeereeesreeeneesereeenane 313
20.3 Supported database [YPES.......uuueieerriiiiiieeeiriiiieee ettt cnae e 314
20.4 How does DBI WOTK?.........uviiiiiiiiiiiie ettt e e e vaee e e e avaeae s 315

PerlClass.com for ACT Students August 2007 13

20.5 DBI/DBD SYNEAX...cceiuttieieiiieeeeiiieeeiiieeeeiteeeesiteeeesireeeessssasseeesssseessnssseessnsseeesnns 316

20.5.1 Variable name CONVENTIONS.ccerurriieeeerriiiiieeeeeeiiireeeeeesnrreeeesesnnreeaeeeess 316
20.6 Connecting to the database...........cceeruiiiiiiiiiiiiriiee e e 317
20.7 Executing an SQL QUETYccciirriuiiiieeieiiiiieeeeesiiieeeeeesiireeeeeesseeeeseesnnreeeeseennns 318
20.8 Doing useful things with the data.............ccoceeiiiiiiiiiniicee 319
20.9 An easier way to execute non-SELECT queries.........ccccceevivvriiiiieeeieeiniiieeennn. 320
20.10 Quoting special characters in SQL.........c.coiiiiiiiiiiiiiiiee e 321
20,11 EXETCISES. ccuvteiiiieeiieeeiteeeitee ettt ett et e ettt et e ettt e st e e it e s bt e e st e e saseeebaeeeaee 322

20.11.1 AAVANCEA EXEICISES...uuvvrrreeeeiiiiieeeeeriiiiieeeeersirreeeeeesssrreeeesesssssreeesessnssneeens 322
20.12 ChaPLer SUMIMATY ...ceeeuvteeeriiieeeiiteeeetteeeesteeeessireeeesseeeesssseeessnseessssseesssseeesns 323

Chapter 21: Acme Widget CO. EXEICISES.......uuuiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeee 325
21.1 The Acme inventory appliCatioN.........c.ueeeriuiieeiiiiiieeiiiiee ettt 326
21.2 LiStING StOCK TLEIMS .. .uvieeiiiiieeeiiiieeeiitee ettt et ee ettt e e et e e s ate e e e ee e e 327

21.2.1 AAVANCEd EXETICISES: .eeiieirriiieeeeriiiiiieeeeeiiitteeeeeeriraeeeesesabreeeesesnsseeeesssaeeens 328
21.3 Adding New StOCK TLEMIS.....ccuuveiruiiiiiiiieiieeniee ettt ettt e 329

21.3.1 AAVanCEed EXETCISES.ueeirurieiaiiiieeaiiieeeeiitee ettt ee ettt e e ebtee e e st eeesbeeeesaeeees 329
21.4 Entering a sale 1nto the SYSteML..........ccoiiuiiiiiiiiiiiiiiiee et 330
21.5 Creating SAleS TEPOTTS. ...ccceurireiriieeeeiiieeeeiieeeertteeeeiteeeeetreeeesssansreeesssneesnnseeeens 331

21.5.1 AAVANCEd EXETCISES.....uuvrrireieriiiiiieeeeriiiiieeeeesiireeeeeestbreeeesesnnsreeesesnsseeeens 331
21.6 Searching fOr StOCK TEEMIS......cceiruiiiieiiiie ittt e e e 332

21.6.1 AAVANCEA EXETICISES....uuuviiiieiiiiiiiiieeeeeiiiiieeeeeeitee e e e e eitreeeesesaabaeeesesasraeeens 332

Chapter 22: RefErENCES.......coo oo 333
22.1 Uses fOr Perl referenCes..........uvviiiiiiiiiiiiiiiiiiiieee ettt e et e e 334
22.2 Creating and deferencCing.........coccueeeuieiriiiiiieiniieeieeeiecee et 335
22.3 Complex data STIUCLUTES.ueiieirriiiiieeeeeeiiteeeeeeeiiteeeeeeesirreeeesesibaeeees e abrreeens 337
22.4 Passing multiple arrays/hashes as arguments..............ccoevcieiiniiieeiniieeeirceeens 338
22.5 Anonymous data SITUCTUTES..........eeeieirriiiiieeeeieiiiteeeeeeiiiteeeeeesirteeeessssiaeeeeee s 339
22.6 Chapter SUMIMATYccceeuvvieeeeeeriirieeeeeenetereeeeessneraeeeesssssssseeesessssssseeesessssssseeesenns 340

Chapter 23: What is CGl7........eeeeeeeee et 341
23.1 Definition Of CGlLL.....cocuoiiiiiiiiiiiieeeeete et e 342
23.2 Introduction t0 HTTP........ccoooiiiiiiieeee et 343

14 PerlClass.com for ACT Students August Feb 2007

23.3 TeIrMINOLOZYeeiiiiiieiiiiiee ettt e et e e et e e s eabte e e eabeee e e 345

23.4 HTTP Status COUES.veiriiiiriiiiiiteeiiee ettt ettt et et somse e s 347
23.5 HTTP MEthOMS.......eiiiiiiiiiieeiieeiee ettt sttt et st 348
23511 GET ..ottt st 348
23.5. 1.2 HEAD ...ttt st 348
23.5. 1.3 POST ...ttt ettt et e et e 348

2300 EXEICISES. ..eeeutteeuiieeiteeeite ettt ettt et ettt e ettt e st e e it e e st s e bt e e e abeesbaeeeaee 349
23.7 What is needed to run CGI programs?...........ccoocueeeiriiieiiniiiieiiiee e 351
23.8 Chapter SUMIMATYcccccuuieeeriieeeeiiieeesiteeeesiteeessseeessareeesssteeessssaeessssseeessssseeens 352
Chapter 24: Generating web pages with Perl..........ccccoie 353
24.1 Your public_html dir€CtOTy........eeiiiiiiiiiiiiieeiee et 354
24.2 The CGI QITECLOTY ...uvieieiiieeeiieeeeitee ettt e e sitee e et e e eeaeeesstteeesnsaeeesssbeeeennseeeean 355
24.3 The HTTP hEaders......cccieeiiiiiiiiieeiiiiie ettt e et e e e e e etrae e e e e e e 356
244 HTML OUEPUL....couvttieiieeeiieeiieeette ettt ettt st satee s sat e s e 357
24.5 Running and debugging CGI programs............ccceeeevuviieeeeinriiiieeeeeeniiieeeeeemmenens 358
24.5.1 EXCICISES..uuttteeieeiuiiieeeeeesiiiteeeeesiitteeeeeessssraeeeeesssssaeaessesssssseeessessmmesnsssseeees 358
24.6 QUOING MAAE CASY...eeeuvvireeriiieeeiiieeeeireeeeeiteeeesteeeesateeesssreeesssnsseeesssnesssssseesans 359
24.6.1 Here dOCUIMENLS.uuiiieeeiiiiiieeeeeeiiiieeeeeeeiireeeeeesebreeeesesnnraeeeesssmmesssssneeens 359
2477 PICK YOUT OWIN QUOLES. ...ceeuvrieeiirieeeeiiieeesiieeessitteeeeiteeeesisteeeesssmnsseeesnseeessnseesens 360
24,8 EXCICISES . uvvvteeeeesuirreeeeeaniuirteeeeeanitraeeeseasussaeeeseassssseeessasssssseeesmmmmaseesessssssseeesennns 361
24.9 Environment variables...........coouiiiiiiiiiiiiiiiieeeceeeeee e 362
24.9.1 EXCICISES..eeeeurrieeriiieeeiiieeeeiieeeenireeeesarteesaaseesesssesessssaeeesssseesenssmmmseesssssees 362
24.10 ChapLer SUMIMATY ...ccceouvteeeiiiieeeiiteeeeitteeeetteeeesitteeesneeeesasneeessbeeeesaaseeesssnseeesnns 363
Chapter 25: Processing form input..........oooo 365
25.1 A quick 100k at HTML fOIMS......coocuiiiiiiiniiiiiieiieeeeeieeeie et 366
25.2 The FORM €IEMENL......ccc.eeiiiiiiiiiiiiiieiiieeiteeete ettt eeee e e 367
25.3 INPUL FICLAS ...t et e 368
25301 TEXT oottt et inmr e sttt e 368
25.3.2 CHECKBOXottt ettt ettt ettt st ee et e e 368
25.3.3 SELECT ..ottt ettt ettt ettt st e s mamsees 368
25.3.4 SUBMIT ..ottt sttt e 368
25.4 The CGI mMOAUIE..........uviiieeiiiiiee e eesrr e e e s e aaeeeee s 369

PerlClass.com for ACT Students August 2007 15

25.4.1 What 1S @ MOAUIE? ... oo e et e e ee e e e e eaeeeaeeeeaaaeaans 369

25.4.2 Using the CGI module..........ccooouiiiiiiiiiiiiiiiiiiee i 370
25.4.3 Accepting parameters With CGL.............ccoooiiiiiiiiiiiiniie e, 370
25.4.4 Debugging with the CGI module's offline mode.............cccvveuriieernnnnnnee... 371
25.4.5 EXCICISES. ceeieuuttieeiiieeeeiiteeeeitte e ettt e e ettt e e ettt e e e s bteeesabeeeesanteeesasmmseeeseabeeeas 371
25.5 Practical Exercise: Data validation...........coceeiiieiriieiniiiinieeieeeec e 372
25.5. 1 EXCICISES..uuutiieieiiuiiieeeeeeiiiiieeeeessitteeeeeessssteeeeeesssssaeeessesssssseeessessmmennsssseeeens 372
25.6 Practical Exercise: Multi-form "Wizard" interface...........ccoccveeeveiiieinniieennnens 373
25.0.1 EXCICISES..uuutteeieiiiiiiieeeeiiiiiteeeeessittteeeeessssseeeesessnsssaeessesssssaeeessessmmessssseeess 376
25.7 Practical Exercise: File upload...........cooociiiiriiiiiiniiiiieiieeeeeeee e 3717
25.8 Chapter SUMIMATYcceeuviiieeeeeriiiieeeeeesiitteeeeeenitraeeeessssrraeeeessssssraeeesesssssrseeessans 379
Chapter 26: SECUILY ISSUES......cciiiiieiiieeieeee e e e et e e e e e e e e e s e e e e e e e e e nnnes 381
26.1 Authentication and access control for CGI SCripts........cccceeeeriiiieiniiieeeniieeeenee 382
26.1.1 Why is CGI authentication a bad 1dea?..........cccovveeeviriiiiiiieiiiieeeeeieeeee. 382
26.2 HTTP authentiCAtiON.cceiruiiiiiiiiieeeiiieeeeiiteeeiiee et e e s me e e e st e e eiieeessaneeeea 383
26.3 ACCESS CONLIOL...ceiiiiiiiiiiiiiieeiitee ettt e et e st e s emees 384
20.3.1 EXCICISES. .uuutiieieiiuiiireeeeeiiiieeeeessitteeeeeesstreeeeesesssssaeeessesssssseeessessmmenssssseeees 384
26.4 TN ALA..c..eeieiiiiiiieeiieeeeeee ettt sttt 385
20.4. 1 EXCICTISES..uuvvteeeeiiuriieeeeesiiiireeeeessitteeeeeessssseeeesessssseeessessssseeesssnsmmennsssseeess 386
20.5 CIWIAP . utteeeuitieeeeiiieeeetteeeeeitteeesttee e e tteeesatteessabateessabteeeeassaeeennnseeesnnsaeessnnsaaesns 387
26.6 SECUTE HTTP......ooiiiiiiiiieee ettt e e e s et e e e e eaaes 388
26.7 Chapter SUIMIMATYccocuvteriuieenireeeitteertteeeireeereeesareeebteesbeeesseeesreeessneesaneeesaneeean 389
Chapter 27: Other related Perl modules...............uuueiiiiiiiiiiiiiiiiiiiiiiieiiee e 391
27.1 Useful Perl modules..........coooiiiiiiiiiiiiiiee ettt 392
27.2 Failing gracefully with CGL:iCarp.......cceeveeeiieeeeiiiie ettt e 393
27.2.1 EXCICISC.ccceeeuiiiieeeeeiiiiieeeeeeecitteeeeeesettaeeesessssareaeseesssssseeeesesssssseeessesssssseaeesans 394
27.3 Encoding URIs with URIL:ZESCAPE........vviiiiiiiiiiiiiieeiieeeeeee e 395
27.3.1 EXCICISC.cceieeuuiiiieeeeeiiiiieeeeeeeiiiteeesesitteeeeeessntareeeesessnssaeeeesesnssaaeessenssssseeessans 395
27.4 Creating templates with Text::Template...........cccceevviiiiiiriiiiiiniiieeeiee e 396
27.4.1 Introduction to object oriented modules............cccvvveeeiiiiiiiieieiinniiiieeeees 396
27.4.2 Using the Text::Template module...........ccccoviieriiiiiiiniiiiniiceeieeeeeeee. 396
27T 4.3 EXEICISE...ceeuteeeuiieeeiieeiite ettt et e it e ettt et e st e st eeeatee sttt esabeessbteesabaeesabeens 397

16 PerlClass.com for ACT Students August Feb 2007

27.5 Sending email with Mail::Mailer..........cccoocuiiiiiiiiiiiiii e 398

27.5.1 EXEICISES....etiiieieeiieeeiie et ettt ettt et et ettt et e et e et e et e e s 399
27.6 Chapter SUMIMATYcceeeiuvriiteeeeriirieeeeeesitteeeeeesstrteeeeesssnsseeeesessssssseeesssmmmeseessnnns 400
(0] g F=T o (=Y g2t SR @70 a T od 113 o o SR 401
28.1 Day 1: What you've learned............cccceeeeiiieieiiiieeeiieeeiiee et cere e 402
28.2 Day 2: What you've learned.............cccooiiiiiiiiiiiiiiiiieieiieceetee et 403
28.3 Day 3: What you've learned............ccceeeiiieiiiiiieieiiieeeiiee e ceeee e 404
28.4 Day 4: What you've learned..............ooeeeeeiiiiiiiiiiiiiiieee et 405
28.5 WHETE £0 TOW?Z ...ttt ettt ettt ettt e 406
28.6 Further reading -- DOOKS........ccocuiiiiiiiiieeeiiee ettt eeeee e 407
28.7 ONLINE.ceiuiiieiiieeiite ettt ettt e ettt e et e et e e sabeeesateesabeeessbeesnseeesnseeenseeenane 408
28.8 The Perl home page (http://Www.perl.com/)..........cooveuiiiiiiiiiinniieeeiiee e 409
28.9 Perl Monks (http://www.perlmonks.com/).........cccceeeviiiiniiiiiniiiiiieceene 410
28.9.1 The Perl Monks Guide to the Monastery..........cccceevveeeeriiieeeeesiieeeieeenn 410
28.9.1.1 Finding Your Way Around...........ccccueeeeeerriiiieeeeenniiieeeeeeeiiireee e mmeeees 411
28.9.1. 1. ISECHIONS. ..ceiiiiieeeiiie ettt et eee e e e e e ibte e s eaaeeeeas 411
28.9.1.1.2INfOrmatioN.coouviieiiiiiiie ettt e 412
28.9.1.1.3Find Interesting NOAEs.........ccueeiiiiiiiiiiiieiiiieeeeee e 412
28.9.1.1.4Additional Miscellany..........cceevcuiieiriiiiiiniiiie i 413

28.10 » The Perl Journal (http://WWW.tP].COMY/)...ceiviviiiiiiiiiiiiiiiiiee e 415
28.11 = Perl Mongers Perl user groups (http://Www.pm.org/)........cccceeueeeiniuueeennnenn. 416
28.12 The Richmond Perl Mongers (http://wiki.fini.net/bin/view/RichmondPM) ...417
28.13 O'Reilly's Perl DOOKS.......ccoiiiiiiiiiiiieiiie ettt 418
28.14 NEWSZIOUPS...eeeeieuiiiiieeeeeiiiitteeeeeseiitteeeessaitrteeeesasiabteeeesesiaaessssssaeeeessananseeeeens 420
Chapter 29: WIN32::EVENTLOQ......uueiiiieieeieieciieiiiee e 421
29.1 Win32::EventLog EXampIes.........cceeieriiiiiniiiieeeiieeeeiite ettt cmve e e 422
29.2 Win32::EventLog Reference.cc.eeiiiiiiiiiiiiiiiiiieeiieceeeee e 424
29.2.1 The EventlLog Object and its Methods..........cccceevviiieeriiiieeniieeeiree e, 424
29.2.2 Other Win32::EventL.og fUNCHONS.cccocutiiiiiiiiiiiieeeeiee e 427
Chapter 30: WIN32::NEtAAMIN.....oovii i 429
30.1 EXAMPIL....neeiiiieiiieeeiiie ettt et e ettt e et e e et emme e s e e e e nareeeenneee 430

PerlClass.com for ACT Students August 2007 17

Chapter 31: Other Perl WIn32 Modules.........ooooviiiiiiiiiii 437
31.1 WIN32::NEtRESOUICE. ...ccuuvvieeeiiiieeeiiiee et te ettt e et ee e e e eesaneee e e 438
3111 EXAMPIES...iiiiiiiiiiiiiiiie ettt ettt e e e et e e s s et re e e e e nas 438
B1.1.2 DAt TYPLS..eteeeutiieeeiiieeeeiite ettt ettt e et e et e e et e e e et e e s s e s abeee e 439
31.1.2.1 %NETRESOURCE.......ccc.coiiiiiiiiiiiieieteeeeeeeete et 439
31.1.2.2 %SHARE_INFOoooiiiiiiie e 440

B1.1.3 FUNCHIONS. ..ottt ettt e et e e ettt e e et e e s s asteeesabaeeeeanns 440
31.2 WINB2:ISEIVICE. ceeieeiiiiiieeeeeiiiieee e e ettt e e e e ettt e e e e esbbaeeeeessssbbeeeesmmeeesssnssaeeeeennnns 444
31.2.1 EXAMPIES....eeioiiiiiiiiiiiieeeiee ettt ettt s 444
31.2.2 FUNCHIONS. ...eieiiieeiiie ettt ettt e et e e ettt e e ettt e e e st e e e sntaeesensaeeeennsaeesennns 445

31.3 WIN32::SOUNA......utiiiiiiieiiiteee ettt ettt e ettt e e e e et e e e e e e seesssmme s snsaeeeeeenes 446
31.3.1 QUICK SAMPIE....ueeiiiieiiiiieeiiee ettt ee et e e e e e e e 446
Chapter 32: *NIX cheat Sheet......couveiiiiii e 447
32.1 Some UNIX COMMANGS.....cccocuviiiiiiiieieiiieeeeiiee ettt e et eesiree e e ieeee e 448
Chapter 33: Editor cheat Sheet...... ..., 449
G 1 20 1V DO USSP 450
33 1.1 RUNNINE...coiiiiiiieeiiiee ettt et e et e e e e e s ntaeeeennneeesaeans 450
3312 USINME.eieeutiieeiiieeeitie ettt ettt ettt e ettt e et e e sabeeeateeeabeeeeabeeessmmnbeeennaeans 450
33,13 EXIUNEZ...eeiiutieiiiieeiteeetee ettt ettt ettt e ettt et e st e eebreaeen 450

R 1 T B € 0] (o] o 1S PSRRI 450

B3 L. HeIP et 451
33100 VIt ettt smnr e et e et e st e e sabeeen 451

1 I o) (1 OO OO 452
33.2.1 RUNNING...coiiiiiiiiiiiiie ettt e et e e et e e e atae e e s aareeesaeans 452
33.2.2 USINE..eeiutiieeiiieeeitie ettt ettt ettt e et e et e et e e sabeeeabeesabteesabeeensmmm et eesnbeeans 452
33.2.3 EXITINE...eeeeutieeiteeeiteeeitee ettt ettt ettt ettt e st e et e et e st e s et e s be e ebreeeen 452
33.2.4 GOLCRAS. .. .eeiiiieeeeeeee ettt e e e e e e e s s rmne bt e e e e e naaraaeee s 452

R i B = (5 | o U PR UUPSUPPPRRRRPRO 452

B33 0B ittt ettt et ettt e et esa e e bt e e sabt e e e nabee e baeeeaee 453
33301 RUNNINE. ..coiiiiiiiiiiiee ettt e et e e et e e s e 453

18 PerlClass.com for ACT Students August Feb 2007

33.3.2 USINE.eeeeuiiiiiiieiiieeeiee ettt ettt ettt st e et e st e st e s bt e st e e ease e e mmm e e sareeen 453

33.3.3 EXIUNE...eeeeutieeiteeeiteeeiie ettt ettt et ettt e sat e et e et e e st e st e et e e areaeens 453
33.3.4 GOUCRAS. ...eiiiuiiiii ettt e e 453
3335 HeIP ittt see e 453
B34 GO, e ettt ettt st e e et e e e e 454
33.4. 1 RUNNING. .cuutiiiiiiiiiiieeiteeete ettt ettt ettt e et e et s bt e st e sneeesabeeaeans 454
3342 USINE..eiiieiiiieeiiiie ettt e eeiee e ettt e e et e e ettt eestbeeessssbeeeanseeesanssaesssmameesensseeeans 454
33.4.3 EXIUNZ. .eeeeteeeiiieeiie ettt ettt e ettt e st e et e e st e e it e e et e e st e e ebbeesbeeentaaeens 454
33.4.4 GOLCRAS.ueieiiiiieiieeeee ettt et s 454
33145 HeIP ittt aee e 454
Chapter 34: ASCII Pronunciation GUIdE..........ccoeiiiiiiiiiiiiieiieeee e 455
Chapter 35: HTML Cheat Sheet........coooiiiiiii 457
Chapter 36: The RegeX COaCh......ccueii it 461
30,1 ADSITACK. ..cutteeiiiieiee ettt ettt e e 462
30.2 CONLEIES. ¢ uetteeeeitiee ettt ettt ettt e ettt e e ettt e e ettt e e ettt e e sase s e e st e e eeabeeeesnneeesennee 463
36.3 Download and InStallation............ccocueiriiiiiiiiiiieiieeieeeee e 464
36.3.1 Older versions, Linux, FreeBSD, MaC......ccoouuoiieieeeeeeeeeeeeeee e 464
36.4 Support, bug reports, Mailing liSt.......ccueiiiiiiiiiiiiiiiiiie e 466
36.4.1 HOW tO TE€POTE DUZS.....eviieiiiiiieeiiiie ettt et e e ee e e eeaseee e 466

36.5 How to use The Regex Coach.......ccccvviiiiiiiiiiiiiieieeeeeeee e 467
36.5.1 The MAIN PANES.....ccerurireiiiiieeeiiieeeriieeeeiteeesitee e et eeeeiaeeessabeeeesnnseessmmreeens 468
36.5.2 The MESSAZE ATCAS...ccceerurrrieeeeeriiiiieeeeeeiitteeeeessitrteeeeessanreeeesssssssaansnseeeess 468
36.5.3 Highlighting selected parts of the match...........ccocoeeiiiiiiiiniiiiicene 469
36.5.4 The highlight BULLONS.......cccciiiieiiiieeeiiee e e 469
36.5.5 The highlight MESSAZES.....ccuuviiiiiiiiiiiiei e 469
36.5.6 Walking through the target String..........ccoecvveeereiiieeiriiieeeiee e 470
36.5.7 Narrowing the SCAN........ccuuviiiieiiiiiiiiee et et e e e e e saarreee e s esenaneeees 470
36.5.8 The INfO PANE......cooviiiiiiiiiiiiice et 470
36.5.9 ThE PAISE trEE...cccuuiiiritieiiieeeiieet ettt ettt sttt e s e e saaeeens 470
36.5.10 RePIACING LEXL.cceeuuuiieiiiiieeieiiiee ettt ettt e et e et e e st ee e 471
30.5.11 SPHILNG LEXE.ueieeuriieeeiiieeeeiiieeeriieeeeiteeeetteeesabeeessbreeaeeesnreessnseeeesnnseeeans 471

PerlClass.com for ACT Students August 2007 19

36.5.12 Single-stepping through the matching process..........cccecvvmrieerrciieerncneenns 471

30.5.13 MOITIETS.eeeeiiiiee ettt ettt e st e e e abeee e 472
30.5.14 RESIZING.....ceeeeiiiieeeiiieeeeiiee e ettt e eeitte e et e e e st e e s bt eeessaaeessaeeesnseeessnsseeesns 472
36.5.15 Saving to and loading from files...........ccceeveeiriiiiiiiiinniieeeeee e 472
36.5.16 AULOSCIONL.....coiiiiiiiiiiieeiee ettt 472
36.6 Known bugs and lMItations..........cccueeeeruieeeeiiieeeniiieeesieeeeeireeeesareeeenereeeesseseens 474
36.7 Technical INfOrMAtION.ccoouiiiiiiiiiiiiiee e e 475
36.7.1 Compatibility with Perl...........ccoooiiiiiiiiiie e 475
36.8 ACKNOWIEAZEMENLS.cceiieiiiiiiieeeeiiiiieeeeeeiieee e e eeeirt e e e e e brre e e e e esneraaeeeeenes 476
Chapter 37: ACKNOWIEAGEMENTES........uuiiiiiiiiee e e 477
BT FOLKS ettt st e 478
37,2 PLOJECES. ..eeeiuiiteeeeette ettt ettt ettt e et e ettt e e ettt e e et e e et e e e ebbt e e e abeeee e 479

20 PerlClass.com for ACT Students August Feb 2007

Chapter 1: Intro-
duction

This chapter will...

Welcome to PerlClass.com's Perl training module. This is a training
course in which you will learn how to program in the Perl program-
ming language.

1 Introduction

1.1 Assumed knowledge

To gain the most from this course, you should:
- Be able to use the UNIX operating system
- Move around the file system
- Create and edit files
- Run programs
- Have programmed in least one other language and
- Understand variables, including data types and arrays
- Understand conditional and looping constructs
- Understand the use of subroutines and/or functions
- Basic database theory - tables, records, fields

- Basic HTML - paragraphs, headings, ordered and unordered lists, anchor
tags, images, etc.

If you need help with editing files under UNIX, a cheat-sheet is available in
Chapter 31 on page 469 and an editor command summary in Chapter 32 start-
ing on page 471.

The UNIX operating system commands you will need are mentioned and ex-
plained very briefly throughout the course - please feel free to ask if you need
more help. Lastly, an HTML cheat-sheet is provided in Chapter 34 starting on
page 481 for those who need reminding.

22 PerlClass.com for ACT Students August Feb 2007

Introduction

1.2 Day 1 rough outline

- What is Perl? (30 minutes)

- Creating and running a Perl program (45 minutes)
« Morning tea (15 minutes)

- Variable types (45 minutes)

- Operators and Functions (60 minutes)

« Lunch break (60 minutes)

- Conditional constructs (45 minutes)

« Subroutines (30 minutes)

. Afternoon tea (15 minutes)

- Regular expressions (45 minutes)

. Practical exercises (until finish)

PerlClass.com for ACT Students August 2007

Introduction

1.3 Day 1 objectives

24

« Understand the history and philosophy behind the Perl programming lan-

guage

- Know where to find additional information about Perl

- Write simple Perl scripts and run them from the UNIX command line

- Use Perl's command line options to enable warnings

« Understand Perl's three main data types and how to use them

« Use Perl's strict pragma to enforce lexical scoping and better coding

« Understand Perl's most common operators and functions and how to use them
- Understand and use Perl's conditional and looping constructs

- Understand and use subroutines in Perl

- Understand and use simple regular expressions for matching and substitution

PerlClass.com for ACT Students August Feb 2007

Introduction

1.4 Day 2 outline

- Revise introduction to Perl material
- File I/O
- Line input and globbing operators
- Opening files, directories, and pipes
- Finding information about files
- Recursing down directories
- File locking
- Handling binary data
- Advanced regular expressions
- Review of basic regexps
- Multiline strings
- Backreferences
- More functions
. grep() and map() functions
« printf() and sprintf()
. pack() and unpack ()
- List manipulation with sp1ice()
- System interaction
system() and exec()
- Backticks
- Interacting with the file system
- Dealing with users, groups and permissions
- Interacting with processes

- Security considerations

PerlClass.com for ACT Students August 2007

26

Introduction

- References and complex data structures
- Creating and dereferencing
. Complex data structures

- Anonymous data structures

PerlClass.com for ACT Students August Feb 2007

Introduction 1

1.5 Day 2 objectives
- Be able to open files and directories to read and write data, using various
techniques
- Perform tests on files and directories
- Open pipes to read or write data through another program
- Use regular expressions to handle multiline data
- Use backreferences to create complex regular expressions
- Use and understand more complex Perl functions such as grep() and map()
- Use Perl functions to call system commands
- Use Perl to interact with the file system, users, and processes

- Understand the security implications of running system commands from Perl,
and how to increase security

- Understand and use Perl references to create complex data structures and
anonymous data structures

PerlClass.com for ACT Students August 2007 27

1.6 Day 3 outline

28

- About databases

. Text based ("flat file") databases

- Relational databases

- Tables and relationships

. Structured Query Language (SQL)
- MySQL and other database servers
- Features of MySQL

- Getting MySQL

. Setting up MySQL databases

- The MySQL client

- The DBI and DBD modules

- What is DBI?

- DBI syntax

- DBI exercises

- Extended exercises

- References (optional topic)

Introduction

PerlClass.com for ACT Students August Feb 2007

Introduction 1

1.7 Day 3 objectives

- Understand what a database is and use correct terminology to describe types
of databases and parts of databases

« Understand and use flat file or textual databases with Perl

- Understand the advantages and limitations of flat file or textual databases and
relational databases

« Understand and use Structured Query Language (SQL) to manipulate data in
a relational database

- Know about MySQL and other relational databases suitable for small to
medium applications

- Use the MySQL command line client to perform SQL queries
« Understand and use Perl's DBI module to interact with databases

- Use the skills and knowledge learned in this module to create a sample appli-

cation

PerlClass.com for ACT Students August 2007 29

1 Introduction

1.8 Day 4 outline

- What is CGI? (60 minutes)

- Generating web pages with a Perl script (45 minutes)

. Practical exercises (45 minutes)

- Accepting and processing form input with the CGI module (60 minutes)
« Lunch break

- Practical examples (60 minutes)

- Security issues (45 minutes)

« Other related features and Perl modules (60+ minutes)

30 PerlClass.com for ACT Students August Feb 2007

Introduction 1

1.9 Day 4 objectives

« Understand the meaning of CGI and the HyperText Transfer Protocol (http)
- Know how to generate simple web pages using Perl

- Understand how to accept and process data from web forms using the CGI
module

- Understand security issues pertaining to CGI programming and how to avoid
security problems

- Recognise and use a number of Perl modules for purposes related to CGI pro-
gramming

PerlClass.com for ACT Students August 2007 31

Introduction

1.10 Other topics we can discuss

32

- Win32 — Perl programming in Windows

- XML - there seems to be a lot of XML data lately

- Tk — GUI toolkit

- mod_perl — Perl integration with apache

- Inline — seamless inclusion of non-Perl in Perl

- Data::Dumper — a convenient way to print out complex data structures

- DBIx::Class — a friendy OOP-style layer on top of DBI

- Storable — persistance of complex Perl object across processes, systems, etc.
- M

- M

. M

PerlClass.com for ACT Students August Feb 2007

Introduction 1

1.11 Platform and version details

This course is taught using Linux, a UNIX-like operating system. Most of what
is learned will work equally well on Microsoft Windows, MacOS or other oper-
ating systems. Your instructor will inform you throughout the course of any ar-
eas which differ.

All PerlClass.com's Perl training courses use Perl 5.8. Perl 5 is the most recent
major release of the Perl language. Perl 5 differs significantly from previous
versions of Perl, so you will need a Perl 5 interpreter to use what you learn.
However, nearly all older Perl programs should work fine under Perl 5.

PerlClass.com for ACT Students August 2007 33

Introduction

1.12 The course notes

34

These course notes contain material which will guide you through the topics
listed above, as well as appendices containing other useful information.

The following typographical conventions are used in these notes:
System commands appear in this typeface

Literal text which you should type in to the command line or editor appears as

monospaced font.

Keystrokes which you should type appear like this: ENTER. Combinations of
keys appear like this: CTRL-D

Program listings and other literal listings of what appears on the
screen appear in a monospaced font like this.

Parts of commands or other literal text which should be replaced by your own
specific values appears 1ike this

Notes and tips appear offset from the text like ths.

Advanced

Notes which are marked "Advanced" are for those who are
racing ahead or who already have some knowledge of the
topic at hand. The information contained in these notes is not
essential to your understanding of the topic, but may be of
interest to those who want to extend their knowledge.

PerlClass.com for ACT Students August Feb 2007

Introduction

T tac Mma 1“]1' f‘ “7
A4 A=

U 1iiarnnwe

tion whith can be fourﬁ‘ﬁ? your textBook or in onliffe docu-
mendatlbi ‘such as manual pages or websiteRer! in a Nutshell

Y‘Q ‘I“\I\Iﬂfﬁf(‘ tn mnr:: 1n'Fr\rm0,
LU pPUInie o U vl v uniniaa

Camel 2™ Programming Perl
Camel 3" Programming Perl
perldoc perldoc online
Cookbook 2™ Perl Cookbook
Learning 3" Learning Perl
Learning 4" Learning Perl

Most RTFM boxes will appear with a table like this. The
"src" column refers to a variety of standard Perl references.
"Chap" is the chapter which for electronic contexts like man
and perldoc would refer to the "man page" or "whole pod".

PerlClass.com for ACT Students August 2007

35

Introduction

1.13 Other materials

36

In addition to these notes, you should have a copy of the required text book for
this course: Perl in a Nutshell 2™ Ed. by Nathan Patwardhan, Ellen Siever and
Stephen Spainhour. The Nutshell will be used throughout the course, and will
be a valuable reference to take home and keep next to your computer.

PerlClass.com for ACT Students August Feb 2007

Chapter 2: What is
Perl

In this chapter...

This section describes Perl and its uses. You will learn about this his-
tory of Perl, the main areas in which it is commonly used, and a little
about the Perl community and philosophy. Lastly, you will find out
how to get Perl and what software comes as part of the Perl distribu-
tion.

2.1

38

What is Perl

Perl's name

Perl has been said to stand for "Practical Extraction and Reporting Language"
(by it's fans) or "Pathologically Eclectic Rubbish Lister" (by its detractors). In
fact, Perl 1s not an acronym; it's a shortened version of the program's original
name, "pearl”, and when you're talking about the language it's spelled with a
capital "P" and lowercase "erl", not all capitals as is sometimes seen (especially
in job advertisements posted by contract agencies). When you're talking about
the Perl interpreter, it's spelled in all lower case: perl.

Perl has been described as everything from "line noise" to "the Swiss-army
chainsaw of programming languages". The latter of these nicknames gives
some idea of how programmers see Perl - as a very powerful tool that does just
about everything.

PerlClass.com for ACT Students August Feb 2007

What is Perl 2

2.2 Typical uses of Perl

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

2.2.6

Text processing

Perl's original main use was text processing. It is exceedingly powerful in this
regard, and can be used to manipulate textual data, reports, email, news articles,
log files, or just about any kind of text, with great ease.

System administration tasks

System administration is made easy with Perl. It's particularly useful for tying
together lots of smaller scripts, working with file systems, networking, and so
on.

CGl and web programming

Since HTML is just text with built-in formatting, Perl can be used to process
and generate HTML. Perl is probably the most popular language around for
web development, and there are many tools and scripts available for free.

Database interaction

Perl's DBI module makes interacting with all kinds of databases --- from Oracle
down to comma-separated variable files --- easy and portable. Perl is increas-
ingly being used to write large database applications, especially those which
provide a database back end to a website.

Other Internet programming

Perl modules are available for just about every kind of Internet programming,
from Mail and News clients, interfaces to IRC and ICQ, right down to lower
level Socket programming.

Less typical uses of Perl

Perl is used in some unusual places as well. The Human Genome Project relies

PerlClass.com for ACT Students August 2007 39

40

What is Perl

on Perl for DNA sequencing, NASA uses Perl for satellite control, PDL (Perl
Data Language, pron. "piddle") makes number-crunching easy, and there is
even a Perl Object Environment (POE) which is used for event-driven state ma-
chines.

PerlClass.com for ACT Students August Feb 2007

What is Perl

2.3 What is Perl like?

The following (somewhat paraphrased) article, entitled "What is Perl", comes
from The Perl Journal (http://www.tpj.com/) (Used with permission.)

Perl is a general purpose programming language developed in 1987 by Larry Wall. It
has become the language of choice for WWW development, text processing, Internet
services, mail filtering, graphical programming, and every other task requiring portable
and easily-developed solutions.

Perl is interpreted. This means that as soon as you write your program, you can run it -

there's no mandatory compilation phase. The same Perl program can run on UNIX, Win-
dows, NT, MacOS, DOS, OS/2, VMS and the Amiga.

Perl is collaborative. The CPAN software archive contains free utilities written by the
Perl community, so you save time.

Perl is free. Unlike most other languages, Perl is not proprietary. The source code and
compiler are free, and will always be free.

Perl is fast. The Perl interpreter is written in C, and a decade of optimizations have re-
sulted in a fast executable.

Perl is complete. The best support for regular expressions in any language, internal sup-
port for hash tables, a built-in debugger, facilities for report generation, networking
functions, utilities for CGI scripts, database interfaces, arbitrary-precision arithmetic -
are all bundled with Perl.

Perl is secure. Perl can perform "taint checking" to prevent security breaches.You can
also run a program in a "safe" compartment to avoid te risks inherent in executing un-
known code.

Perl is open for business. Thousands of corporations rely on Perl for their information
processing needs.

PerlClass.com for ACT Students August 2007

41

What is Perl

Perl is simple to learn. Perl makes easy things easy and hard things possible. Perl han-
dles tedious tasks for you, such as memory allocation and garbage collection.

Perl is concise. Many programs that would take hundreds orthousands of lines in cther
programming languages canbe expressed in a pageful of Perl.

Perl is object oriented. Inheritance, polymorphism, and encapsulation are all provided
by Perl's object oriented capabilities.

Perl is flexible The Perl motto is "there's more than one way to do it." The language
doesn't force a particular style of programming on you. Write what comes naturally.

Perl is fun. Programming is meant to be fun, not only in the satisfaction of seeing our
well-tuned programs do our bidding, but in the literary act of creative writing that yields
those programs. With Perl, the journey is as enjoyable asthe destination.

PerlClass.com for ACT Students August Feb 2007

What is Perl 2

2.4 The Perl Philosophy

2.4.1

2.4.2

2.4.3

There's more than one way to do it

The Perl motto is "there's more than one way to do it" - often abbreviated TM-
TOWTDI. What this means is that for any problem, there will be multiple ways
to approach it using Perl. Some will be quicker, more elegant, or more readable
than others, but that doesn't make them wrong.

A correct Perl program...

"... 1s one that does the job before your boss fires you." That's in the preface to
the Camel book, which is highly recommended reading.

Of course, some Perl programs are more correct than others, but while elegance
is a fine thing to strive for, most Perl people realize that sometimes you just
have to write a quick and dirty hack that'll keep things running for the mean
time. If you get the time to make it beautiful later, so much the better.

Three virtues of a programmer

The Camel book contains the following entries in its glossary:
2.4.3.1 Laziness

The quality that makes you go to great effort to reduce overall energy expendi-
ture. It makes you write labor-saving programs that other people will find use-
ful, and document what you wrote so you don't have to answer so many ques-
tions about it. Hence, the first great virtue of a programmer.

2.4.3.2 Impatience

The anger you feel when the computer is being lazy. This makes you write pro-
grams that don't just react to your needs, but actually anticipate them. Or at
least pretend to. Hence, the second great virtue of a programmer.

PerlClass.com for ACT Students August 2007 43

24.4

2.4.5

44

What is Perl

2.4.3.3 Hubris

Excessive pride, the sort of thing Zeus zaps you for. Also the quality that makes
you write (and maintain) programs that other people won't want to say bad
things about. Hence, the third great virtue of a programmer.

Three more virtues

In his "State of the Onion" keynote speech at The Perl Conference 2.0 in 1998,
Larry Wall described another three virtues, which are the virtues of a communi-
ty of programmers. These are:

- Diligence
. Patience
- Humility

You may notice that these are the opposites of the first three virtues. However,
they are equally necessary for Perl programmers who wish to work together,
whether on a software project for their company or on an Open Source project
with many contributors around the world.

Share and enjoy!

Perl is Open Source software, and most of the modules and extensions for Perl
are also released under Open Source licenses of various kinds (Perl itself is re-
leased under dual licenses, the GNU General Public License and the Artistic Li-
cense, copies of which are distributed with the software).

The culture of Perl is fairly open and sharing, and thousands of volunteers
worldwide have contributed to the current wealth of software and knowledge
available to us. If you have time, you should try and give back some of what
you've received from the Perl community. Contribute a module to CPAN, help
a new Perl programmer to debug her programs, or write about Perl and how it's
helped you. Even buying books written by the Perl gurus (like many of the
O'Reilly Perl books) helps give them the financial means to keep supporting
Perl.

PerlClass.com for ACT Students August Feb 2007

What is Perl 2

2.5 Parts of Perl

2.5.1

2.5.2

2.5.3

The Perl interpreter

The main part of Perl is the interpreter. The interpreter is available for UNIX,
Windows, and many other platforms.

The current version of Perl 1s 5.8.8, which is available from the Perl website
(http://www.perl.com/) or any of a number of mirror sites. Work has been
moving slowly on Perl 6 and it is still early in the test stage. You can check
http://www.perl.org/ for current version status.

A Windows version is available from ActiveState (http://www.activestate.-

com/) or as part of Cygwin tool kit (http://www.cygwin.com/).

Manuals

Along with the interpreter come the manuals for Perl. These are accessed via
the perldoc command or, on UNIX systems, also via the man command. More
than 30 manual pages come with the current version of perl. These can be
found by typing man perl (or perldoc perl on non-UNIX systems). The Perl
FAQs (Frequently Asked Questions files) are available in perldoc format, and
can be accessed by typing perldoc perlfaq

Watch while this is demonstrated; you'll get a chance to try it soon.

Perl Modules

Perl also comes with a collection of modules. These are Perl programs which
carry out certain common tasks, and can be included as common libraries in
any Perl script. Less commonly used modules aren't included with the distribu-
tion, but can be downloaded from (CPAN (http://www.perl.com/CPAN)) and
installed separately.

PerlClass.com for ACT Students August 2007 45

http://www.perl.org/
http://www.redhat.com/service/custom/cygwin/
http://www.activestate.com/
http://www.activestate.com/

2 What is Perl

2.6 CPAN

CPAN is an amazing thing. It provides a comprehensive library of IT technolo-
gy that can be installed quickly and used in your Perl projects.

CPAN was inspired by the Comprehensive TeX Archive Network (CTAN), but
it has gone far further in organizing, indexing, mirroring, and sharing than
CTAN or any other collaborative language effort. There are thousands of mod-
ules covering numerous areas.

CPAN

Home - Authors - Recent - Mews - Mirrors - FAQ - Feedback

in IAII vl CPAN Search

Archiving Compression Conversion File Mame Systems Locking Option Parameter Config Processing

Bundles (and SDKs Graphics Perl6

Commercial Software Interfaces Internationalization Locale Pragmas

Control Flow Utilities Language Extensions Security

Data and Data Types Language Interfaces Server Dasmon Utilities
Database Interfaces Mail and Usenet MNews String Language Text Processing
Development Suppart Miscellaneous User Interfaces

Dlocumentation Metworking Devices IPC World Wide Web

File Handle Input/Cutput Operating System Interfaces

hosted by perl.org, hardware provided by
(=] .

Shopping

Hlustration 1: http://search.cpan.org main page shows the main categories
used by CPAN.

46 PerlClass.com for ACT Students August Feb 2007

What is Perl

2.7 Slashdot

Slashdot is based on an open source Perl project known as "slash". Lots of tech-

nical news and discussion happens on slashdot:

chicks.net | Preferences | Subscribe | Firehose | Joumal | Tags | Bookmarks | Password

‘¥ Opinion Center

Intal
Main
Apple
AskSlashdot
Backslash
Books
Dievelopers
Games
Hardware
Interviews
i
Linu
Palitics

Science

YRO
EAQ
Bugs

Qld Staries
Old Polls
Topics

Hall of Fame
Bookmarks
Submit Story

¥ About

Supporters

(]
=1
=3
o

Johs
FriceGrabher

fnerial Nffore

Read More... | science.slashdot.org

Science: World's Largest Tropical Glacier Vanishing

Posted by Zonk on 22:58 18 February 2007
from the no-rest-for-the-chilhy cept.

Socguy wrote with a link to a CBC article about the rapidly disappearing Peruvian glacier

knowen a3 the Quelccaya ice cap. The world's largest tropical glacier was a hot topic this =
past Thursday at the meeting of the American Association for the Advancement of j)?
Science. Glaciologist Lonnie Thormpsan, and a team of Ohio state scientists, produced the

stunning news that Quelccaya and sirilar formations are melting at a rate of some 60

metras per year. While polar ice caps have commandad attention in the discussion of global warming
to date, these tropical caps are crucial to the well-being of ecosysterns relying on an influx of mountain
stream fresh water.

b stience (tagging beta)

1 of 28 comments

Read More... | it slashdot. org

IT: Network Computing Editor Wins R8A Hacking Contest

Posted by Zonk on 20:28 18 February 2007
from the hack-on-hack-off dept.

richkarpi writes
"Metwork Computing's security editor won the recent RSA nteractive Testing Challende. He has up a

blow-by-blow description of the events at their site: The most important factar in the contest besides basic
web exploitation skills (cross site scripting (X55), SQL injection, cross site request forgeries (CSRF), ete)

was speed .. | squeaked out a win in the tie-breaking challenge the first day with only a few seconds to

spare as my opponent was right behind in the hunt to cormbine three injectable fields into one long javascript function.™

b security ffagging bels)

3 of 42 comments

Logout | 'Why Subscribe?

Opinion Center: Intel

- Ads by Google -

1U 14" Server for $475

Thermal Efficient 1U for AMD, Intel Linux: Servers,
Storage, Support

s iransyste ms.com

Linux Expert Support
All Linux Flavors Responsive, 2477 Help
On-Demand

v, allegroconsultants. com

Wasahi Certified BSD

Embedded software for devices IPWS, RAID,
Metwarking, WiFi

wasahisystems. cam

Perl & Desigh Team Minutes for

07 February 2007

YAPC:Asia 2007 Renistration
Opens

Perl Critic on Perlcast

SanDiego.pm February Meeting

MPYY 2007 Online registration
opens

European Hackathon Mews
Perl & Design Team Minutes for
3 January 2007

Perl & Desigh Team Minutes for
24 January 2007

Your Rights Online: AOL Now Supports OpenlD

Posted by Zonk on 17:33 18 February 2007
from the making-progress dept

Murgled writes

"On Sunday John Panzer announced that ACL now has experimental OpenlD server support. This means

that every AOL user now has an OpenlD identifier. OpenlD is & decentralized cross-site authentication

O\

Copenhagen Perl Mongers Tech
Ieeting

Grants: Call for Proposals

ETN 2

Wirtualization with FreeBED Jails

Fine-Tuning Kubuntu

Hllustration 2: A recent sampling of http://slashdot.org - a Perl-based techie site.

PerlClass.com for ACT Students August 2007

47

What is Perl

2.8 Chapter summary

48

« Common uses of Perl include

- text processing

. system administration

- CGI and web programming
. other Internet programming

Perl is a general purpose programming language, distributed for free via the
Perl website (http://www.perl.com/) and mirror sites

Perl includes excellent support for regular expressions, object oriented pro-
gramming, and other features

Perl allows a great degree of programmer flexibility - "There's more than one
way to do it".

The three virtues of a programmer are Laziness, Impatience and Hubris. Perl
will help you foster these virtues

The three virtues of a programmer in a group environment are Diligence, Pa-
tience, and Humility.

Perl is a collaborative language - everyone is free to contribute to the Perl
software and the Perl community

Parts of Perl include:
- the Perl interpreter
. documentation in several formats

- library modules

PerlClass.com for ACT Students August Feb 2007

Chapter 3: Creating a
a Perl program

In this chapter...

In this chapter we will be creating a very simple "Hello, world" pro-
gram in Perl and exploring some of the basic syntax of the Perl pro-
gramming language.

3 Creating a a Perl program

3.1 Logging into your account

Your username and password will have been given to you with these course
notes.

Table 3-1. Details required to connect to the PerlClass.com training server

Hostname or IP address perlclass.fini.net which probably
has the IP of 192.168. .

Your username stu_____

Your password stu__

1. Open putty

2. Put in the hostname or IP in the host | |
=g 5 g . Basic options for pour PuTTY zession
name bOX Logging ~ Specify your connection by host name of IP address
= T?_[_n;lgj'lma[d Host Mame [or IP address] Pt
- EBel Ikalman.et.tudelft.n\ |22
1 1 - Features Protocol:
3. Before clicking open there are a few |_ ‘e i @Eeh (G
. . - AppEarance .
SCttngS that are helpful tO ad]ust. ----Bzﬁaviour —Load. save or delete a stared session
. Tranglation Saved Sessions
- Selection K.alman
4. Under “Translation” is a drop down |4 comem Defaut Sating: <] Lo |
. -~ Proxy Save
for “Character set translation”. Tt Lo |
- Rlagin Delete |
The default for this is one of the | =*", =
. E----Tunnels ose window on exit:
1508559 VaﬂantS, but Red Hat - Bugs ElAlv;ay‘: (o N;.ver & Drly on clean exit
derived Linuxes have been using
About | Help | DOpen I Lancel |
UTF8 for many years now.

Hllustration 3: putty's settings window

5. Under “Appearance” you can change the font size to your liking.

6. To avoid retyping your username every time you login, under “Connec-
tion” you can put in an “Auto-login username” and it will take you
directly to the password prompt.

7. If you're used to X-Windows cut and paste, you will probably be more
comfortable with putty following the same mouse conventions. Un-
der “Selection” choose xterm and middle mouse will paste as it

50 PerlClass.com for ACT Students August Feb 2007

Creating a a Perl program 3

should.

8. Now return to the “Session” screen, put a helpful description under
“Saved Sessions” such as “perlclass” or “Linux server for class”, and
click “Save”.

9. From now on you can double click on the saved session and it will take
you directly in. So double click on the saved session or click
CGOpenﬁ’.

10. The first time you connect it will ask you to confirm the host key. Its ok
to accept this for the future

11. Put in the username and password when prompted.

You will find yourself at a UNIX shell prompt. Hopefully (if you met the pre-
requisites of this course) you will now be able to see that your account has a
subdirectory called exercises/ which are the example scripts and exercises giv-
en in these course notes. If you're not quite up to speed with UNIX, there's a
cheat-sheet in UNIX: Chapter 31 on page 469 of these notes.

PerlClass.com for ACT Students August 2007 51

3 Creating a a Perl program

Advanced

putty is deceptively powerful. There are many customiza-
toins that you can explore further through putty's documen-
tation.

In particular, look at the key-based authentication. Whether
for automating tasks or typing fewer passwords this is a
powerful facility that meshes well with the ubiquitous ssh in-
frastructure.

The official site URL
(http://www.chiark.greenend.org.uk/~sgtatham/putty/) is aw-

ful to type, but there is a mirror (http://www.putty.nl/), and

even easier, you can google for putty and the org.uk URL is
the first one that comes up.

When you download putty.exe its handy to put it in C:\Win-
dows so you can run it from command windows and the run
dialog.

3.2 Using peridoc

On the command line, type perldoc perl. You will find yourself in the Perl
documentation pages. Here's how to get around inside the documentation:

Table 3-2. Getting around in perldoc

Action Keystroke
Page down SPACE
Page up b

Quit q

$ perldoc perl

52 PerlClass.com for ACT Students August Feb 2007

http://www.putty.nl/
http://www.chiark.greenend.org.uk/~sgtatham/putty/

Creating a a Perl program 3

PERL (1) User Contributed Perl Documentation PERL (1)

NAME
perl - Practical Extraction and Report Language

SYNOPSIS
perl [-=sTuU] [-hv] [-V[:configvar]]
[~ew] [-d[:debugger] 1 [=-D[number/list]]
[-pna] [-Fpattern] [-1l[octal]] [-0[octal]]
[-Idir] [-m[-]module] [=-M[-]'module...’]
[-P 1 [-S]1 [-x[dir]]
[-i[extension]] [-e 'command’]
[=- 1 [program-file] [argument]...

If you're new to Perl, you should start with perlintro, which is a
general intro for beginners and provides some background to help

you navigate the rest of Perl’s extensive documentation.

For ease of access, the Perl manual has been split up into several

sections.
Overview
perl Perl overview (this section)
perlintro Perl introduction for beginners
perltoc Perl documentation table of contents
Tutorials
perlreftut Perl references short introduction
perldsc Perl data structures intro
perllol Perl data structures: arrays of arrays
perlrequick Perl regular expressions quick start
perlretut Perl regular expressions tutorial
perlboot Perl 00 tutorial for beginners
perltoot Perl 00 tutorial, part 1
perltooc Perl 00 tutorial, part 2
perlbot Perl 00 tricks and examples

PerlClass.com for ACT Students August 2007 53

54

perlstyle

perlcheat
perltrap
perldebtut

perlfaq
perlfaql
perlfaq2
perlfaq3
perlfaq4
perlfaq5
perlfaqb
perlfaq7
perlfaq8
perlfaq9

Reference Manual

perlsyn
perldata
perlop
perlsub
perlfunc
perlopentut
perlpacktut
perlpod
perlpodspec

perlrun
perldiag
perllexwarn
perldebug
perlvar
perlre

perlreref
perlref
perlform

Creating a a Perl program

Perl style guide

Perl cheat sheet
Perl traps for the unwary
Perl debugging tutorial

Perl frequently asked questions
General Questions About Perl
Obtaining and Learning about Perl
Programming Tools

Data Manipulation

Files and Formats

Regexes

Perl Language Issues

System Interaction

Networking

Perl syntax

Perl data structures

Perl operators and precedence

Perl subroutines

Perl built-in functions

Perl open() tutorial

Perl pack() and unpack() tutorial

Perl plain old documentation

Perl plain old documentation format
specification

Perl execution and options

Perl diagnostic messages

Perl warnings and their control

Perl debugging

Perl predefined variables

Perl regular expressions, the rest of the
story

Perl regular expressions quick reference
Perl references, the rest of the story
Perl formats

PerlClass.com for ACT Students August Feb 2007

Creating a a Perl program

perlobj
perltie
perldbmfilter

perlipc
perlfork

perlnumber

perlthrtut
perlothrtut

perlport
perllocale
perluniintro
perlunicode
perlebcdic
perlsec
perlmod
perlmodlib
perlmodstyle
perlmodinstall
perlnewmod

perlutil

perlcompile

perlfilter

perlembed

Perl objects
Perl objects hidden behind simple variables
Perl DBM filters

Perl interprocess communication
Perl fork() information
Perl number semantics

Perl threads tutorial
0ld Perl threads tutorial

Perl portability guide

Perl locale support

Perl Unicode introduction

Perl Unicode support

Considerations for running Perl on EBCDIC
platforms

Perl security

Perl modules:
Perl modules:
Perl modules:
style

Perl modules:
Perl modules:
distribution

how they work
how to write and use
how to write modules with

how to install from CPAN
preparing a new module for
utilities packaged with the Perl
distribution

Perl compiler suite intro

Perl source filters

Internals and C Language Interface

Perl ways to embed perl in your C or C++
application

PerlClass.com for ACT Students August 2007 55

56

perldebguts
perlxstut
perlxs
perlclib
perlguts
perlcall
perlapi
perlintern
perliol

perlapio

perlhack

Miscellaneous

perlbook
perltodo

perldoc

perlhist
perldelta
perl584delta
perl583delta
perl582delta
perl581ldelta
perl58delta
perl573delta
perl572delta
perl571delta
perl570delta
perl56ldelta
perl56delta
perl5005delta
perl5004delta

Creating a a Perl program

Perl debugging guts and tips

Perl XS tutorial

Perl XS application programming interface
Internal replacements for standard C
library functions

Perl internal functions for those doing
extensions

Perl calling conventions from C

Perl API listing (autogenerated)

Perl internal functions (autogenerated)

C API for Perl'’s implementation of IO in
Layers

Perl internal IO abstraction interface

Perl hackers guide

Perl book information
Perl things to do

Look up Perl documentation in Pod format

Perl history records
Perl changes since previous version
Perl changes in version 5.
Perl changes in version
Perl changes in version
Perl changes in version
Perl changes in version
Perl changes in version
Perl changes in version
Perl changes in version
Perl changes in version
Perl changes in version
Perl changes in version
Perl changes in version
Perl changes in version

OO N NN 00 00 00 0o 0o
P O R, N WO R N WA

.005
.004

Ul O U1 U1 O U1 U1 U1 U1 U1 U1 D

PerlClass.com for ACT Students August Feb 2007

Creating a a Perl program

perlartistic Perl Artistic License
perlgpl GNU General Public License

Language-Specific

perlcn Perl for Simplified Chinese (in EUC-CN)
perljp Perl for Japanese (in EUC-JP)

perlko Perl for Korean (in EUC-KR)

perltw Perl for Traditional Chinese (in Big5)

Platform-Specific

perlaix Perl notes for AIX

perlamiga Perl notes for Amiga0S
perlapollo Perl notes for Apollo Domain0S
perlbeos Perl notes for BeOS

perlbs2000 Perl notes for POSIX-BC BS2000
perlce Perl notes for WinCE
perlcygwin Perl notes for Cygwin

perldgux Perl notes for DG/UX

perldos Perl notes for DOS

perlepoc Perl notes for EPOC
perlfreebsd Perl notes for FreeBSD
perlhpux Perl notes for HP-UX

perlhurd Perl notes for Hurd

perlirix Perl notes for Irix
perlmachten Perl notes for Power MachTen
perlmacos Perl notes for Mac 0S (Classic)
perlmacosx Perl notes for Mac 0S X
perlmint Perl notes for MiNT

perlmpeix Perl notes for MPE/iX
perlnetware Perl notes for NetWare

perlos2 Perl notes for 0S/2

perlos390 Perl notes for 0S/390
perlos400 Perl notes for 0S/400
perlplan9 Perl notes for Plan 9

perlgnx Perl notes for QNX

perlsolaris Perl notes for Solaris
perltru64 Perl notes for Tru64

PerlClass.com for ACT Students August 2007

Creating a a Perl program

perluts Perl notes for UTS
perlvmesa Perl notes for VM/ESA
perlvms Perl notes for VMS

perlvos Perl notes for Stratus VOS
perlwin32 Perl notes for Windows

By default, the manpages listed above are installed in the
/usr/local/man/ directory.

Extensive additional documentation for Perl modules is available.
The default configuration for perl will place this additional docu-
mentation in the /fusr/local/lib/perl5/man directory (or else in the
man subdirectory of the Perl library directory). Some of this addi-
tional documentation is distributed standard with Perl, but you’ll
also find documentation for third-party modules there.

You should be able to view Perl’s documentation with your man(1l) pro-
gram by including the proper directories in the appropriate start-up
files, or in the MANPATH environment variable. To find out where the
configuration has installed the manpages, type:

perl -V:man.dir

If the directories have a common stem, such as /usr/local/man/manl
and /usr/local/man/man3, you need only to add that stem
(/usr/local/man) to your man(1l) configuration files or your MANPATH
environment variable. If they do not share a stem, you’ll have
to add both stems.

If that doesn’t work for some reason, you can still use the supplied
perldoc script to view module information. You might also look into
getting a replacement man program.

If something strange has gone wrong with your program and you’re not
sure where you should look for help, try the -w switch first. It
will often point out exactly where the trouble is.

DESCRIPTION

58

Perl is a language optimized for scanning arbitrary text files, ex-
tracting information from those text files, and printing reports
based on that information. 1It’'s also a good language for many system

PerlClass.com for ACT Students August Feb 2007

Creating a a Perl program 3

management tasks. The language is intended to be practical (easy to
use, efficient, complete) rather than beautiful (tiny, elegant, mini-
mal).

Perl combines (in the author’s opinion, anyway) some of the best fea-
tures of C, sed, awk, and sh, so people familiar with those languages
should have little difficulty with it. (Language historians will
also note some vestiges of csh, Pascal, and even BASIC-PLUS.) Ex-
pression syntax corresponds closely to C expression syntax. Unlike
most UNIX utilities, Perl does not arbitrarily limit the size of your
data—if you’ve got the memory, Perl can slurp in your whole file as a
single string. Recursion is of unlimited depth. And the tables used
by hashes (sometimes called "associative arrays") grow as necessary
to prevent degraded performance. Perl can use sophisticated pattern
matching techniques to scan large amounts of data quickly. Although
optimized for scanning text, Perl can also deal with binary data, and
can make dbm files look like hashes. Setuid Perl scripts are safer
than C programs through a dataflow tracing mechanism that prevents
many stupid security holes.

If you have a problem that would ordinarily use sed or awk or sh, but
it exceeds their capabilities or must run a little faster, and you
don’'t want to write the silly thing in C, then Perl may be for you.
There are also translators to turn your sed and awk scripts into Perl
scripts.

But wait, there’s more...

Begun in 1993 (see perlhist), Perl version 5 is nearly a complete
rewrite that provides the following additional benefits:

modularity and reusability using innumerable modules
Described in perlmod, perlmodlib, and perlmodinstall.
embeddable and extensible

Described in perlembed, perlxstut, perlxs, perlcall, perlguts,
and xsubpp.

roll-your-own magic variables (including multiple simultaneous

PerlClass.com for ACT Students August 2007 59

60

Creating a a Perl program

DBM implementations)

Described in perltie and AnyDBM File.

subroutines can now be overridden, autoloaded, and prototyped
Described in perlsub.

arbitrarily nested data structures and anonymous functions
Described in perlreftut, perlref, perldsc, and perllol.
object-oriented programming

Described in perlobj, perlboot, perltoot, perltooc, and perlbot.
support for light-weight processes (threads)

Described in perlthrtut and threads.

support for Unicode, internationalization, and localization
Described in perluniintro, perllocale and Locale::Maketext.
lexical scoping

Described in perlsub.

regular expression enhancements

Described in perlre, with additional examples in perlop.

enhanced debugger and interactive Perl environment, with inte-
grated editor support

Described in perldebtut, perldebug and perldebguts.
POSIX 1003.1 compliant library

Described in POSIX.

PerlClass.com for ACT Students August Feb 2007

Creating a a Perl program 3

Okay, that'’s definitely enough hype.

AVAILABILITY
Perl is available for most operating systems, including virtually all
UNIX-1like platforms. See "Supported Platforms" in perlport for a
listing.

ENVIRONMENT
See perlrun.

AUTHOR
Larry Wall <larry@wall.org>, with the help of oodles of other folks.

If your Perl success stories and testimonials may be of help to oth-
ers who wish to advocate the use of Perl in their applications, or if
you wish to simply express your gratitude to Larry and the Perl de-
velopers, please write to perl-thanks@perl.org .

FILES
"@INC" locations of perl libraries
SEE ALSO
azp awk to perl translator
s2p sed to perl translator
http://www.perl.com/ the Perl Home Page
http://www.cpan.org/ the Comprehensive Perl Archive
http://www.perl.org/ Perl Mongers (Perl user groups)
DIAGNOSTICS
The "use warnings" pragma (and the -w switch) produces some lovely
diagnostics.

See perldiag for explanations of all Perl’s diagnostics. The "use
diagnostics" pragma automatically turns Perl’s normally terse warn-
ings and errors into these longer forms.

Compilation errors will tell you the line number of the error, with
an indication of the next token or token type that was to be exam-
ined. (In a script passed to Perl via -e switches, each -e is counted

PerlClass.com for ACT Students August 2007 61

BUGS

NOTES

62

Creating a a Perl program

as one line.)

Setuid scripts have additional constraints that can produce error
messages such as "Insecure dependency". See perlsec.

Did we mention that you should definitely consider using the -w
switch?

The -w switch is not mandatory.

Perl is at the mercy of your machine’s definitions of various opera-
tions such as type casting, atof(), and floating-point output with

sprintf().

If your stdio requires a seek or eof between reads and writes on a
particular stream, so does Perl. (This doesn’t apply to sysread()

and syswrite().)

While none of the built-in data types have any arbitrary size limits
(apart from memory size), there are still a few arbitrary limits: a
given variable name may not be longer than 251 characters. Line num-
bers displayed by diagnostics are internally stored as short inte-
gers, so they are limited to a maximum of 65535 (higher numbers usu-
ally being affected by wraparound).

You may mail your bug reports (be sure to include full configuration
information as output by the myconfig program in the perl source
tree, or by "perl -V") to perlbug@perl.org . If you've succeeded in
compiling perl, the perlbug script in the utils/ subdirectory can be
used to help mail in a bug report.

Perl actually stands for Pathologically Eclectic Rubbish Lister, but
don’t tell anyone I said that.
The Perl motto is "There’s more than one way to do it." Divining how

many more is left as an exercise to the reader.

The three principal virtues of a programmer are Laziness, Impatience,
and Hubris. See the Camel Book for why.

PerlClass.com for ACT Students August Feb 2007

Creating a a Perl program

perl v5.8.5 2005-12-21

As you can see, there is a lot of documentation included with Perl.

PerlClass.com for ACT Students August 2007

PERL(1)

63

3.3

64

Creating a a Perl program

Using the editor
A Perl script 1s just a normal text file, which means that you can edit it using a
normal text editor.

The system you are using has several editors available for your use, including
vi, pico, or its work-alike nano and others. Those who are not already familiar
with vi should probably use pico, as it has a simpler interface. If you're an
emacs user, sorry, feel free to use it, but the instructor isn't inclined to support

emacs.

To edit a file using pico, type:

$ pico filename
(Note that the dollar sign is your UNIX/Linux command line prompt - you
don't have to type it.)

To edit a file using vi, type:

$ vi filename

For other editors, just type the name of the editor followed by the name of the
file you wish to edit.

A summary of editor commands appears in UNIX in Chapter 32 starting on
page 471 in the back of these course notes, just in case you need them.

Incidentally, Chapter 33 starting on page 477 contains a guide to pronouncing
ASCII characters, especially punctuation. This will help you translate perl into
spoken language, for ease of communication with other programmers.

PerlClass.com for ACT Students August Feb 2007

Creating a a Perl program 3

3.4 Our first Perl program

We're about to create our first, simple Perl script: a "hello world" program.
There are a couple of things you should know in advance:

- Perl programs (or scripts --- the words are interchangeable) consist of a series
of statements

- When you run the program, each statement is executed in turn, from the top
of your script to the bottom. (There are two special cases where this doesn't

occur, one of which --- subroutine declarations --- we'll be looking at later to-
day)

. Each statement ends in a semi-colon
. Statements can flow over several lines

- Whitespace (spaces, tabs and newlines) are ignored most places in a Perl
script.

Now, just for practice, open a file called he11o.p1 in your text editor. Type in the
following one-line Perl program:

print "Hello, world!\n";

This one-line program calls the print function with a single parameter, the
string literal "Hello, world!" followed by a newline character.

Save it and exit.

PerlClass.com for ACT Students August 2007 65

3 Creating a a Perl program

3.5 Running a Perl program from the command
line

We can run the program from the command line by typing in:

perl hello.pl

You should see this output:

Hello, world!

This program should, of course, be entirely self-explanatory. The only thing you
really need to note is the \n ("backslash N") which denotes a new line.

66 PerlClass.com for ACT Students August Feb 2007

Creating a a Perl program 3

3.6 The "shebang" line

So what if we want to run our program from the command line without having
to type in the name of the Perl interpreter first?

You can make a file executable by typing:

$ chmod +x hello.pl

at the command line. (For more information about the chmod command, type

man chmod).

In order to let the shell know what to do with our program when we try to run it
with ./hello.pl from the command line, we put the following line at the top of

our program:

#!/usr/bin/perl

That's what we call a "shebang" line (because the # is a "hash" sign, and the ! is
referred to as a "bang", hence "hashbang" or "shebang"). It tells the system what
to use to interpret our script. Of course, if the Perl interpreter were somewhere
else on our system, we'd have to change the shebang line to reflect that.

PerlClass.com for ACT Students August 2007 67

3 Creating a a Perl program

3.7 Comments

Incidentally, comments in Perl start with a hash sign (#), either on a line on their
own or after a statement. Anything after a hash is a comment.

This is a hello world program
print "Hello, world!\n"; # print the message

68 PerlClass.com for ACT Students August Feb 2007

Creating a a Perl program 3

3.8 Command line options

Perl has a number of command line options, which you can specify on the com-
mand line by typing perl opt ions hello.pl or which you can include in the
shebang line. Let's say you want to use the -w command line option to turn on
warnings:

#!/usr/bin/perl -w

(Incidentally, it's always a good idea to turn on warnings while you're develop-
ing something.)

Advanced

Setting the special variable s~w to a true value will locally
disable warnings (i.e. in the current block).

PerlClass.com for ACT Students August 2007 69

3 Creating a a Perl program

RTFEM !

3 35-38
6 330-337 "Switches"
19 486-505
perlrun
2 26-27

3.9 Chapter summary

Here's what you know about Perl's operation and syntax so far:

Perl programs typically start with a "shebang" line
- statements (generally) end in semicolons

- statements may span multiple lines; it's only the semicolon that ends a state-
ment

- comments are indicated by a hash (#) sign. Anything after a hash sign on a
line 1s a comment.

- \nis used to indicate a new line
- whitespace is ignored almost everywhere
- command line arguments to Perl can be indicated on the shebang line

« the -w command line argument turns on warnings

70 PerlClass.com for ACT Students August Feb 2007

Chapter 4: Perl vari-
ables

In this chapter...

In this section we will explore Perl's three main variable types ---
scalars, arrays, and hashes --- and learn to assign values to them, re-
trieve the values stored in them, and manipulate them in certain
ways.

4 Perl variables

4.1 What is a variable?

A variable is a place where we can store data. Think of it like a pigeonhole with
a name on it indicating what data is stored in it.

The Perl language is very much like human languages in many ways, so you
can think of variables as being the "nouns" of Perl. For instance, you might
have a variable called "total" or "employee".

72 PerlClass.com for ACT Students August Feb 2007

Perl variables 4

4.2 Variable names

Variable names in Perl may contain alphanumeric characters in upper or lower
case, and underscores. A variable name may not start with a number, though -
that means something special, which we'll encounter later. Likewise, variables
that start with anything non-alphanumeric are also special, and we'll discuss
that later, too.

It's standard Perl style to name variables in lower case, with underscores sepa-
rating words in the name. For instance, employee_number. Upper case is usually
used for constants, for instance L1caT_speED or 1. Following these conventions
will help make your Perl more maintainable and more easily understood by oth-
ers.

Lastly, variable names all start with a punctuation sign depending on what sort
of variable they are:

Table 4-1. Variable punctuation

Variable type Starts with Pronounced
Scalar § dollar

Array ¢ at

Hash 5 Percent

(Don't worry if those variable type names don't mean anything to you. We're
about to cover it.)

PerlClass.com for ACT Students August 2007 73

4.3

4.3.1

4.3.2

74

Perl variables

Variable scoping and the strict pragma

Many programming languages require you to "pre-declare" variables -- that is,
say that you're going to use them before you use them. Variables can either be
declared as global (that is, they can be used anywhere in the program) or local

(they can only be used in the same part of the program in which they were de-
clared).

In Perl, it is not necessary to declare your variables before you begin. You can
summon a variable into existence simply by using it, and it will be globally
available to any routine in your program. If you're used to programming in C or
any of a number of other languages, this may seem odd and even dangerous to
you. This is, in fact, the case.

Arguments in favour of stricthess

- avoids accidental creation of unwanted variables when you make a typing er-
ror

- avoids scoping problems, for instance when a subroutine uses a variable with
the same name as a global variable

- allows for warnings if values are assigned to variables and never used

Arguments against strictness

- takes a while to get used to, and may slow down development until it be-
comes instinctual

- enforces a nasty, fascist style of coding which isn't nearly as much fun

Sometimes a little bit of fascism is a good thing, like when you want the trains
to run on time. Because of this, Perl lets you turn strictness on if you want it,

using something called the strict pragma. A pragma, in Perl-speak, is a set of
rules for how your code is to be dealt with.

PerlClass.com for ACT Students August Feb 2007

Perl variables

Src
Nutshell 2™
Camel 2™
Camel 3"
perldoc
Cookbook 2™
Learning 3"

Learning 4"

RTFEM !

Chap Pgs
8 335-336
7 500
4 137-138
strict
B 289

PerlClass.com for ACT Students August 2007

75

Perl variables

4.4 Using the strict pragma

76

In the interests of bug-free code and teaching better Perl style, we're going to
use the strict pragma throughout this training course. Here's how it's invoked:

#!/usr/bin/perl -w

use strict;

That typically goes at the top of your program, just under your shebang line and
introductory comments.

Once we use the strict pragma, we have to explicitly declare new variables using
my. You'll see this in use below, and it will be discussed again later when we talk
about blocks and subroutines.

Try running the program exercises/perlintro/strictfail.pl and see what hap-
pens. What needs to be done to fix it? Try it and see if it works. By the way, get
used to this error message - it's one of the most common Perl programming mis-
takes, though it's easily fixed.

PerlClass.com for ACT Students August Feb 2007

Perl variables

RTFEM !

4 74
5 117
3 189
4 130-136
-f my
perlsub
10 376-376
4 67

4.5 Scalars

The simplest form of variable in Perl is the scalar. A scalar is a single item of
data such as:

« Arthur

Just Another Perl Hacker
- 42

0.000001

3.27el7

Here's how we assign values to scalar variables:

my $name = "Arthur";

my $whoami = 'Just Another Perl Hacker';

my $meaning of life = 42;

my $number less than 1 = 0.000001;

my $very large number = 3.27el7; # 3.27 by 10 to the power of 17

PerlClass.com for ACT Students August 2007

77

Perl variables

Advanced

There are other ways to assign things apart from the = opera-
tor, too. They're covered on pages 92-93 of the Camel.

As you can see, a scalar can be text of any length, and numbers of any precision
(machine dependent, of course). Perl magically converts between them when it
needs to. For instance, it's quite legal to say:

adding an integer to a floating point number
my $sum = $meaning of life + $number less than 1;

here we're putting the int in the middle of a string we
want to print

print "$name says, 'The meaning of life is $meaning of life.'\n";

This may seem extraordinarily alien to those used to strictly typed languages,
but believe it or not, the ability to transparently convert between variable types

is one of the great strengths of Perl. Some people say that it's also one of the
great weaknesses.

Advanced

You can explicitly cast scalars to various specific data types.
Look up int () on page 180 of the camel, for instance.

PerlClass.com for ACT Students August Feb 2007

Perl variables 4

4.6 Double and single quotes

RTFEM !

4 45-47 String interpolation

52 Input Operators
41 Pick your own quotes

2 60-65 String literals...

perldata Scalar values
perlop Quote and Quote-like operators
1 3
2 23-24

While we're here, let's look at the assignments above. You'll see that some have
double quotes, some have single quotes, and some have no quotes at all.

In Perl, quotes are required to distinguish strings from the language's reserved
words or other expressions. Either type of quote can be used, but there is one
important difference: double quotes can include other variable names inside
them, and those variables will then be interpolated - as in the last example
above - while single quotes do not interpolate.

single quotes don't interpolate...
my $price = '$9.95"';

double quotes interpolate...
my $invoice item = "24 widgets at $price each\n";

PerlClass.com for ACT Students August 2007 79

80

Perl variables

print $invoice item;
The above example is available in your directory as exercises/perlintro/in-
terpolate.pl SO you can experiment with different kinds of quotes.

Note that special characters such as the \n newline character are only available
within double quotes. Single quotes will fail to expand these special characters
just as they fail to expand variable names.

When using either type of quotes, you must have a matching pair of opening
and closing quotes. If you want to include a quote mark in the actual quoted
text, you can escape it by preceding it with a backslash:

print "He said, \"Hello!\"\n";

You can also use a backslash to escape other special characters such as dollar
signs within double quotes:

print "The price is \$300\n";

To include a literal backslash in a double-quoted string, use two backslashes: \\

PerlClass.com for ACT Students August Feb 2007

Perl variables 4

4.7 Exercises

1. Write a script which sets some variables:
a. your name
b. your street number
c. your favorite colour

2. Print out the values of these variables using double quotes for variable in-
terpolation

3. Change the quotes to single quotes. What happens?

4. Write a script which prints out c: \wiNpows\sysTEM\ twice -- once using dou-
ble quotes, once using single quotes. How do you have to escape the back-
slashes in each case?

You'll find answers to the above in exercises/perlintro/answers/scalars.pl.

PerlClass.com for ACT Students August 2007 81

4 Perl variables

4.8 Answers

#!/usr/bin/perl -w

use strict;

my $name = "Kirrily Robert";
my $street number = 52;

my $colour = "purple";

print "My name is $name and I live in house number $street number.\n";
print "My favourite colour is $colour.\n";

print "C:\\WINDOWS\\SYSTEM\n";
print 'C:\\WINDOWS\\SYSTEM';

print "\n";

82 PerlClass.com for ACT Students August Feb 2007

Perl variables 4

4.9 Arrays

If you think of a scalar as being a singular thing, arrays are the plural form. Just
as you have a flock of sheep or a bunch of bankers, you can have an array of
scalars.

An array is a list of (usually related) scalars all kept together. Arrays start with
an e¢ (at sign), and are initialized thus:

my @fruits = ("apples", "oranges", "guavas",
"passionfruit"”, "grapes");
my @magic numbers = (23, 42, 69);
my @random scalars = ("mumble", 123.45, "willy the wombat", -300);

As you can see, arrays can contain any kind of scalars. They can have just about
any number of elements, too, without needing to know how many before you
start. Really any number - tens or hundreds of thousands, if you've got the mem-
ory.

PerlClass.com for ACT Students August 2007 83

84

Perl variables

RTFEM !

4 47-49

1 6

2 47-49

1 8-10

2 72-76

perldata

4 110-149
3 40-55

So if we don't know how many items there are in an array, how can we find out?
Well, there are a couple of ways.

First of all, Perl's arrays are indexed from zero. We can access individual ele-
ments of the array like this:

print $fruits[0]; # prints "apples"
print $random scalars[2]; # prints "willy the wombat"

Wait a minute, why are we using dollar signs in the example above, instead of at
signs? The reason is this: we only want a scalar back, so we show that we want a
scalar. There's a useful way of thinking of this, which is explained in chapter 1

of the Camel: if scalars are the singular case, then the dollar sign is like the word

n.n

"the" - "the name", "the meaning of life", etc. The e sign on an array, or the &
sign on a hash, is like saying "those" or "these" - "these fruit", "those magic
numbers". However, when we only want one element of the array, we'll be say-
ing things like "the first fruit" or "the last magic number" - hence the scalar-like

dollar sign.

PerlClass.com for ACT Students August Feb 2007

Perl variables 4
If we wanted what we call an array slice we could say:

@fruits[1,2,3]; # oranges, guavas, passionfruit
@magic_numbers[0..1]; # 23, 42

You just learned something new, by the way: the .. ("dot dot") range operator
which creates a temporary list of numbers between the two you specify - in this
case 0 and 1, but it could have been 1 and 100 if we'd had an array big enough to
use it on. You'll run into this operator again and again, so remember it.

Another thing you can do with arrays is insert them into a string, the same as for

scalars:
print "My favorite fruits are @fruits\n"; # whole array
print "Two types of fruit are @fruits[0,2]"; # array slice

RTFM !

4 65

2 90-91

3 103-104
perlop

6 199-201

Returning to the point, how do we find the last element in an array? Well, there's
a special variable called s#array which is the index of the last element, so you
can say:

PerlClass.com for ACT Students August 2007 85

4.9.1

86

Perl variables

@fruit[0..$#fruit];

and you'll get the whole array. If you print s#£ruit you'll find it's 4, which is not
the same as the number of elements - 5. Remember that it's the index of the last

element and that the index starts at zero, so you have to add one to it to find out
how many elements in the array.

But wait! There's More Than One Way To Do It - and an easier way, at that. If
you evaluate the array in a scalar context - that is, do something like this:

my $fruit count = @fruits;
... you'll get the number of elements in the array.

There's more than two ways to do it, as well - scalar(efruits) and int (@fruits)
will also tell us how many elements there are in the array.

Advanced

Using $count = scalar @frults is the clearest way
to express "how many are in fruits?" and is considered a best
practice.

A quick look at context

There's a term you've heard used just recently but which hasn't been explained:

context.
All Perl expressions are evaluated in a context. The two main contexts are:

. scalar context, and

PerlClass.com for ACT Students August Feb 2007

Perl variables 4

. list context

Here's an example of an expression which can be evaluated in either context:

my $howmany = @array; # scalar context
my @newarray = @array; # list context

If you look at an array in a scalar context, you'll see how many elements it has;
if you look at it in list context, you'll see the contents of the array itself.

4.9.2 What's the difference between a list and an array?

Not much, really. A list is just an unnamed array. Here's a demonstration of the
difference:

printing a list of scalars
print ("Hello", " ", $name, "\n");

printing an array
@hello = ("Hello", " ", $name, "\n");
print @hello;

If you come across something that wants a LIST, you can either give it the ele-
ments of list as in the first example above, or you can pass it an array by name.
If you come across something that wants an ARRAY, you have to actually give
it the name of an array.

PerlClass.com for ACT Students August 2007 87

4 Perl variables

4.10 Exercises

1. Create an array of your friends' names
2. Print out the first element

3. Print out the last element

4. Print out the array from within a double-quoted string using variable inter-

polation

5. Print out an array slice of the 2nd to 4th items using variable interpolation

Answers to the above can be found in exercises/perlintro/answers/arrays.pl

4.10.1 Advanced exercises

1. Print the array without putting quotes around its name. What happens?

2. Set the special variable s, to something appropriate and try the previous
step again (see page 132 of your Camel for this variable's documentation)

3. What happens if you have a small array and then you assign a value to sar-

ray[lOOO}?

Answers to the above can be found in

exercises/perlintro/answers/arrays_advanced.pl

88 PerlClass.com for ACT Students August Feb 2007

Perl variables 4

4.11 Answers
#!/usr/bin/perl -w

use strict;
my @friends = ("Larry", "Randal", "Tom", "Nat", "Joe");

print "First element: $friends[O]\n";
print "Last element: $friends[$#friends]\n";

print "My friends' names are @friends\n";

print "Three of my friends are @friends[1..3]\n";

4.11.1 Advanced Answer

#!/usr/bin/perl -w
use strict;
my @friends = ("Larry", "Randal", "Tom", "Nat", "Joe");

print "First element: $friends[O]\n";
print "Last element: $friends[$#friends]\n";

print "My friends' names are @friends\n";

print "Three of my friends are @friends[1..3]\n";
we'll get no spaces with the following...

print @friends;

print "\n";

set the item separator to something meaningful
$' = n and II;

ahhh, now it works..
print @friends;

PerlClass.com for ACT Students August 2007 89

90

print "\n";

print command line arguments
print "Arguments: “;

print @ARGV;

print "\n";

Perl variables

PerlClass.com for ACT Students August Feb 2007

Perl variables

4.12 Hashes

A hash is a two-dimensional array which contains keys and values. Instead of
looking up items in a hash by an array index, you can look up values by their

keys.

RTFM !

4 49

1 7-8

2 50

1 10-12
2 76-78

perlldata

5 150-178
5 73-85

4.12.1 Initializing a hash

Hashes are initialized in exactly the same way as arrays, with a comma separat-

ed list of values:

my %smonthdays = ("January", 31, "February", 28, "March", 31, ...);

Of course, there's more than one way to do it:

PerlClass.com for ACT Students August 2007

91

4 Perl variables

my %smonthdays = (

"January" => 31,
"February" => 28,
"March" => 31,
...

);

The spacing in the above example is commonly used to make hash assignments

more readable.

The => operator is syntactically the same as the comma, but is used to distin-
guish hashes more easily from normal arrays. Also, you don't need to put quotes
on the item which comes immediately before the => operator:

my %smonthdays = (

January = 31,
February => 28,
March => 31,
...

);
4.12.2 Reading hash values

You get at elements in a hash by using the following syntax:

print $monthdays{"January"}; # prints 31

Again you'll notice the use of the dollar sign, which you should read as "the
monthdays belonging to January".

4.12.3 Adding new hash elements

You can also create elements in a hash on the fly:

my Ssmonthdays = ();
$monthdays{"January"} = 31;

92 PerlClass.com for ACT Students August Feb 2007

Perl variables 4

$monthdays{"February"} = 28;

4.12.4 Other things about hashes

. Hashes have no internal order
- There is no equivalent to s#array to get the size of a hash

. However, there are functions such as each(), keys() and values () which will
help you manipulate hash data. We look at these later, when we deal with
functions.

Advanced

You may like to look up the following functions which relat-
ed to hashes: keys (), values(), each(), delete(), exists(),
and defined().

4.12.5 What's the difference between a hash and an asso-
ciative array?

Back in the days of Perl version 4 (and earlier), hashes were called associative
arrays. The name "hash" is now preferred because it's much quicker to type. If
you consider all the times that hashes are talked about in the newsgroup com-
p.lang.perl.misc (news:comp.lang.perl.misc) and other Perl newsgroups, the re-
naming of associative arrays to hashes has resulted in a major saving of band-
width.

PerlClass.com for ACT Students August 2007 93

4 Perl variables

4.13 Exercises

1. Create a hash of people and something interesting about them

2. Print out a given person's interesting fact

3. Change an person's interesting fact

4. Add a new person to the hash

5. What happens if you try to print an entry for a person who's not in the hash?

Answers to these exercises are given in exercises/perlintro/answers/hash.pl

94 PerlClass.com for ACT Students August Feb 2007

Perl variables

4.14 Answers
#!/usr/bin/perl -w

use strict;

my S%people = (

"Larry" => "Invented Perl",

“Linus" => “Invented Linux",

“Guido" => “Invented Python",

"Bill" => "Invented PC software licensing fees"

);
print "An interesting fact about Larry is: $people{'Larry'}\n";

change someone's interesting fact
$people{"Bill"} = "wears glasses";

add a new person
$people{"Ada"} = "invented the concept of looping in computer pro-
grams";

what happens if we try to print someone who's not there?

print $people{"Charles"};

PerlClass.com for ACT Students August 2007

Perl variables

4.15 Special variables

96

Perl has many special variables. These are used to set or retrieve certain values
which affect the way your program runs. For instance, you can set a special
variable to turn interpreter warnings on and off, or read a special variable to
find out the command line arguments passed to your script.

Special variables can be scalars, arrays, or hashes. We'll look at some of each
kind.

RTFEM !

4 53-59
2 127-140
7 403
28 653-676
32 884
perlvar
English English provides friendlier
names for special variables
3 49 $_ quickly

PerlClass.com for ACT Students August Feb 2007

Perl variables 4

4.16 The first special variable, $

The first special variable, and possibly the one you'll encounter most often, is
called s_ ("dollar-underscore"), and it represents the current thing that your Perl
script's working with - often a line of text or an element of a list or hash. It can
be set explicitly, or it can be set implicitly by certain looping constructs (which
we'll look at later).

The special variable s_ is often the default argument for functions in Perl. For
instance, the print () function defaults to printing s_

$ = "Hello, world!\n";
print;

If you can think of Perl variables as being "nouns", then s_ is the pronoun "it".

4.16.1 Exercises

1. Set s_ to a string like "Hello, world", then print it out by using the print ()
command's default argument

The answers to the above are in exercises/perlintro/answers/scalars3.pl.

PerlClass.com for ACT Students August 2007 97

4 Perl variables

4.17 Answer

#!/usr/bin/perl -w
use strict;
$ = "Hello, world.\n";

print;

98 PerlClass.com for ACT Students August Feb 2007

Perl variables 4

4.18 @ARGV - a special array

Perl programs accept arbitrary arguments or parameters from the command line,
like this:

perl printargs.pl foo bar baz

This passes "foo", "bar" and "baz" as arguments into our program, where they
end up in an array called earcv. Try this script, which you'll find in your direc-
tory. It's called exercises/perlintro/printargs.pl.

#!/usr/bin/perl -w

print "@ARGV\n";

To run the script, type:

% exercises/perlintro/printargs.pl foo bar baz
You should see "foo bar baz" printed out.

4.18.1 Exercises

1. Modify your earlier array-printing script to print out the script's command
line arguments instead of the names of your friends. Call your script by typ-
ing ./scriptname.pl firstarg secondarg thirdarg or similar.

The answers to the above exercise 1S in exercises/perlintro/answers/argv.pl

PerlClass.com for ACT Students August 2007 99

4 Perl variables

4.19 Answers

#!/usr/bin/perl -w

use strict;
if (@ARGV == 0) {

print "I have no arguments.\n"
} else {

print "My first argument is $ARGV[O].\n";
print "My last argument is $ARGV[$#ARGV].\n"; # or $ARGV[-1]
print "All of my arguments are @ARGV.\n";
if (@ARGV >= 4) {
print "My 2nd to 4th arguments are @ARGV[1l..3].\n";
} else {
print "I have less than 4 arguments.\n";

100 PerlClass.com for ACT Students August Feb 2007

Perl variables 4

4.20 %ENV - a special hash

Just as there are special scalars and arrays, there is a special hash called senv.
This hash contains the names and values of environment variables. To view

these variables under UNIX, simply type env on the command line.

4.20.1 Exercises

1. A user's home directory is stored in the environment variable soMe. Print out
your own home directory.

The answer to the above can be found in exercises/perlintro/answers/env.pl

PerlClass.com for ACT Students August 2007 101

4 Perl variables

4.21 Answer
#!/usr/bin/perl -w

use strict;

print "The HOME environment variable is $ENV{'HOME'}.\n"

102 PerlClass.com for ACT Students August Feb 2007

Perl variables 4

4.22 Chapter summary

- Perl variable names typically consist of alphanumeric characters and under-
scores. Lower case names are used for most variables, and upper case for
global constants.

. The statement use strict; 1s used to make Perl require variables to be pre-
declared and to avoid certain types of programming errors.

- There are three types of Perl variables: scalars, arrays, and hashes.

- Scalars are single items of data and are indicated by a dollar sign (s) at the
beginning of the variable name.

. Scalars can contain strings, numbers, etc

- Strings must be delimited by quote marks. Using double quote marks will al-
low you to interpolate other variables and meta-characters such as \n (new-
line) into a string. Single quotes do not interpolate.

- Arrays are one-dimensional lists of scalars and are indicated by an at sign (e)
at the beginning of the variable name.

- Arrays are initialised using a comma-separated list of scalars inside parenthe-
ses.

- Arrays are indexed from zero
- Item n of an array can be accessed by using sarrayname[n]
- The index of the last item of an array can be accessed by using s#arrayname.

- The number of elements in an array can be found by interpreting the array in

a scalar context, eg my Sitems = @array;

- Hashes are two-dimensional arrays of keys and values, and are indicated by a
percent sign (%) at the beginning of the variable name.

- Hashes are initialised using a comma-separated list of scalars inside curly
brackets. Whitespace and the => operator (which is syntactically identical to
the comma) can be used to make hash assignments look neater.

- The value of a hash item whose key is foo can be accessed by using shash-

PerlClass.com for ACT Students August 2007 103

4 Perl variables

name{foo}
. Hashes have no internal order

- s_1s a special variable which is the default argument for many Perl functions
and operators

- The special array earcv contains all command line parameters passed to the
script

- The special hash <exv contains information about the user's environment.

104 PerlClass.com for ACT Students August Feb 2007

Chapter 5: Operators
and functions

In this chapter...

In this chapter, we look at some of the operators and functions which
can be used to manipulate data in Perl. In particular, we look at oper-
ators for arithmetic and string manipulation, and many kinds of func-
tions including functions for scalar and list manipulation, more com-
plex mathematical operations, type conversions, dealing with files,
etc.

5 Operators and functions

5.1 What are operators and functions?
Operators and functions are routines that are built into the Perl language to do
stuff.

The difference between operators and functions in Perl is a very tricky subject.
There are a couple of ways to tell the difference:

- Functions usually have all their parameters on the right hand side
- Operators can act in much more subtle and complex ways than functions

- Look in the documentation - if it's in perldoc perlop, it's an operator; if it's in

perldoc perlfunc, it's a function. Otherwise, it's probably a subroutine.

The easiest way to explain operators is to just dive on in, so here we go...

RTFM !

4 60 - 65

2 76 - 94

3 86-110
perlop

2 28 -34

106 PerlClass.com for ACT Students August Feb 2007

Operators and functions

5.2 Arithmetic operators

Arithmetic operators can be used to perform arithmetic operations on variables

or constants. The commonly used ones are:

Table 5-5. Arithmetic operators

Operator Example | Description
+ $a + $b Addition
- $a - $b Subtraction
* $a * $b Multiplication
/ Sa / Sb Division
% $a % $b Modulus (remainder when sa is divided
by sp,eg 11 % 3=2)
xx $a ** $b Exponentiation (sa to the power of sb)

PerlClass.com for ACT Students August 2007

107

5 Operators and functions

Advanced

Just like in C, there are some short cut arithmetic operators:

$a += 1; # same as $a = $a + 1
$a -= 3; # same as $a = $a - 3
$a *= 42; # same as $a = $a * 42

(In fact, you can extrapolate the above with just about any
operator - see page 17 of the Camel for more about this)

You can also use sa++ and sa—--- if you're familiar with such
things. ++sa and ----sa are also valid, but they do some
slighty different things and you won't need them today (but
you can read about them on pages 17 to 18 of the Camel if
you are sufficiently interested).

5.3 String operators

Just as we can add and multiply numbers, we can also do similar things with
strings:

Table 5-5. String operators

Operator Example Description

Sa . $b Concatenation (puts $a and sb to-
gether as one string)

% $a x S$b Repeat (repeat sa sb times --- eg

"foo" x 3 gives us "foofoofoo"

my $fullname = $first name . $mid initial . $last name;

108 PerlClass.com for ACT Students August Feb 2007

Operators and functions 5

my $line = '-' x 80;
my $ruler = $line . "\n";

5.3.1 Exercises

1. Calculate the cost of 18 widgets at $37.00 each and print the answer (An-

SWEr. exercises/perlintro/answers/widgets. pl)

2. Print out a line of dashes without using more than one dash in your code

(except for the -w). (Answer: exercises/perlintro/answers/dashes.pl)

3. Use exercises/perlintro/operate.pl to practice using arithmetic and string
operators.

PerlClass.com for ACT Students August 2007 109

2.4

5.4.1

5.4.2

5.4.3

110

Operators and functions

Answers

Exercise 1

£

#!/usr/bin/perl
use strict;

my $cost = 18 * 37;
print "The cost of 18 widgets at \$37 each is $cost.\n";

Exercise 2
#!/usr/bin/perl

<

use strict;
print "-" x 78;

Source to operate.pl

#!/usr/bin/perl -w
use strict;

arithmetic...
print "Five times thirty is " . (5 * 30) . "\n";

exponentiation and a foreach loop...
foreach (0..8) {

print "2 to the power of $ is " . 2**$. "\n";
}
strings!
my $sentence = "There's more than ";
$sentence .= "one way to ";
$sentence .= "do it.";
print (($sentence . "\n") x 3);

PerlClass.com for ACT Students August Feb 2007

Operators and functions

5.5 File operators

We can use file test operators to test various attributes of files and directories:

Table 5-5. File test operators

Operator Example Description
—e -e $a Exists - does the file exist?
-r -r Sa Readable - is the file readable?
—w -w $a Writable - is the file writable?
-d -d $a Directory - is it a directory?
-f -f Sa File - 1s it a normal file?
-T -T $a Text - is the file a text file?

if (-e "~/.forward"} {

print "your email is being forwarded somewhere else";

unless (-w $log file) {
print "can't write to $log file\n";

if (-T "perl.exe") {
print "your perl.exe is a text file!\n";

PerlClass.com for ACT Students August 2007

111

5 Operators and functions

5.6 Other operators

You'll encounter all kinds of other operators in your Perl career, and they're all
described in the Camel from page 76 onwards. We'll cover them as they be-
come necessary to us -- you've already seen operators such as the assignment
operator (=), the => operator which behaves a bit like the comma operator, and
SO on.

Advanced

While we're here, let's just mention what "unary" and "bina-
ry" operators are.

A unary operator is one that only needs something on one
side of it, like the file operators or the autoincrement (++) op-
erator.

A binary operator is one that needs something on either side
of it, such as the addition operator.

A trinary operator also exists, but we don't deal with it in this

course. C programmers will probably already know about it,
and can use it if they want.

112 PerlClass.com for ACT Students August Feb 2007

Operators and functions 5

5.7 Functions

A function is like an operator - and in fact some functions double as operators
in certain conditions - but with the following differences:

- longer names
- can take any kinds of arguments
- arguments always come after the function name

The only real way to tell whether something is a function or an operator is to
check the periop and per1func manual pages and see which it appears in.

RTFM !

5 92 - 146
8 Verbs
3 141-242
29 677-830
perlfunc
4 56

5.7.1 Types of arguments

Functions typically take the following kind of arguments:

SCALAR -- Any scalar variable - 42, "foo", Or $a

LIST -- Any named or unnamed list (remember that a named list is an array)

PerlClass.com for ACT Students August 2007 113

5.7.2

114

Operators and functions

ARRAY -- A named array; usually results in the array being modified
HASH -- Any named or unnamed hash

PATTERN -- A pattern to match on - we'll talk more about these later on, in
Regular Expressions

FILEHANDLE -- A filehandle indicating a file that you've opened or one of the
pseudo-files that is automatically opened, such as STDIN, STDOUT, and
STDERR

There are other types of arguments, but you're not likely to need to deal with
them in this module.

Return values

Just as a function can take arguments of various kinds, they can return various
things for you to use - though they don't have to, and you don't have to use
them if you don't want.

If a function returns a scalar, and we want to use it, we can say something like:

my Sage = 29.75;
my $years = int($age);

and syears will be assigned the returned value of the int () function when given
the argument sage - in this case, 29, since int () truncates instead of rounding.

If we just wanted to do something to a variable and didn't care what value was
returned, we could just say:

my $input = <STDIN>;
chomp ($input) ;

While we're at it, you should also know that the brackets on functions are op-
tional if it's not likely to cause confusion. What's likely to cause confusion
varies from one person to the next, but it's a pretty safe bet to use brackets as
much as possible when you're starting out, and then drop them off if you see
that other people are usually doing it. Seriously. You can learn a lot about Perl
style by looking at other people's code, especially code found on CPAN or giv-

PerlClass.com for ACT Students August Feb 2007

Operators and functions 5

en as examples in Perl books, newsgroups, etc.

PerlClass.com for ACT Students August 2007 115

5.8

116

More about context

Operators and functions

Many different functions and operators behave differently depending on

whether they're called in scalar context or list context. Each one will be noted

in its documentation, either in the Camel or in the manual pages.

Here are some Perl operators and functions that care about context:

Table 5-4. Context-senstive functions

in a hash

What? Scalar context List context
reverse() Reverses characters in | Reverses the order of
a string the elements in an ar-
ray
each() Returns the next key | Returns a two-element

list consisting of the
next key and value
pair in a hash

gmtime () and 1ocal-

Returns the time as a

Returns a list of sec-

name in a directory,
or undef if there are
no more

time () string in common for- | ond, minute, hour,
mat day, etc

keys () Returns the number of | Returns a list of all
keys (and hence the the keys in a hash
number of elements)
in a hash

readdir () Returns the next file- | Returns a list of all

the filenames in a di-
rectory

There are many other cases where an operation varies depending on context.
Take a look at the notes on context at the start of perldoc perlfunc to see the
official guide to this: "anything you want, except consistency".

PerlClass.com for ACT Students August Feb 2007

Operators and functions 5

You can also use perldoc -f functionnameto get the documentation for just
a single function.

PerlClass.com for ACT Students August 2007 117

Operators and functions

5.9 String manipulation

118

5.9.1.1 Finding the length of a string

The length of a string can be found using the 1ength() function:

#!/usr/bin/perl -w
use strict;

my $string = "This is my string";
print length($string);

5.9.1.2 Case conversion

You can convert Perl strings from upper case to lower case, or vice versa, using
the 1c() and uc() functions, respectively.

#!/usr/bin/perl -w

print lc("Hello, World!"); # prints "hello, world!"
print uc("Hello, World!"); # prints "HELLO, WORLD!'"

The 1cfirst() and ucfirst () functions can be used to change only the first letter
of a string.

#!/usr/bin/perl -w

print lcfirst("Hello, World!"); # prints "hello, World!"
print lcfirst(uc("Hello, World!")); # prints "hELLO, WORLD!"

Notice how, in the last line of the example above, the 1cfirst () operates on the
result of the uc () function.

PerlClass.com for ACT Students August Feb 2007

Operators and functions 5

5.9.1.3 chop() and chomp()

The chop() function removes the last character of a string and returns that char-
acter.

#!/usr/bin/perl -w

use strict;

my $char = chop("Hello"); # $char is now equal to "o"
my $string = "Goodbye";

$char = chop $string;

print $char . "\n"; # "e"

print $string . "\n"; # "Goodby"

The chomp() works similarly, but only removes the last character if it is a new-
line. This is very handy for removing extraneous newlines from user input.

5.9.1.4 String substitutions with substr()

The substr () function can be used to return a portion of a string, or to change a
portion of a string.

#!/usr/bin/perl -w
use strict;

my $string = "Hello, world!";
print substr($string, 0, 5); # prints "Hello"

substr($string, 0, 5) = "Greetings";
print $string; # prints "Greetings, world!"

PerlClass.com for ACT Students August 2007 119

Operators and functions

5.10 Numeric functions

120

There are many numeric functions in Perl, including trig functions and func-

tions for dealing with random numbers. These include:

abs() (absolute value)
cos(), sin(), and atan2()
exp() (exponentiation)

1og() (logarithms)

rand () and srand() (random numbers)

sqrt () (square root)

PerlClass.com for ACT Students August Feb 2007

Operators and functions 5

5.11 Type conversions

The following functions can be used to force type conversions (if you really
need them):

oct () turns an octal number into its decimal equivalent.

int () truncates a number. It does not round.

hex () turns a hexadecimal number into its decimal equivalent.
chr() turns a decimal number into its character equivalent
ord() turns a character into its decimal equivalent

scalar() provides a scalar context.
my $fatty decimal = hex(“BEEF"”);
my $secret agent = oct(007);

my $backspace = ord(127); # ASCII BS
my $m = asc('m');

PerlClass.com for ACT Students August 2007 121

5 Operators and functions

5.12 Manipulating lists and arrays

5.12.1 Stacks and queues

Stacks and queues are special kinds of lists.

A stack can be thought of like a stack of paper on a desk. Things are put onto
the top of it, and taken off the top of it.

A queue, on the other hand, has things added to the end of it and taken out of
the start of it. Queues are also referred to as "FIFO" lists (for "First In, First
Out").

We can simulate stacks and queues in Perl using the following functions:

« push() -- add items to the end of a list

« pop() -- remove items from the end of a list

.+ shift() -- remove items from the start of a list
« unshift() -- add items to the start of a list

A queue can be created by pushing items onto the end of a list and shifting
them off the front.

A stack can be created by pushing items on the end of a list and popping them
off.

act like a stack
push(@stack,”item”,”item 2");
my $item = pop(@stack);

act like a queue

push (@queue’ "1" , H2" , "3" , H4" , "5’ "6" , "7" , H8") ;

my $item = shift(@queue); # get 1, 2..8 left

my $newitem = shift(@queue); # get 2, 3..8 left

push(@queue,”9”,”10”,"11"); # add three more
my $thirditem = shift(@queue); # get 3, 4..11 left

122 PerlClass.com for ACT Students August Feb 2007

Operators and functions 5

unshift(@queue,$thirditem) # put 3 back at the top of the queue

5.12.2 Sorting lists

The sort () function, when used on a list, returns a sorted version of that list. It
does not sort the list in place.

The reverse () function, when used on a list, returns the list in reverse order. It
does not reverse the list in place.

#!/usr/bin/perl -w
my @'List = (Ilall’ IIZII’ “C"’ Ilmll);

my @sorted = sort(@list);
my @reversed = reverse(sort(@list));

5.12.3 Converting lists to strings, and vice versa

The j0in() function can be used to join together the items in a list into one
string. Conversely, sp1it () can be used to split a string into elements for a list.
To fully appreciate sp1it() will have to wait for regular expressions, but join is
straightforward:

my $glommed thing = join(“:"”,$user,$pass,$uid, $gid);

PerlClass.com for ACT Students August 2007 123

5 Operators and functions

5.13 Hash processing

The delete() function deletes an element from a hash.
The exists() function tells you whether a certain key exists in a hash.

The keys () and values() functions return lists of the keys or values of a hash,
respectively.

my @keys = keys %hash;
delete $hash{getgone};

if (exists $hash{getgone}) {
print “your Perl is sick”;

124 PerlClass.com for ACT Students August Feb 2007

Operators and functions 5

5.14 Reading and writing files

The open () function can be used to open a file for reading or writing. The
close () function closes a file after you're done with it.

We will cover file-related functions more in chapter 10 starting on page 191.

PerlClass.com for ACT Students August 2007 125

5 Operators and functions

5.15 Time

The time () function returns the current time in UNIX format (that is, the num-
ber of seconds since 1 Jan 1970).

The gmtime() and 10caltime() functions can be used to get a more friendly rep-
resentation of the time, either in Greenwich Mean Time or the local time zone.
Both can be used in either scalar or list context.

$ perl -e 'print localtime(time), "\n";'
1722202710742131

$ perl -e 'print scalar localtime(time), "\n";'

Thu Aug 2 20:22:25 2007

$ perl -e 'print join(",", localtime(time)), "\n";'
46,22,20,2,7,107,4,213,1

The first of these produces an answer that is naturally baffling, but we'll explain
it last. The second example adds only the scalar which causes the localtime() to
be evaluated in a scalar context which leads it to produce a human-readable out-
put. The third example omits the scalar but raps the localtime() in a join which

seperates its elements by commas. Comparing this output with the first imagine
the commas disappearing and then the only difference is in the first two charac-
ters which are the seconds. So the first output is merely the list results from lo-

caltime concatenated together with no delimiters.

126 PerlClass.com for ACT Students August Feb 2007

Operators and functions 5

5.16 EXxercises

These exercises range from easy to difficult. Answers are provided in the exer-

cises directory (filenames are given with each exercise).

1.

Create a scalar variable containing the phrase "There's more than one way
to do it" then print it out in all upper-case (Answer: exercises/perlin-

tro/answers/tmtowtdi. pl)

. Print a random number

. Print a random item from an array (Answer: exercises/perlin-

tro/answers/quotes.pl)

. Print out the third character of a word entered by the user as an argument

on the command line (There's a starter script in exercises/thirdchar.pl

and the answer's in exercises/perlintro/answers/thirdchar.pl)

. Print out the date for a week ago (the answer's in exercises/perlintro/an-

swers/lastweek.pl)

. Print out a sentence in reverse

a. reverse the whole sentence
b. reverse just the words

(Answer: exercises/perlintro/answers/reverse. pl)

PerlClass.com for ACT Students August 2007 127

Operators and functions

5.17 Answers

5.17.1

Exercise 1

#!/usr/bin/perl -w
use strict;
my $sentence = "There's more than one way to do it.\n";

print uc($sentence);

5.17.2 Exercise 3

#!/usr/bin/perl -w
use strict;

my @quotes = (
"Madness takes its toll; please have correct change.",
"How do I set my laser printer to STUN?",
"Why is the symbol for anarchy always written the same way?",
"Any sufficiently advanced magic is indistinguishable from tech-
nology",
"I could tell you, but then I'd have to reboot you.",
"Real girls don't knit, they perl script.",
);

srand; # seed the random number generator
print $quotes[rand(@quotes)] . "\n";

5.17.3 Exercise 4

128

#!/usr/bin/perl -w
use strict;
my $input = $ARGV[O] || die "You need to provide a work as an argu-

ment";

PerlClass.com for ACT Students August Feb 2007

Operators and functions

print "The third character is " . substr($input, 2, 1)

5.17.4 Exercise 5
#!/usr/bin/perl -w

use strict;
my $WEEK SECONDS = 60 * 60 * 24 * 7;
print localtime(time - $WEEK SECONDS) . "\n";

5.17.5 Exercise 6
#!/usr/bin/perl -w

use strict;
my $sentence = "There's more than one way to do it.";

my $rev = reverse $sentence;
print "$rev\n";

my @words = reverse split(" ", $sentence);

print "@words\n";

PerlClass.com for ACT Students August 2007

Il\nll ;

129

5 Operators and functions

5.18 Chapter summary

- Perl operators and functions can be used to manipulate data and perform oth-
er necessary tasks

- The difference between operators and functions is blurred; most can behave
in either way

- Chapter 3 of your Camel book, perldoc perlop, perldoc perlfunc, and perl-
doc -f functionnamecan be used to find out detailed information about

operators and functions.
- Functions can accept arguments of various kinds
- Functions may return scalars, lists etc

- Return values may differ depending on whether a function is called in scalar
or list context

130 PerlClass.com for ACT Students August Feb 2007

Chapter 6: Conditional
constructs

In this chapter...

In this section, we look at Perl's various conditional constructs and
how they can be used to provide flow control to our Perl programs.
We also learn about Perl's meaning of Truth and how to test for truth
in various ways.

Conditional constructs

6.1 What is a block?

132

The simplest block is a single statement, for instance:

print "Hello, world!\n";

Sometimes you'll want several statements to be grouped together logically.
That's what we call a block. A block can be executed either in response to some
condition being met, or as an independent chunk of code that's given a name.

Blocks always have curly brackets ({ and }) around them. In C and Java, curly
brackets are optional in some cases - not so in Perl.

{

$fruit = "apple";

$howmany = 32;

print "I'd like to buy $howmany $fruit" . "s.\n";
}

You'll notice that the body of the block is indented from the brackets; this is to
improve readability. Make a habit of doing it.

PerlClass.com for ACT Students August Feb 2007

Conditional constructs 6

RTFEM !

Src Chap Pgs #
Nutshell 2™ 50-52
73-74
Camel 2™ 2 97
Camel 3" 4 113
perldoc perlsyn Compound statements
perlsyn Basic BLOCKSs

Cookbook 2™ 10 373-374
Learning 3" 2 34-37

4 56-57

Learning 4"

PerlClass.com for ACT Students August 2007 133

Conditional constructs

6.2 Scope

134

Something that needs mentioning again at this point is the concept of variable
scoping. You will recall that we use the my function to declare variables when
we're using the strict pragma. The my also scopes the variables so that they are
local to the current block

#!/usr/bin/perl -w

use strict;

my $a = "foo";

{ # start a new block
my $a = "bar";
print "$a\n"; # prints bar

}

print $a; # prints foo

Now, onto the situations in which we'll encounter blocks.

PerlClass.com for ACT Students August Feb 2007

Conditional constructs 6

6.3 What is a conditional statement?

A conditional statement is one which allows us to test the truth of some condi-
tion. For instance, we might say "If the ticket price is less than ten dollars..." or
"While there are still tickets left..."

You've almost certainly seen conditional statements in other programming lan-
guages, so we'll just assume that you get the general idea.

RTFEM !

4 51-53

2 95-106

4 114-125
perlsyn

2 34-37

PerlClass.com for ACT Students August 2007 135

6 Conditional constructs

6.4 What is truth?

Conditional statements invariably test whether something is true or not. Perl
thinks something is true if it doesn't evaluate to zero (0), an empty string (""),
or undefined.

42 # true

0 # false

"0" # false, because perl switches it to a number when it
needs to

"wibble" # true

$new variable # false (if we haven't set it to anything, it's
undefined)

RTFM !

1 20-21 What is truth?
1 29-30 What is truth?
2 34-35

136 PerlClass.com for ACT Students August Feb 2007

Conditional constructs

6.5 Comparison operators

We can compare things, and find out whether our comparison statement is true

or not. The operators we use for this are:

Table 6-1. Comparison operators

Operator | Example | Meaning

== sa == 5b | Equality (same as in C and other C-like lan-
guages)

t= sa != b [Inequality (again, C-like)

< Sa < S$b | Less than
> Sa > $b | Greater than
<= Sa <= $b | Less than or equal to
>= Sa >= S$b | Greater than or equal to

If we're comparing strings, we use a slightly different set of comparison opera-

tors, as follows:

Table 6-2. String comparison operators

Operator Meaning
eq Equality
ne Inequality
1t Less than (in "asciibetical" order)
gt Greater than
le Less than or equal to
ge Greater than or equal to

Some examples:

69 > 42 # true
"O" == 3 - 3 # true

PerlClass.com for ACT Students August 2007

137

6 Conditional constructs

'apple' gt 'banana' # false; apple is alphabetically before
banana

1+ 2 == "3com" # true - 3com is evaluated in numeric
context because we used == not eq

Assigning undef to a variable name undefines it again, as does using the undef
function with the variable's name as its argument.

6.5.1 Existence and Defined-ness

We can also check whether things are defined (something is defined when it's
had a value assigned to it), or whether an element of a hash exists.

To find out if something is defined, use Perl's defined function. You can't just
use the name of the variable because the variable can be defined an still evalu-
ate to false - for example, if you assign it the value o.

$skippy = "bush kangaroo";
if (defined($skippy)) {
print "Skippy is defined.\n";
} else {
print "Skippy is undefined.\n";

138 PerlClass.com for ACT Students August Feb 2007

Conditional constructs 6

RTFEM !

Src Chap Pgs #
Nutshell 2™ 5 99
Camel 2™ 3 155
Camel 3" 29 697
perldoc -f defined
Cookbook 2™
Learning 3" 2 38
Learning 4"

To find out if an element of a hash exists, use the exists function:

my S%animals = (
"Skippy" => "bush kangaroo",
"Flipper" => “faster than lighting",
);

if (exists($animals{"Blinky Bill"}) {
print "Blinky Bill exists.\n";
} else {
print "Blinky Bill doesn't exist.\n";

PerlClass.com for ACT Students August 2007 139

6 Conditional constructs

RTFEM !

5 103

3 164

29 710
-f exists

5 153 - 154

5 83

One last quick example to clarify existence, definedness and truth:

my Ssmiscellany = (

"apple" => "red", # exists, defined, true
"howmany" => 0, # exists, defined, false
"koala" => undef, # exists, undefined, false
);
if (exists($miscellany{"wombat"})) { # doesn't exist
print "Wombat exists\n";
} else {
print "We have no wombats here.\n"; # this will happen
}

6.5.2 Boolean logic operators

Boolean logic operators can be used to combine two or more Perl statements,
either in a conditional test or elsewhere.

The short circuit operators come in two flavours: line noise, and English. Both
do similar things but have different precedence. This causes great confusion.
There are two ways of avoiding this: use lots of brackets, or read page 89 of the
Camel book very, very carefully.

140 PerlClass.com for ACT Students August Feb 2007

Conditional constructs

Advanced

Alright, if you insist: and and or operators have very low

precedence (i.e. they will be evaluated after all the other op-

erators in the condition) whereas ss and | | have quite high

precedence and may require parentheses in the condition to

make it clear which parts of the statement are to be evaluated

first.

Table 6-3. Boolean logic operators

English-like | C-style | Example | Result
and && Sa && Sb True if both sa and so are
true; acts on sa then if sa is
true, goes on to act on sb.
or L Sa || sb True if either of sa and sb are

true; acts on sa then if sa is
false, goes on to act on sb.

Here's how you can use them to combine conditions in a test:

$a
$b

$a
$a
$a

($a == 1 and $b ==

=1;
= 2;

== 1 and $b ==

== 1 or $b ==
== 2 or $b ==

) or $b == 2

true
true
false

evaluated first)

PerlClass.com for ACT Students August 2007

true (parenthesized expression

141

6 Conditional constructs

6.5.3 Using boolean logic operators as short circuit opera-
tors

These operators aren't just for combining tests in conditional statements --- they
can be used to combine other statements as well.

Here's a real, working example of the | | short circuit operator:
open(INFILE, "input.txt") or die("Can't open input file: $!");

What is it doing?

RTFM !

5 118

3 191

29 747
-f open

11 150 - 151

The <« operator is less commonly used outside of conditional tests, but is still
very useful. Its meaning is this: If the first operand returns true, the second will
also happen. As soon as you get a false value returned, the expression stops
evaluating.

($day eq 'Friday') and print "Have a good weekend!\n";

142 PerlClass.com for ACT Students August Feb 2007

Conditional constructs 6

The typing saved by the above example is not necessarily worth the loss in read-
ability, especially as it could also have been written:

print "Have a good weekend!\n" if $day eq 'Friday’';

if ($day eq 'Friday') {
print "Have a good weekend!\n";

...or any of a dozen other ways. That's right, there's more than one way to do it.

The most common usage of the short circuit operators, especially || (or or) is to
trap errors, such as when opening files or interacting with the operating system.

RTFM !

2 89 short circuit opera
tors

3 102

10 143

PerlClass.com for ACT Students August 2007 143

6.6

6.6.1

144

Conditional constructs

Types of conditional constructs

You'll have noticed that we snuck in something new in the last section -- the if
construct. It probably didn't surprise you much - you'll have seen something
similar in just about every programming language. (Bonus points will not be
given for naming programming languages which have no "if" construct.)

if statements

The if construct goes like this:

if (conditional statement) {

BLOCK

} elsif (conditional statement) {
BLOCK

} else {
BLOCK

}

Both the e1sif and e1se parts of the above are optional, and of course you can
have more than one e1sif. elsif is also spelt differently to other languages'
equivalents - C programmers should take especial note to not use eise if.

If you're testing for something negative, it can sometimes make sense to use the
similar-but-opposite construct, unless.

unless (conditional statement) {
BLOCK

}

There is no such thing as an "elsunless" (thank the gods!), and if you find your-
self using an e1se with uniess then you should probably have written it as an it
test in the first place.

There's also a shorthand, and more English-like, way to use if and unless:

PerlClass.com for ACT Students August Feb 2007

Conditional constructs 6

print "We have apples\n" if $apples;
print "Yes, we have no bananas\n" unless $bananas;

6.6.2 while loops

We can repeat a block while a given condition is true:

while (conditional statement) {
BLOCK

my $hunger = 5;

while ($hunger) {
print "Feed me!\n";
$hunger--;

}

The logical opposite of this is the "until" construct:

my $full = 0;

until ($full) {
print "Feed me!\n";
$Tull++;

6.6.3 for and foreach

Perl has a for construct identical to C and Java:

for ($count = 0; $count <= $enough; $count++) {
print "Had enough?\n";

}

However, since we often want to loop through the elements of an array, we have
a special "shortcut" looping construct called foreach, which is similar to the
construct available in some UNIX shells. Compare the following:

PerlClass.com for ACT Students August 2007 145

6 Conditional constructs

using a for loop

for ($1i = 0; $i <= $#array; $i++) {
print $array[$i] . "\n";

using foreach

foreach (@array) {
print "$ \n";

}

There are some examples of foreach in exercises/perlintro/foreach.pl

Advanced

foreach(n..m) can be used o automatically generate a list o numbers
between n and m.

We can loop through hashes easily too, using the xeys function to return the
keys of a hash as an list that we can use:

foreach $key (keys %monthdays) {
print "There are $monthdays{$key} days in $key.\n";
}

We'll look at hash functions later.
6.6.4 Exercises

1. Set a variable to a numeric value, then create an ir statement as follows:
a. If the number is less than 3, print "Too small"
b. If the number is greater than 7, print "Too big"

c. Otherwise, print "Just right"

146 PerlClass.com for ACT Students August Feb 2007

Conditional constructs 6

2. Set two variables to your first and last names. Use an if statement to print
out whichever of them comes first in the alphabet.

3. Use a while loop to print out a numbered list of the elements in an array
4. Now do it with a foreach loop

5. Now do it with a hash, printing out the keys and values for each item (hint:
look up the xeys function in your Camel book)

Answers are given n exercises/answers/loops.pl

PerlClass.com for ACT Students August 2007 147

6 Conditional constructs

6.7 Answer
#!/usr/bin/perl -w

use strict;
1
my $unknown = 42;

if ($unknown < 3) {
print "too small\n";
} elsif ($unknown > 7) {
print "too big\n";
} else {
print "just right\n";

2

my $first = "Christopher";
my $last = "Hicks";

print $first if $first 1t $last;
print $last if $last gt $first;
print "\n";

#3

my @array = (IIaII’ IIbII’ IICII’ Ildll’ Ilell);

my $n = 0;

while ($n < scalar @array) {
print "$n: " . $array[$n] . "\n";
$n++;

}

4

148 PerlClass.com for ACT Students August Feb 2007

Conditional constructs 6

print "now with foreach:\n";
foreach my $element (@array) {

print $element, "\n";
#5

print "----\n";
print "hash:\n";

my %scolours = (

"red" => “fire",
"yellow" => "daffodils",
"green" => "leaves",
"blue" => "ocean",

);

foreach (keys %colours) {
print "$ $colours{$ }\n";

PerlClass.com for ACT Students August 2007 149

Conditional constructs

6.8 Practical uses of while loops: taking input
from STDIN

150

STDIN is the standard input stream for any UNIX program. If a program is in-
teractive, it will take input from the user via STDIN. Many UNIX programs ac-
cept input from STDIN via pipes and redirection. For instance, the UNIX cat
utility prints out any file it has redirected to its STDIN:

$ cat < hello.pl

UNIX also has STDOUT (the standard output) and STDERR (where errors are
printed to).

We can get a Perl script to take input from STDIN (standard input) and do
things with it by using the line input operator, which is a set of angle brackets
with the name of a filehandle in between them:

my $user input = <STDIN>;

The above example takes a single line of input from STDIN. The input is termi-
nated by the user hitting Enter. If we want to repeatedly take input from STDIN,
we can use the line input operator in a while loop:

#!/usr/bin/perl -w

while ($ = <STDIN>) {
do some stuff here, if you want...
print; # NOTE: print takes $ as its default argument

]

Conveniently enough, the while statement can be written more succinctly, be-
cause in these circumstances, the line input operator assigns to s_ by default:

PerlClass.com for ACT Students August Feb 2007

Conditional constructs 6

while (<STDIN>) {
print;

}

Better yet, the default filehandle used by the line input operator is STDIN, so we
can shorten the above example yet further:

while (<>) {
print;

}

As always, there's more than one way to do it.

The above example script (which is available in your directory as
exercises/perlintro/cat.pl) Will basically perform the same function as the
UNIX cat command; that is, print out whatever's given to it through STDIN.

Try running the script with no arguments. You'll have to type some stuff in, line
by line, and type CTRL-D (a.k.a. ~p) when you're ready to stop. ~b indicates
end-of-file (EOF) on most UNIX systems.

Now try giving it a file by using the shell to redirect its own source code to it:

perl exercises/perlintro/cat.pl < exercises/perlintro/cat.pl

This should make it print out its own source code.

PerlClass.com for ACT Students August 2007 151

6 Conditional constructs

6.9 Named blocks

Blocks can be given names, thus:

#!/usr/bin/perl -w
LINE: while (<STDIN>) {

}

By tradition, the names of blocks are in upper case. The name should also re-
flect the type of thing you are iterating over -- in this case, a line of text from
STDIN.

152 PerlClass.com for ACT Students August Feb 2007

Conditional constructs 6

6.10 Breaking out of loops

You can break out of loops using next, 1ast and similar statements.
#!/usr/bin/perl -w

LINE: while (<STDIN>) {
chomp; # remove newline
next LINE if $ eq ''; # skip blank lines
last LINE if lc($_) eq 'q'; # quit

or in better form

while (my $line = <STDIN>) {
chomp $line; # strip trailing newline
next unless length $line;
last if lc($line) eq 'q’;

}

The v1nE indicating the block to break out of is optional (it defaults to the cur-
rent smallest loop), but can be very useful when you wish to break out of a loop
higher up the chain:

#!/usr/bin/perl -w

LINE: while (<STDIN>) {
chomp; # remove newline
next LINE if $ eq ''; # skip blank lines
we split the line into words and check all of them

foreach (split $) {
last LINE if lc($_) eq 'quit’; # quit

PerlClass.com for ACT Students August 2007 153

Conditional constructs

6.11 Chapter summary

154

A block in Perl is a series of statements grouped together by curly brackets.
Blocks can be used in conditional constructs and subroutines.

A conditional construct is one which executes statements based on the truth
of a condition

Truth in Perl is determined by testing whether something is NOT any of: nu-
meric zero, the null string, or undefined

The if - elsif - else conditional construct can be used to perform certain
actions based on the truth of a condition

The while, for, and foreach constructs can be used to repeat certain state-
ments based on the truth of a condition.

A common practical use of the whiie loop is to read each line of a file.
Blocks may be named using the nave: convention

You can break out of blocks using next, 1ast and similar statements

PerlClass.com for ACT Students August Feb 2007

Chapter 7: Sub-
routines

In this chapter...

In this chapter, we look at subroutines and how they can be used to
simplify your code.

Subroutines

7.1 Introducing subroutines

If you have a long Perl script, you'll probably find that there are parts of the
script that you want to break out into subroutines. In particular, if you have a
section of code which is repeated more than once, it's best to make it a subrou-
tine to save on maintenance (and, of course, linecount).

A subroutine is basically a little self-contained mini-program in the form of
block which has a name, and can take arguments and return values:

the general case
sub name {
BLOCK

the specific case

sub print headers {
print "Programming Perl, 2nd ed\n";
print "by\n";
print "Larry Wall et al.\n";

156 PerlClass.com for ACT Students August Feb 2007

Subroutines 7

7.2 Calling a subroutine

A subroutine can be called in either of the following ways:

&print_headers;
print_headers();

If (for some reason) you've got a subroutine that clashes with a reserved func-
tion or something, you will need to prefix your function name with « (amper-
sand) to be perfectly clear. You should avoid doing this anyway; overloading
built-in functions can cause more confusion than it's worth.

Advanced

There are other times when you need to use an ampersand on
your subroutine name, such as when a function needs a
SUBROUTINE type of parameter, or when making an
anonymous subroutine reference.

PerlClass.com for ACT Students August 2007 157

7.3

158

Subroutines

Passing arguments to a subroutine

You can pass arguments to a subroutine by including them in the brackets when
you call it. The arguments end up in an array called e_ which is only visible in-
side the subroutine.

print_headers("Programming Perl, 2nd ed", "Larry Wall et al");

we can also pass variables to a subroutine by name...
my $fiction_title = "Lord of the Rings";

my S$Sfiction_author = "J.R.R. Tolkein";
print_headers($fiction_title, $fiction_author);

sub print_headers {
my (Stitle, Sauthor) = @_;
print "$title\n";
print "by\n";
print "$author\n";

}

You can take any number of scalars in as arguments - they'll all end up in e_in
the same order you gave them.

PerlClass.com for ACT Students August Feb 2007

Subroutines

RTFEM !

5
3
1

9
29

-f shift
4
3

7.4 Returning values from a subroutine

To return a value from a subroutine, simply use the return function.

sub print headers {

my ($title, $author) =@ ;
return "$title\nby\n$author\n\n";

}
sub sum {
my $total;
foreach my $x (@) {
$total =
}
return $total;
}

You can also return lists from your subroutine:

PerlClass.com for ACT Students August 2007

132
215

33
268
785

143
47

$total + $x;

shift()
shift()

circular lists

159

7 Subroutines

subroutine to return the first three arguments passed to it
sub firstthree {

return @ [0..2];

}
my @three items = firstthree("x", "y", "z", "a", "b");
sets @three items to ("x", "y", "z");

160 PerlClass.com for ACT Students August Feb 2007

Subroutines 7

7.5 EXxercises

1. Write a subroutine which prints out its first argument

2. Modify the above subroutine to also print out the last argument

3. Now change it to compare the first and last arguments and return the one
which is numerically larger (you'll want to use an it statement for that)

PerlClass.com for ACT Students August 2007 161

7.6

7.6.1

7.6.2

7.6.3

162

Answers
Exercise 1
#!/usr/bin/perl -w

use strict;

sub print first {
my ($first) = @ ;
print "argl=$first\n";

print_first("pass through","ignore","crap");

Exercise 2

#!/usr/bin/perl -w
use strict;

sub print first and last {
my ($first) = shift @ ;
my ($last) = pop @ ;
print "argl=$first last=$last\n";

print _first and last("pass through","ignore","crap");

Exercise 3

#!/usr/bin/perl -w
use strict;

sub get biggest end {
my ($first) = shift @ ;
my ($last) = pop @_;
if ($first > $last) {

print "$first (first) is larger than $last\n";

Subroutines

PerlClass.com for ACT Students August Feb 2007

Subroutines 7

} else {
print "$last (last) is larger than $first\n";

print first and last("pass through","ignore","crap");

PerlClass.com for ACT Students August 2007 163

7 Subroutines

7.7 Chapter summary

- A subroutine is a named block which can be called from anywhere in your
Perl program

- Subroutines can accept parameters, which are available via the special array
d

- Subroutines can return scalar or list values.

164 PerlClass.com for ACT Students August Feb 2007

Chapter 8: Regular ex-
pressions

In this chapter...

In this chapter we begin to explore Perl's powerful regular expression
capabilities, and use regular expressions to perform matching and
substitution operations on text.

8 Regular expressions

8.1 What are regular expressions?

The easiest way to explain this is by analogy. You will probably be familiar
with the concept of matching filenames under DOS and UNIX by using wild-
cards - *.txt Or /usr/local/* for instance. When matching filenames, an aster-
isk can be used to match any number of unknown characters, and a question
mark matches any single character. There are also less well-known filename
matching characters.

Regular expressions are similar in that they use special characters to match text.
The differences are that any kind of text can be matched, and that the set of spe-
cial characters is different.

Regular expressions are also known as REs, regexes, and regexps.

Advanced

If you have a mathematical background, you may like
to think of a regexp as a definition of a set of strings.
For instance, a regexp may describe the set of all
strings which begin with the letter "a".

166 PerlClass.com for ACT Students August Feb 2007

Regular expressions 8

8.2 Regular expression operators and functions

8.2.1 m/PATTERN/ - the match operator

The most basic regular expression operator is the matching operator, m/pPaT-

TERN/.
- Works on s_ by default.

- In scalar context, returns true (1) if the match succeeds, or false (the empty
string) if the match fails.

- In list context, returns a list of any parts of the pattern which are enclosed in
parentheses. If there are no parentheses, the entire pattern is treated as if it
were parenthesized.

- The n is optional if you use slashes as the pattern delimiters.

- If you use the m you can use any delimiter you like instead of the slashes. This
is very handy for matching on strings which contain slashes, for instance di-
rectory names or URLs.

- Using the /i modifier on the end makes it case insensitive.

while (<>) {

print if m/foo/; # prints if a line contains "foo"
print if m/foo/1i; # prints if it contains "foo", "F00", etc
print if /foo/i; # exactly the same; the m is optional

print if m!http://!; # using ! as an alternative delimiter

8.2.2 s/PATTERN/REPLACEMENT/ - the substitution opera-
tor

This is the substitution operator, and can be used to find text which matches a
pattern and replace it with something else.

- Works on s_ by default.

PerlClass.com for ACT Students August 2007 167

8 Regular expressions

- In scalar context, returns the number of matches found and replaced.

. In list context, behaves the same as in scalar context and returns the number
of matches found and replaced.

« You can use any delimiter you want, the same as the m// operator.

- Using /g on the end of it matches globally, otherwise matches (and replaces)
only the first instance of the pattern.

- Using the /i modifier makes it case insensitive.

fix some misspelt text

while (<>) {
s/freind/friend/g;
s/teh/the/qg;
s/jsut/just/g;
print;

}

The above example can be found in exercises/perlintro/spellcheck.pl.

168 PerlClass.com for ACT Students August Feb 2007

Regular expressions 8

8.3 Binding operators

If we want to use n// or s/// to operate on something other than s_ we need to
use binding operators to bind the match to another string.

Table 8-1. Binding operators

Operator Meaning

=~ True if the pattern matches

P~ True if the pattern doesn't match

print "Please enter your homepage URL: ";
my $url = <STDIN>;
if ($url =~ /geocities/) {
print "Ahhh, I see you have a geocities homepage!\n";

PerlClass.com for ACT Students August 2007 169

8 Regular expressions

8.4 Metacharacters

The special characters we use in regular expressions are called metacharacters,
because they are characters that describe other characters.

8.4.1 Some easy metacharacters

Table 8-2. Regular expression metacharacters

Metacharacter(s) | Matches...

" Start of string

$ End of string

Any single character except \n (though special
things can happen in multiline mode)

\n Newline (subtly different to s - when working
in multiline mode, there may be newlines em-
bedded in the multiline string you're working

with.
\t Matches a tab
\s Any whitespace character, such as space or tab
\S Any non-whitespace character
\d Any digit (0 to 9)
\D Any non-digit
\w Any "word" character - alphanumeric plus un-

derscore (_)

\W Any non-word character

\b A word break - the zero-length point between a
word character (as defined above) and a non-
word character.

170 PerlClass.com for ACT Students August Feb 2007

Regular expressions 8

RTFEM !

4 67-73

2 58 - 68

5 158 - 164
perlre

7 100

Any character that isn't a metacharacter just matches itself. If you want to

match a character that's normally a metacharacter, you can escape it by preced-
ing it with a backslash

Some quick examples:

Perl regular expressions are usually found within slashes - the
matching operator/function which we will see soon.

/cat/ # matches the three characters
c, a, and t in that order.
/"~cat/ # matches ¢, a, t at start of line
/\scat\s/ # matches ¢, a, t with spaces on either side
/\bcat\b/ # same as above, but won't include the
spaces in the text it matches

we can interpolate variables just like in strings:

my $animal = "dog" # we set up a scalar variable
/$animal/ # matches d, o, g

/$animals$/ # matches d, o, g at end of line
/\$\d\.\d\d/ # matches a dollar sign, then a digit,

PerlClass.com for ACT Students August 2007 171

8 Regular expressions

then a dot, then another digit, then
another digit, eg $9.99

172 PerlClass.com for ACT Students August Feb 2007

Regular expressions 8

8.5 Quantifiers

What if, in our last example, we'd wanted to say "Match a dollar, then any num-
ber of digits, then a dot, then two more digits"? What we need are quantifiers.

Table 8-3. Regular expression quantifiers

Quantifier Meaning

? Oorl

* 0 or more

+ 1 or more

{n} match exactly n times

{n,} match n or more times

{n,m} match between n and m times

Some examples of quantifiers:

X? # 0 or 1 "x"

xX* # 0 or more "x"

X+ # 1 or more "x"

x{5} # exactly 5 "x"

x{5,} # 5 or more "x"

x{5,10} # 5-10 "x"

bore*d # "bor", 0 or more "e", "d"

¥ # 0 or more of anything

.+ # 1 or more of anything

[1*=[1* # match an "=" with optional spaces on either side

PerlClass.com for ACT Students August 2007 173

8 Regular expressions

8.6 Greediness

Regular expressions are, by default, "greedy". This means that any regular ex-
pression, for instance . *, will try to match the biggest thing it possibly can.
Greediness is sometimes referred to as "maximal matching".

To change this behavior, follow the quantifier with a question mark, for exam-
ple .=2. This is sometimes referred to as "minimal matching".

$string = "abracadabra";
/a.*a/ # greedy —— matches "abracadabra"
/a.*?a/ # not greedy —— matches "abra"

174 PerlClass.com for ACT Students August Feb 2007

Regular expressions 8

8.7 EXxercises

1. What regular expression would match dollar amounts ignoring commas and

assuming that the pennies will be there.

2. Another example: what regular expression would match the word "colour"
with either British or American spellings?

3. How can we match any four-letter word?

PerlClass.com for ACT Students August 2007 175

8.8 Answers

8.8.1 Exercise 1
/\$\d+.\d{2}/

8.8.2 Exercise 2

/colou?r/

8.8.3 Exercise 3
/\b\w{4}\b/

176

Regular expressions

PerlClass.com for ACT Students August Feb 2007

Regular expressions 8

8.9

8.9.1

Character classes

A character class can be used to find a single character that matches any one of
a given set of characters.

Let's say you're looking for occurrences of the word "grey" in text, then re-
member that the American spelling is "gray". The way we can do this is by us-
ing character classes. Character classes are specified using square brackets,
thus: /griealy/

We can also use character sequences by saying things like (a-z) or (0-91. The
sequences \d and \w can easily be expressed as character classes: [0-9] and [a-
zA-70-9_] respectively.

We can negate a character class by putting a caret at the start of it. That's right,
the same character that we used to match the start of the line. Larry Wall has
written that Perl does anything you want -- unless you want consistency, and it
has also been said that consistency is the hobgoblin of small minds. Therefore,
we'll learn about these character class inconsistencies, learn to love them, and
flatter ourselves that we do not have small minds.

Here are some of the special rules that apply inside character classes. I make
no guarantee that this is a complete list; additions are always welcome.

- ~ at the start of a character class negates the character class, rather than speci-
fying the start of a line.

- - specifies a range of characters.

« 5 . () \{\ *+} and other metacharacters taken literally.
Exercises as a group

Your trainer will help you do the following exercises as a group.

1. How would we find any word starting with a letter in the first half of the al-
phabet, or with X, Y, or Z?

2. What regular expression could be used for any word that starts with letters
other than those listed in the previous example.

PerlClass.com for ACT Students August 2007 177

8 Regular expressions

3. There's almost certainly a problem with the regular expression we've just
created - can you see what it might be?

178 PerlClass.com for ACT Students August Feb 2007

Regular expressions 8

8.10 Alternation

The problem with character classes is that they only match one character. What
if we wanted to match any of a set of longer strings, like a set of words?

The way we do this is to use the pipe symbol | for alternation:
/cat|dog|budgie/ # matches any of our pets
Now we come up against another problem. If we write something like:
/"cat|dog|budgie$/

...to match any of our pets on a line by itself, what we're actually matching is:
"the start of the string followed by cat; or dog; or budgie followed by the end of
the string". This is not what we originally intended. To fix this, we enclose our
alternation in parentheses:

/" (cat|dog|budgie)$/

a simple matching program to get some email headers and print them
out

while (<>) {
print if /~(From|Subject|Date):\s/;
}

The above email example can be found in exercises/perlintro/mailhdr.pl.

PerlClass.com for ACT Students August 2007 179

Regular expressions

8.11 The concept of atoms

180

Parentheses bring us neatly into the concept of atoms. The word "atom" derives
from the Greek atomos meaning "indivisible" (little did they know!). What we
use it to mean is "something that is a chunk of regular expression in its own
right" -- as opposed to "something that can wipe out cities with a single blast".

Atoms can be arbitrarily created by simply wrapping things in parentheses -
handy for indicating grouping, using quantifiers for the whole group at once,
and for indicating which bit(s) of a matching function should be the returned
value (but we'll deal with that later).

In the example above, there are three atoms:
1. start of line
2. cat or dog or budgie
3. end of line
How many atoms were there in our dollar prices example earlier?
Atomic groupings can have quantifiers attached to them. For instance:
match a consonant followed by a vowel twice in a row
eg "tutu"
/(["~aeiou] [aeiou]) {2}/
match three or more words starting with "a" in a row

eg "all angry animals”
/ (\ba\w+\b\s*){3,}/

PerlClass.com for ACT Students August Feb 2007

Regular expressions 8

8.12 Exercises

1. Determine whether your name appears in a string (an answer's in exercis-

es/perlintro/answers/namere.pl).

2. Remove footnote references (like [1]) from some text (see exercises/per-
lintro/footnote.txt for some sample text, and exercises/perlintro/an—

swers/footnote.pl for an answer).

3. Split tab-separated data into an array then print out each element.

PerlClass.com for ACT Students August 2007 181

8 Regular expressions

8.13 Answers

8.13.1 Exercise 1

#!/usr/bin/perl -w

use strict;
my $string = "Some text goes in here, blah blah.";
my $name = "Your Name Here";

if ($string =~ /$name/) {
print "Your name appears in the string.\n";
} else {

print "Your name doesn't appear in the string.\n";

}
8.13.2 Exercise 2
#!/usr/bin/perl -w
Call this script as ./footnote.pl < footnote.txt

while (<>) {

s/\[[0-9a-z]\1//9;
print;

}
8.13.3 Exercise 3

#!/usr/bin/perl -w
use strict;

while (my $line = <>) {
chomp $line;

while ($line =~ /\t/) {
$line =~ s/(["\t]1*)\t//;
print "$1\n";

182 PerlClass.com for ACT Students August Feb 2007

Regular expressions

}
if (length $line) {
print "$line\n";

this is much easier with split() as we will see shortly
while (my $line = <>) {
chomp $line;
my @data = split(/\t/,$line);
foreach my $item (@data) {
print "$item\n";

PerlClass.com for ACT Students August 2007 183

8 Regular expressions

8.14 split() function

The split() function provides a convenient way to take a scalar and use a regular
expression to represent some definition of separator and it gives back the data
between those seperators. Some examples will make this seem much easier:

split a sentence based on spaces
my $words "This is a sentence.";
my @words = split(/ /,$words);

split the time on the colons
my $time = "01:23:45";
my @timeparts = split(/:/,%$time);

184 PerlClass.com for ACT Students August Feb 2007

Regular expressions 8

8.15 Exercises

1. Use split() to turn a full name into name parts.

2. Use split() to turn a string containing the alphabet ($alpha="abcedfghi-
jklmnopgrstuvwxyz") to produce an array containing one letter per cell.

PerlClass.com for ACT Students August 2007 185

8 Regular expressions

8.16 Answers

8.16.1 Exercise 1

my @name parts = split(/\s+/,$name);

8.16.2 Exercise 2

my $alpha="abcedfghijklmnopqrstuvwxyz";
my @alpha bits = split(//,$alpha0;

186 PerlClass.com for ACT Students August Feb 2007

Regular expressions 8

8.17 Chapter summary

- Regular expressions are used to perform matches and substitutions on strings

- Regular expressions can include meta-characters (characters with a special
meaning, which describe sets of other characters) and quantifiers

- Character classes can be used to specify any single instance of a set of char-
acters

- Alternation may be used to specify any of a set of sub-expressions
- The matching operator is m/pATTERN/ and acts on $_ by default
- The substitution operator is s/PATTERN/REPLACEMENT/ and acts on s_ by default

- Matches and substitutions can be performed on strings other than s_ by using
the =~ binding operator

- Functions such as sp1it() and grep() use regular expression patterns as one
of their arguments

PerlClass.com for ACT Students August 2007 187

Chapter 9: Practical
exercises

This chapter provides you with some broader exercises to test your
new Perl skills. Each exercise requires you to use a mixture of vari-

ables, operators, functions, conditional and looping constructs, and
regular expressions.

9 Practical exercises

9.1 EXxercises

There are no right or wrong answers. Remember, "There's More Than One
Way To Do It."

1. Write a simple menu system where the user is repeatedly asked to choose a
message to display or Q to quit.

a. Consider case-sensitivity
b. Handle errors cleanly

2. Write a "chatterbox" program that holds a conversation with the user by
matchings patterns in the user's input.

3. Write a program that gives information about files.
a. use file test operators
b. offer to print the file out if it's a text file

c. how will you cope with files longer than a screenful?

190 PerlClass.com for ACT Students August Feb 2007

Chapter 10: File I/O

In this chapter...

In this section, we learn how to open and interact with files and di-
rectories in various ways.

10 File 1/0

10.1 Assumed knowledge

You should already have encountered the open () function and the <> line input
operator in a previous Perl training session or in your previous Perl experience.

192 PerlClass.com for ACT Students August Feb 2007

File 1/0 10

10.2 Angle brackets - the line input and globbing
operators

You will have encountered the line input operator <> before, in situations such
as these:

reading lines from STDIN
while (<>) {

reading a single line of user input from STDIN
my $input = <STDIN>;

RTFM !

4 78 read it now
2 53
2 80 - 83
perlop I/0 Operators
8 300 - 302
11 155 - 156
5 70-72

<> is also known as the diamond operator.

- In scalar context, the line input operator yields the next line of the file refer-
enced by the filehandle given.

PerlClass.com for ACT Students August 2007 193

10

194

File I/O

- In list context, the line input operator yields all remaining lines of the file ref-
erenced by the filehandle.

- The default filehandle is stp1n, or any files listed on the command line of the
Perl script (eg myscript.pl filel file2 file3).

The globbing operator is nearly, but not quite, identical to the line input opera-
tor. It looks the same, and it acts partly in a similar way, but it really is a sepa-
rate operator.

RTFEM !

5 111
2 55-57
2 83 -85
perlop I/0 Operators
9 358 - 359
12 169 - 170
12 165 - 166

If the angle brackets have anything in them other than a filehandle or nothing, it
will work as a globbing operator and whatever is between the angle brackets
will be treated as a filename wildcard. For instance:

my @files = <*.txt>

The filename glob . txt is matched against files in the current directory, then
either they are returned as a list (in list context, as above) or one scalar at a time
(in scalar context).

If you get a list of files this way, you can then open them in turn and read from

PerlClass.com for ACT Students August Feb 2007

File 1/0 10

them.

while (<*.txt>) {
open (FILEHANDLE, $) || die ("Can't open $: $!");

close FILEHANDLE;

The g10b() function behaves in a very similar manner to the angle bracket glob-
bing operator.

my @files = glob("*.txt")

foreach (glob "*.txt") {

The g10b() 1s considered much cleaner and better to use than the angle-brackets
globbing operator.

10.2.1 Exercises

1. Use the line input operator to accept input from the user then print it out

2. Modify your previous script to use a while loop to get user input repeatedly,
until they type "Q" (or "q" - check out the 1c() and uc() functions in chap-
ter 3 of your Camel book) (Answer: exercises/perlinter/answers/userin-
put. pl)

3. Use the file globbing function or operator to find all Perl scripts in your
home directory and print out their names (assuming they are named in the
form ».p1) (Answer: exercises/perlinter/answers/findscripts.pl)

10.2.1.1 Advanced exercises

1. Use the above example of globbing to print out all the Perl scripts one after
the other. You will need to use the open () function to read from each file in

turn. (Al’lSWCI‘: exercises/perlinter/answers/printscripts .pl)

PerlClass.com for ACT Students August 2007 195

10 File 1/0

10.3 Answers

10.3.1 EXxercise 2
#!/usr/bin/perl -w

use strict;
print "Please type something (Q to quit): ";

while (<>) {

chomp;

exit if lc($) eq 'q’;

print "Please type something (Q to quit): ";
}

10.3.2 Exercise 3
#!/usr/bin/perl -w

use strict;

using a while loop and angle brackets
while (<*.pl>) {
print;

using a foreach loop with the glob function
foreach (glob "*.pl") {
print;

using a named variable instead of $
foreach my $script (glob "*.pl") {
print $script;

two even quicker methods...
print <*.pl>;
print glob "*.pl";

196 PerlClass.com for ACT Students August Feb 2007

File 1/0 10

10.3.3 Advanced Exercise 1
#!/usr/bin/perl -w

use strict;
using while and angle brackets...

while (<*.pl>) {
open (FILE, $) or die "Can't open file: $!";
while (<FILE>) {
print;

using foreach and the glob() function

foreach (glob "*.pl") {
open (FILE, $) or die "Can't open file: $!";
while (<FILE>) {
print;

using a named variable instead of $

foreach my $script (glob "*.pl") {
open (FILE, $script) or die "Can't open file: $!";
while (<FILE>) {
print;

PerlClass.com for ACT Students August 2007 197

10 File 1/0

10.4 open() and friends - the gory details

10.4.1 Opening a file for reading, writing or appending

The open() function is used to open a file for reading or writing (or both, or as a
pipe - more on that later).

RTFEM !

5 118-119
3 191 - 195
29 747 - 755
-f open read it now
7 247 - 252
11 150 - 151
5 79 -81

In a typical situation, we might use open () to open and read from a file:

open(LOGFILE, "/var/log/httpd/access.log")

Note that the < (less than) used to indicate reading 1s assumed; we could equally

VVGH‘haVef%ﬂd."</var/log/httpd/access.log".

You should always check for failure of an open() statement:

open(LOGFILE, "/var/log/httpd/access.log") || die "Can't open
/var/log/httpd/access.log: $!";

198 PerlClass.com for ACT Students August Feb 2007

File 1/0 10

RTFEM !

4 55
2 134
perlvar aka SERRNO
11 153 - 154
5 82 -84

Once a file is opened for reading or writing, we can use the filehandle we speci-
fied (in this case rocr1LE) for a variety of useful purposes:

open(LOGFILE, "/var/log/httpd/access.log") || die "Can't open
/var/log/httpd/access/log: $!";

use the filehandle in the in the <> line input operator...
while (<LOGFILE>) {
print if /PerlClass.com.com.au/;
close LOGFILE;
open a new logfile for appending
open(SCRIPTLOG, ">>myscript.log") || die "Can't open myscript.log:

$!";

print() takes an optional filehandle argument - defaults to STDOUT
print SCRIPTLOG "Opened logfile successfully.\n";

close SCRIPTLOG;

PerlClass.com for ACT Students August 2007 199

10 File 1/0

Note that you should always close a filehandle when you're finished with it
(though admittedly any open filehandles will be automatically closed when your
script exits).

RTFEM !

5 138

3 229

29 808 - 809
-f sysopen

7 247 - 252

10.4.2 Exercises

1. Write a script which opens a file for reading. Use a while loop to print out
each line of the file.

2. Use the above script to open a Perl script. Use a regular expression to print
out only those lines not beginning with a hash character (i.e. non-comment

lines). (AHSWCI‘Z exercises/perlinter/answers/delcomments .pl)

3. Create a new script which opens a file for writing. Write out the numbers 1
to 100 into this file. (Answer: exercises/perlinter/answers/100count.pl)

4. Create a new script which opens a logfile for appending. Create a while
loop which accepts input from STDIN and appends each line of input to the
logfile. (Answer: exercises/perlinter/answers/logfile. pl)

200 PerlClass.com for ACT Students August Feb 2007

File 1/0 10

5. Create a script which opens two files, reads input from the first, and writes
it out to the second. (Answer: exercises/perlinter/answers/readwrite.pl)

PerlClass.com for ACT Students August 2007 201

10

File I/O

10.5 Answers

10.5.1

Exercise 3

#!/usr/bin/perl -w
use strict;

open (COUNT, ">count.txt") || die ("Can't open count.txt: $!");

foreach (1..100) {
print COUNT "$ \n";

close COUNT;

10.5.2 Exercise 4

#!/usr/bin/perl -w

use strict;

open (LOG, ">>log.txt") || die ("Can't open log.txt: $!");
while (<>) {

print LOG "$ ";

close LOG;

10.5.3 Exercise 5

202

#!/usr/bin/perl -w
use strict;
open (INFILE, "linux.txt") || die "Can't open linux.txt: $!'";

open (OUTFILE, ">linux2.txt") || die "Can't open linux2.txt for writ-
ing: $!'";

PerlClass.com for ACT Students August Feb 2007

File 1/0

while (<INFILE>) {
print OUTFILE $;

close INFILE;
close OUTFILE;

PerlClass.com for ACT Students August 2007

10

203

10 File 1/0

10.6 Reading directories

It is also possible to open directories (using opendir() and read from them.
However, it 1s not possible to read the contents of files in that directory simply
by opening it and looping through it. Opening a directory simply makes the
filenames in that directory accessible via functions such as readdir().

RTEM !

5 119 opendir
5 125 readdir
3 195 opendir
3 202 readdir
29 755 opendir
29 770 readdir
-f opendir
-f readdir
9 356 - 358
12 171-173
12 167 - 168

opendir (HOMEDIR, $ENV{HOME});
my @files = readdir(HOMEDIR);
closedir HOMEDIR;

foreach (@files) {
open(THISFILE, "<$ ") || die "Can't open file $: $!");

204 PerlClass.com for ACT Students August Feb 2007

File 1/0 10

close THISFILE;

PerlClass.com for ACT Students August 2007 205

10 File 1/0

10.7 EXxercises

1. Use opendir() and readdir() to obtain a list of files in a directory. What or-
der are they in?

2. Use the sort () function to sort the list of files asciibetically (Answer: exer-

cises/perlinter/answers/dirlist.pl)

206 PerlClass.com for ACT Students August Feb 2007

File 1/0 10

10.8 Answer to #2

#!/usr/bin/perl -w

use strict;
opendir (THISDIR, ".") || die "Can't open directory: $!";
$, = "\n"; # item separator

print sort readdir(THISDIR);

closedir THISDIR;

PerlClass.com for ACT Students August 2007 207

10

File I/O

10.9 Opening files for simultaneous read/write

208

Files can be opened for simultaneous read/write by putting a + in front of the >
or < sign. +< 1s almost always preferable, however, as +> would overwrite the file
before you had a chance to read from it.

Read/write access to a file is not as useful as it sounds --- you can't write into the
middle of the file using this method, only onto the end. The main use for
read/write access is to read the contents of a file and then append lines to the end
of it.

A more flexible way to read and write a file is to import the file into an array,
manipulate the array, then output each element again.

program to remove duplicate lines

open(INFILE, "file.txt") || die "Can't open file.txt for input: $!'";
my @lines = <INFILE>;

close INFILE;

dup-remover taken from The Perl Cookbook
my @unique = grep { ! $seen{$ } ++ } @lines;

open(OUTFILE, ">file.txt") || die "Can't open file.txt: $!";
foreach (@unique) {
print OUTFILE $;

}
close OUTFILE;

Advanced

One thing to watch out for here is memory usage. If you
have a ten megabyte file, it will use at least that much mem-
ory as a Perl data structure.

PerlClass.com for ACT Students August Feb 2007

File 1/0 10

10.9.1 Exercises

1. Open a file, reverse its contents (line by line) and write it back to the same

filename (Answer: exercises/perlinter/answers/reversefile.pl)

PerlClass.com for ACT Students August 2007 209

10 File 1/0

10.10 Answer

#!/usr/bin/perl -w

use strict;

open (JUNKFILE, "junk.txt") || die "Can't open junk.txt to read: $!";
my @junk = <JUNKFILE>;

close JUNKFILE;

open (JUNKFILE, ">junk.txt") || die "Can't open junk.txt to write:
§1";

foreach (@junk) {

print JUNKFILE $;

close JUNKFILE;

210 PerlClass.com for ACT Students August Feb 2007

File 1/0 10

10.11 Opening pipes

If the filename given to open() begins with a pipe symbol (|), the filename is in-
terpreted as a command to which output is to be piped, and if the filename ends
with a |, the filename is to be interpreted as a filename which pipes input to us.

This is often used when you want to take input from the system a line at a time.
Here's an example which reads from the rot13 filter (a simple routine which ro-
tates the letters of its input by 13 letters, providing a very simple cipher for en-
coding the answers to jokes, spoilers to movies, or other low-security informa-
tion):

#!/usr/bin/perl -w
use strict;
open (ROT13, "rotl3 < /etc/motd |") || die "Can't open pipe: $!";
while (<R0T13>) {
print;
close ROT13;
Conversely, we can output something through rot13:
#!/usr/bin/perl -w
use strict;
open (ROT13, "|rotl3") || die "Can't open pipe: $!";

print "This is some rotl3'd text:\n";
print ROT13 "This is some rotl3'd text.\n";

close ROT13;

PerlClass.com for ACT Students August 2007 211

10

212

File 1/0

RTEM !

Src Chap Pgs #
Nutshell 2™ 4 59 S
Camel 2™ 2 130
Camel 3" 28 670
perldoc perlvar $l
Cookbook 2™ 7 281 - 284
Learning 3" 6 92 light
Learning 4"

Advanced

Make particular note of the lack of a comma after the file
handle specified to print. If you accidentally put a comma
there it will take the filehandle to be part of the list of items
to be printed.

PerlClass.com for ACT Students August Feb 2007

File 1/0 10

10.11.1 Exercises

1. Modify the second example above (provided for you as exercises/perlin-
ter/rot13.pl in your exercises directory to accept user input and print out
the rot13'd version.

2. Change your script to accept input from a file using open() (Answer: exer-

cises/perlinter/answers/rot13.pl)

3. Change your script to pipe its input through the strings command, so that if
you get a file that's not a text file, it will only look at the parts of the file
which are StI'il’lgS. (Al’lSWGI‘I exercises/perlinter/answers/strings. pl)

PerlClass.com for ACT Students August 2007 213

10

File

10.12 Answers

10.12.1 Exercise 2

#!/usr/bin/perl -w

use strict;

open (ROT13, "|rotl3") || die "Can't open pipe: $!";

open (INFILE, "linux.txt") || die "Can't open input file: $!";
while (<INFILE>) {

print ROT13 $;

close INFILE;
close ROT13;

10.12.2 Exercise 3

214

#!/usr/bin/perl -w

use strict;

open (ROT13, "|strings|rotl3") || die "Can't open pipe: $!";
open (INFILE, "linux.txt") || die "Can't open input file: $!";
while (<INFILE>) {

print ROT13 $;

close INFILE;
close ROT13;

1/O

PerlClass.com for ACT Students August Feb 2007

File 1/0

10.13 Finding information about files

10

We can find out various information about files by using file test operators and

functions such as stat ()

Table 10-1. File test operators

Operator Meaning
e File exists.
-r File is readable
- File is writable
- File is executable
—0 File is owned by you
-z File has zero size.
-s File has nonzero size (returns size).
-f File is a plain file.
-d File is a directory.
-1 File is a symbolic link.
-p File is a named pipe (FIFO), or Filehandle is a pipe.
=S File is a socket.
-b File is a block special file.
—c File is a character special file.
-t Filehandle is opened to a tty.
-u File has setuid bit set.
-9 File has setgid bit set.
—k File has sticky bit set.
-T File is a text file.
-B File is a binary file (opposite of -T).
-M

Age of file in days when script started.

PerlClass.com for ACT Students August 2007

215

10 File 1/0

-A Same for access time.

—C Same for inode change time.

RTFM !

4 63 - 64

2 85

3 98
perlfunc

11 157-163

Here's how the file test operators are usually used:

#!/usr/bin/perl -w
use strict;

unless (-e "config.txt") {
die "Config file doesn't exist";

or equivalently...
die "Config file doesn't exist" unless -e config.txt;

The stat () function returns similar information for a single file, in list form.

216 PerlClass.com for ACT Students August Feb 2007

File 1/0 10

1stat () can also be used for finding information about a file which is pointed to
by a symbolic link.

PerlClass.com for ACT Students August 2007 217

10 File 1/0

10.14 Exercises

1. Write a script which asks a user for a file to open, takes their input from
STDIN, checks that the file exists, then prints out the contents of that file.

(Answer: exercises/perlinter/answers/fileexists.pl)

2. Write a script to find zero-byte files in a directory. (Answer:

exercises/perlinter/answers/zerobyte.pl)

3. Write a script to find the largest file in a directory:

exercises/perlinter/answers/largestfile.pl)

218 PerlClass.com for ACT Students August Feb 2007

File 1/0 10

10.15 Answers

10.15.1 Exercise 1
#!/usr/bin/perl -w

use strict;

print "What file should I open? ";
my $filename = <STDIN>

chomp $filename;

die "File doesn't exist" unless -e $filename;

open (IN, $filename) or die "Can't open file for reading: $!'";
while (<IN>) {

print;

}

10.15.2 Exercise 2
#!/usr/bin/perl -w

use strict;
foreach (glob("*")) {

print if -z;

}

10.15.3 Exercise 3
#!/usr/bin/perl -w

use strict;
my $largest size = 0;

my $largest filename = "";

PerlClass.com for ACT Students August 2007 219

10 File 1/0

foreach (glob("*")) {
my $size = -s $;
if ($size > $largest size) {
$largest size = $size;
$largest filename = $;

print "The largest file was $largest filename\n";

220 PerlClass.com for ACT Students August Feb 2007

File 1/0 10

10.16 Recursing down directories

The built-in functions described above do not enable you to easily recurse

through subdirectories. Luckily, the File::Find module is part of the standard
library distributed with Perl 5.

RTFEM !

8 254
7 439
31 867
File::Find
9 359 - 361
12 173 pretty light

File::Find emulates UNIX's find command. It takes as its arguments a block to
execute for each file found, and a list of directories to search.

#!/usr/bin/perl -w

use strict;
use File::Find;

print "Enter the directory to search: ";
chomp(my $dir = <STDIN>);

find (\&wanted, $dir);

PerlClass.com for ACT Students August 2007 221

10 File 1/0

sub wanted {
print "$ \n";
}

For each file found, certain variables are set. srile::Find: :dir 1S set to the cur-
rent directory name, srile::Find: :name contains the full name of the file, i.e.

SFile::Find::dir/S$_.
10.16.1 Exercises

1. Modify the simple script above (in your scripts directory as exercises/per-

linter/find.pl) to only print out the names of plain text files only (hint:
use file test operators)

2. Now use it to print out the contents of each text file. You'll probably want
to pipe your output through more so that you can see it all. (Answer: exer-

cises/perlinter/answers/find.pl)

222 PerlClass.com for ACT Students August Feb 2007

File 1/0 10

10.17 Answer to Exercise #2

#!/usr/bin/perl -w

use strict;
use File::Find;

print "Enter the directory to search: ";
chomp(my $dir = <STDIN>);

find (\&wanted, $dir);

sub wanted {
open (FILE, "$ ") || die "Can't open $: $!'";
while (<FILE>) {
print;
}
close FILE;

PerlClass.com for ACT Students August 2007 223

10 File 1/0

10.18 File locking

File locking can be achieved using the fiock() function. This can be used to
guard against race conditions or other problems which occur when two (or
more) users open the same file in read/write mode.

RTFM !

Src Chap Pgs #
Nutshell 2™ 5 104
Camel 2" 3 166 - 167
Camel 3" 29 714 - 715
perldoc -f flock
Cookbook 2" 7 279-281

Learning 3"

Learning 4"

224 PerlClass.com for ACT Students August Feb 2007

File 1/0 10

10.19 Handling binary data

If you are opening a file which contains binary data, you probably don't want to
read it in a line at a time using while (<>) { }, as there's no guarantee that
there will be any line breaks in the data.

Instead, we use read() to read a certain number of bytes from a file handle.

RTFM !

5 125
3 202
29 769
-fread
8 304, 325
16 225-227 fixed-length record

databases

read() takes the following arguments:
- The filehandle to read from

- The scalar to put the binary data into
- The number of bytes to read

- The byte offset to start from (defaults to 0)

#!/usr/bin/perl -w

use strict;

PerlClass.com for ACT Students August 2007 225

10 File 1/0

my $image = "picture.gif";

open (IMAGE, $image) or die "Can't open image file: $!";
open (OUT, ">backup/$image") or die "Can't open backup file: $!";

my $buffer;
binmode IMAGE;

while (read IMAGE, $buffer, 1024) {
print OUT $buffer;

close IMAGE;
close OUT;

Advanced

If you are using Windows, DOS, or some other types of sys-
tems, you may need to use binmode() to make sure that cer-
tain linefeed characters aren't translated when Perl reads a
file in binary mode. While this is not needed on UNIX sys-
tems, it's a good idea to use it anyway to enhance portability.

226 PerlClass.com for ACT Students August Feb 2007

File 1/0 10

10.20 Best practices template for file manipula-
tion

Its a good idea to follow this template when reading and writing from files:

my $filename = 'filename'; # the filename
my $fh;

open($fh, "<", $filename) or die "couldn't open $filename for read
($1)";

while(my $line = <$fh>) {
chomp($line);
do whatever else you want to do with it

}

close($fh) or die "couldn't close $filename ($!)";

There are a couple of points to note about this. The first would be the use of the
3-argument open(). Another would be stooring the filename in a scalar for use
in error messages. die()ing on open() and close() 1s considered good form and
the system-provided error ($!) can be very helpful.

PerlClass.com for ACT Students August 2007 227

10

File I/O

10.21 Chapter summary

228

Angle brackets <> can be used for simple line input. In scalar context, they re-
turn the next line; in list context, all remaining lines; the default filehandle is
stp1N or any files mentioned in the command line (ie earGv).

Angle brackets can also be used as a globbing operator if anything other than
a filehandle name appears between the angle brackets. In scalar context, re-
turns the next file matching the glob pattern; in list context, returns all re-
maining matching files.

The open() and c1ose() functions can be used to open and close files. Files
can be opened for reading, writing, appending, read/write, or as pipes.

The opendir(), readdir () and closedir () functions can be used to open, read
from, and close directories.

The File::Find module can be used to recurse down through directories.
File test operators or stat () can be used to find information about files
File locking can be achieved using f1ock()

Binary data can be read using the read() function. The pinmode () function
should be used to ensure platform independence when reading binary data.

PerlClass.com for ACT Students August Feb 2007

Chapter 11: Advanced
regular expressions

In this section...

This section builds on the basic regular expressions taught in day 1 of
PerlClass.com's Introduction to Perl course. We will learn how to
handle data which consists of multiple lines of text, including how to
input data as multiple lines and different ways of performing matches
against that data.

11

Advanced regular expressions

11.1 Assumed knowledge

230

You should already be familiar with the following topics:

Regular expression metacharacters

Quantifiers

"Greediness" in regular expressions, aka maximal and minimal matching
Character classes and alternation

The m// matching function

The s/// substitution function

Matching strings other than s_ with the =~ matching operator

Assigning matched strings to lvalues

RTFEM !

4 66- 72
2 57-175
5 139 - 216
perlre
6 179 - 238
7 98 - 104 Concepts
8 105 - 114 More
9 115-127 Using

PerlClass.com for ACT Students August Feb 2007

Advanced regular expressions 11

11.2 Review exercises

The following exercises are intended to refresh your memory of basic regular
expressions:

1. Write a script to search a file for any of the names "Yasser Arafat", "Boris
Yeltsin" or "Monica Lewinsky". Print out any lines which contain these
naInCS.(f\HSVVGT:exercises/perlinter/answers/namesre.pl)

2. What pattern could be used to match any of: Elvis Presley, Elvis Aron Pres-
ley, Elvis A. Presley, Elvis Aaron Presley. (Answer:

exercises/perlinter/answers/elvisre.pl)

3. What pattern could be used to match a blank line? (Answer: exercises/per-

linter/answers/blanklinere.pl)

4. What pattern could be used to match an IP address such as 203.20.104.241,
where each part of the address is a number from 0 to 255? (Answer: exer-

cises/perlinter/answers/ipre.pl)

PerlClass.com for ACT Students August 2007 231

11 Advanced regular expressions

11.3 Answers

11.3.1 Exercise 1

#!/usr/bin/perl -w
use strict;

while (<>) {
print if /Yasser Arafat|Boris Yeltsin|Monica Lewinsky/;

11.3.2 EXxercise 2
#!/usr/bin/perl -w

use strict;

while (<>) {
T (

if (/Elvis (A(\.|ron|aron))?Presley/) {

print "That's Elvis.\n"
} else {
print "That's not Elvis.\n";

11.3.3 Exercise 3
#!/usr/bin/perl -w

use strict;

print "Blank line.\n" if /"$/;

232 PerlClass.com for ACT Students August Feb 2007

Advanced regular expressions 11

11.3.4 Exercise 4
#!/usr/bin/perl -w

use strict;

a single part of the IP address looks like this...
my $pattern

= "((2[0-4][0-9])(25[0-5]) | (1[0-9]1{2})|([1-9]1[0-9])[([6-9]))";

while (<>) {
if (m/"$pattern\.$pattern\.$pattern\.$patterns/) {
print "IP number matched.\n";
} else {
print "That's not an IP number.\n";

#

here's how we'd actually do it

#

my @elements = split(/\./, $ipnumber);

die "Wrong number of elements" if @elements != 4;
foreach (@elements) {

if ($ >2550r$ <0 or$ =~ /\D/) {
die "Element $ 1is invalid";

print "IP number is OK";

PerlClass.com for ACT Students August 2007 233

11 Advanced regular expressions

11.4 More metacharacters

Here are some more advanced metacharacters, which build on the ones already
covered in the Introduction to Perl module:

Table 11-1. More metacharacters

Metacharacter Meaning

\B Match anything other than a word
boundary

\cX Control character, i.e. CTRL-X

\0nn Octal character represented by nn

\xnn Hexadecimal character represent-
ed by nn

\ Lowercase next character

\u Uppercase next character

\L Lowercase until \E

\U Uppercase until \E

\Q quote (disable) metacharacters un-
til \E

\E End of lowercase/uppercase

search for the C++ computer language:

/C++/ # wrong! regexp engine complains about the plus signs
/C\+\+/ # this works
/C\Q++\E/ # this works too

search for "bell" control characters, eg CTRL-G

/\cG/ # this is one way
/\007/ # this is another —— CIRL-G is octal 07
/\x07/ # here it is as a hex code

234 PerlClass.com for ACT Students August Feb 2007

Advanced regular expressions 11

11.5 Working with multiline strings

Often, you will want to read a file several lines at a time. Consider, for example,
a typical UNIX fortune cookie file, which is used to generate quotes for the for-

tune command:

[
)

Let's call it an accidental feature.
-- Larry Wall

[}
%

Linux: the choice of a GNU generation
When you say "I wrote a program that crashed Windows", people just
stare at you blankly and say "Hey, I got those with the system, *for
free*".

-- Linus Torvalds
I don't know why, but first C programs tend to look a lot worse than
first programs in any other language (maybe except for fortran, but
then I suspect all fortran programs look like "firsts')

-- Olaf Kirch

[
)

All language designers are arrogant. Goes with the territory...
-- Larry Wall

We all know Linux is great... it does infinite loops in 5 seconds.

-- Linus Torvalds
Some people have told me they don't think a fat penguin really embod-
ies the grace of Linux, which just tells me they have never seen a
angry penguin charging at them in excess of 100mph. They'd be a lot
more careful about what they say if they had.

-- Linus Torvalds, announcing Linux v2.0

[)
“

The fortune cookies are separated by a line which contains nothing but a percent

PerlClass.com for ACT Students August 2007 235

11

236

Advanced regular expressions

sign.

To read this file one item at a time, we would need to set the delimiter to some-
thing other than the usual \n - in this case, we'd need to set it to something like

\n%\n.

To do this in Perl, we use the special variable s/.

$/ = "\n%\n";

Conveniently enough, setting s/ to " will cause input to occur in "paragraph
mode", in which two or more consecutive newlines will be treated as the delim-
iter. Undefining s/ will cause the entire file to be slurped in.

undef $/;

$_ = <FH>; # whole file now here

RTFM !

4 53-59
2 127-140
7 403
28 653-676
32 884
perlvar
English English provides friendlier
names for special variables
3 49 '$_quickly

PerlClass.com for ACT Students August Feb 2007

Advanced regular expressions 11

Since s/ isn't the easiest name to remember, we can use a longer name by using
the English module:

use English;

$INPUT _RECORD SEPARATOR = "\n%\n"; # long name for $/
$RS = "\n%\n"; # same thing, awk-like

11.5.1 Exercises

1. In your directory is a file called exercises/perlinter/linux.txt whichis a
set of Linux-related fortunes, formatted as in the above example. Use regu-
lar expressions to find only those quotes which were uttered by Larry Wall.

(AI’ISWCI‘Z exercises/perlinter/answers/larry. pl)

PerlClass.com for ACT Students August 2007 237

11 Advanced regular expressions

11.6 Answer

#!/usr/bin/perl -w
use strict;

my $pattern = "Larry Wall";
$/ = "\n%\n";

while (<>) {
print if /$pattern/;

238 PerlClass.com for ACT Students August Feb 2007

Advanced regular expressions 11

11.7 Regexp modifiers for multiline data

The /s and /m modifiers can be used to treat the string you're matching against
as either a single or multiple lines. In single line mode, ~ will match only at the
start of the entire string, and s will match only at the end of the entire string. In
multiline mode, they will match at embedded newlines as well.

my $string = qq(

This is some text

and some more text
spanning several lines

);

if ($string =~ /~and some/m) { # this will match
print "Matched in multiline mode\n";

}

if ($string =~ /~and some/s) { # this won't match
print "Matched in single line mode\n";

}

In single line mode, the dot metacharacter will match \n. In multiline mode, it
won't.

The differences between default, single line, and multiline mode are set out very
succinctly by Jeffrey Friedl in Mastering Regular Expressions (see the Bibliog-
raphy at the back of these notes for details). The following table is paraphrased
from the one on page 236 of that book.

His term "clean multiline mode" refers to a mode which is similar to multi-line,
but which does not strip the newline character from the end of each line.

PerlClass.com for ACT Students August 2007 239

11

240

Advanced regular expressions

Table 11-2. Effects of single and multiline options

Mode Specified | ~ matches | s matches | Dot matches
with startof... |endof... | newline
default neither /s string string No
nor /m
single-line /s string string Yes
multi-line /m line line No
clean multi-line | /ms line line Yes

PerlClass.com for ACT Students August Feb 2007

Advanced regular expressions 11

11.8 Backreferences

11.8.1 Special variables

There are several special variables related to regular expressions.

- s 1s the matched text

- s 1s the unmatched text to the left of the matched text

- s is the unmatched text to the right of the matched text

.« $1, $2, $3, etc. The text matched by the 1st, 2nd, 3rd, etc sets of parentheses.

All these variables are modified when a match occurs, and can be used in any
way that other scalar variables can be used.

this...
my ($match) = m/~(\d+)/;
print $match;

is equivalent to this:

m/”~\d+/;

print $&;

match the first three words...

m/~(\w+) (\w+) (\w+)/;

print "$1 $2 $3\n";

You can also use s« and other special variables in substitutions:
$string = "It was a dark and stormy night.";

$string =~ s/dark|wet|cold/very $&/;

If you want to use parentheses simply for grouping, and don't want them to set a
s1 style variable, you can use a special kind of non-capturing parentheses, which

PerlClass.com for ACT Students August 2007 241

11

242

Advanced regular expressions

this only sets $1 - the first two sets
of parentheses are non-capturing
m/~(2:\w+) (7:\w+) (\w+)/;

The special variables s1 and so on can be used in substitutions to include
matched text in the replacement expression:

swap first and second words
s/7(\w+) (\w+)/%$2 $1/;

However, this is no use in a simple match pattern, because s1 and friends aren't
set until after the match is complete. Something like:

my $word = "this";
print if m/($word) $1/;

... will not match "this this". Rather, it will match "this" followed by whatever s1
was set to by an earlier match.

In order to match "this this" we need to use the special regular expression
metacharacters \1, \2, etc. These metacharacters refer to parenthesized parts of a
match pattern, just as s1 does, but within the same match rather than referring
back to the previous match.

my $word = "this";
print if m/($word) \1/;

PerlClass.com for ACT Students August Feb 2007

Advanced regular expressions 11

11.9 EXxercises

1. Write a script which swaps the first and the last words on each line (An-

SVVerZexercises/perlinter/answers/firstlast.pl)

2. Write a script which looks for doubled terms such as "bang bang" or "quack
quack" and prints out all occurrences. This script could be used for finding
typographic errors in text. (AnSwer: exercises/perlinter/answers/dou-
ble.pl)

11.9.1 Advanced

1. Modify the above script to work across line boundaries (Answer: exercis-

es/perlinter/answers/multiline_double.pl)

2. What about case sensitivity?

PerlClass.com for ACT Students August 2007 243

11 Advanced regular expressions

11.10 Answers

11.10.1 Exercise 1

#!/usr/bin/perl -w
use strict;

while (<>) {

S (
~ # start of line
(\W?) # optional punctuation mark
(\w+) # first word
(.*7) # non-greedy match on stuff in the middle
(\w+) # last word
(\W?) # optional punctuation mark
$

)

($1$4$3$2$5)9x;

print;

11.10.2 Exercise 2

#!/usr/bin/perl -w
use strict;
while (<>) {

print "$&\n" if /(\w+) \1/;
}

11.10.3 Advanced Exercise 1
#!/usr/bin/perl -w

use strict;
$/ =""; # suck in whole file at once

244 PerlClass.com for ACT Students August Feb 2007

Advanced regular expressions 11
$ = <STDIN>; # get whole file

this leaves linebreaks in - if you want to remove them, you'll have

to
modify this next bit. Or possibly the previous bit.

print "$&\n" while m/(\w+) (\s|\n)\1/g;

PerlClass.com for ACT Students August 2007 245

11

Advanced regular expressions

11.11 Section summary

246

Input data can be split into multiline strings using the special variable s/, also

known as SINPUT_RECORD_SEPARATOR.

The /s and /m modifiers can be used to treat multiline data as if it were a sin-
gle line or multiple lines, respectively. This affects the matching of ~ and s,
as well as whether or not . will match a newline.

The special variables ss, $° and s' are always set when a successful match
occurs

$1, $2, $3 etc are set after a successful match to the text matched by the first,

second, third, etc sets of parentheses in the regular expression. These should
only be used outside the regular expression itself, as they will not be set until
the match has been successful.

Special non-capturing parentheses (2:...) can be used for grouping when
you don't wish to set one of the numbered special variables.

Special metacharacters such as \1, \2 etc may be used within the regular ex-
pression itself, to refer to text previously matched.

PerlClass.com for ACT Students August Feb 2007

Chapter 12: More func-
tions

In this chapter...

In this chapter, we discuss some more advanced Perl functions.

12 More functions

12.1 The grep() function

The grep() function is used to search a list for elements which match a certain
regexp pattern. It takes two arguments - a pattern and a list - and returns a list
of the elements which match the pattern.

RTFM !

5 112
3 178 - 179
24 605
29 730
-f grep
4 136 - 137
17 236 - 237
B 292

trivially check for valid email addresses
my @valid email addresses = grep /\@/, @email addresses;

The grep() function temporarily assigns each element of the list to s_ then per-
forms matches on it.

There are many more complicated uses for the grep function. For instance, in-
stead of a pattern you can supply an entire block which is to be used to process
the elements of the list.

my @long_words = grep { (length($_) > 8); } @words;

grep() doesn't require a comma between its arguments if you are using a block

248 PerlClass.com for ACT Students August Feb 2007

More functions 12

as the first argument, but does require one if you're just using an expression.
Have a look at the documentation for this function to see how this is described.

12.1.1 EXxercises

1. Use grep() to return a list of elements which contain numbers (Answer: ex-

ercises/perlinter/answers/grepnumber.pl)
2. Use grep() to return a list of elements which are
a. keys to a hash (Answer: exercises/perlinter/answers/grepkeys. pl)

b. readable files (Al’lSWCI‘Z exercises/perlinter/answers/grepfiles. pl)

PerlClass.com for ACT Students August 2007 249

12 More functions

12.2 Answers

12.2.1 Exercise 1
#!/usr/bin/perl -w

use strict;

my @list = qw(2 be or not 2 be 3com 2morrow);
print grep /\d/, @list;

12.2.2 Exercise 2a

#!/usr/bin/perl -w
use strict;

my %hash = (

alpha => “a",
bravo => "b",
charlie => "c",
delta => "d",
echo => ",

);
my @array = qw(alpha zulu mary);

print grep { exists $hash{$ } } @array;

12.2.3 EXxercise 2b
#!/usr/bin/perl -w

use strict;
my @array = qw(/etc/passwd /etc/shadow /usr/local /no/such/file);
use -r file test operator to find readable files

250 PerlClass.com for ACT Students August Feb 2007

More functions 12

print grep { -r $ } @array;

PerlClass.com for ACT Students August 2007 251

12 More functions

12.3 The map() function

The map () function can be used to perform an action on each member of a list
and return the results as a list.

my @lowercase = map lc, @words;
my @doubled = map { $ * 2 } @numbers;

map() 1s often a quicker way to achieve what would otherwise be done by iterat-
ing through the list with foreach.

foreach (@words) {
push (@lowercase, lc($);

}

Like grep(), it doesn't require a comma between its arguments if you are using
a block as the first argument, but does require one if you're just using an ex-
pression.

12.3.1 EXxercises

1. Create an array of numbers. Use map() to find the square of each number.

Print out the results.

252 PerlClass.com for ACT Students August Feb 2007

More functions 12

12.4 Chapter summary

- The grep() function can be used to find items in a list which match a certain
regular expression

« The map() function can be used to perform an operation on each member of a
list.

PerlClass.com for ACT Students August 2007 253

Chapter 13: System in-
teraction

In this section...

In this section, we look at different ways to interact with the operat-
ing system. In particular, we examine the system() function, and the
backtick command execution operator. We also look at security and
platform-independence issues related to the use of these commands

in Perl.

13 System interaction

13.1 system() and exec()

The system() and exec() functions both execute system commands.

system() forks, executes the commands given in its arguments, waits for them
to return, then allows your Perl script to continue. exec () does not fork, and ex-
its when it's done. systenm() is by far the more commonly used.

$ perl -we 'system("/bin/true"); print "Foo\n";'
Foo

$ perl -we 'exec("/bin/true"); print "Foo\n";'
Statement unlikely to be reached at -e line 1.
(Maybe you meant system() when you said exec()?)

If the system command fails, the error message will be available via the special
variable s!.

$ perl -e 'system("cat non-existant-file") || die "$!";'
cat: non-existant-file: No such file or directory

13.1.1 Exercises

1. Write a script to ask the user for a username on the system, then perform
the finger command to see information about that user. (Answer: exercis-

es/perlinter/answers/finger. pl)

256 PerlClass.com for ACT Students August Feb 2007

System interaction 13

13.2 Answer

#!/usr/bin/perl -w
use strict;

print "What user do you want to finger? ";
my $username = <STDIN>;

system("finger $username");

PerlClass.com for ACT Students August 2007 257

13

System interaction

13.3 Using backticks

258

Single quotes can be used to specify a literal string which can be printed, as-
signed to a variable, et cetera. Double quotes perform interpolation of variables
and certain escape sequences such as \n to create a string which can also be
printed, assigned, etc.

A new set of quotes, called backticks, can be used to interpolate variables then
run the resultant string as a shell command. The output of that command can
then be printed, assigned, and so forth.

Backticks are the backwards-apostrophe character (* which appears below the
tilde (~), next to the number 1 on most keyboards.

Just as the q() and qq() functions can be used to emulate single and double
quotes and save you from having to escape quotemarks that appear within a
string, the equivalent function gx () can be used to emulate backticks.

PerlClass.com for ACT Students August Feb 2007

System interaction 13

RTFEM !

2 52 Backticks
2 41 qx()
2 63
perlop
-fgx
19 770 - 772 Securely running

shell commands with
user input from CGI,
etc.

1 17
14 107 - 201

13.3.1 Exercises

1. Modify your earlier finger program to use backticks instead of system()
(AI’ISWCI‘Z exercises/perlinter/answers/backtickfinger.pl)

2. Change it to use gx () instead (Answer:

exercises/perlinter/answers/gxfinger. pl)

3. The UNIX command whoami gives your username. Since most shells sup-
port backticks, you can type finger “whoami' to finger yourself. Use shell
backticks inside your gx () statement to do this from within your Perl pro-

gram. (AIISWGI‘Z exercises/perlinter/answers/qxfingerZ.pl)

PerlClass.com for ACT Students August 2007 259

13

13.4 Answers

13.4.1 Exercise 1

#!/usr/bin/perl -w

use strict;

System interaction

print "What user do you want to finger? ";

my $username = <STDIN>;

print ~finger $username’;

13.4.2 Exercise 2
#!/usr/bin/perl -w

use strict;

print "What user do you want to finger? ";

my $username = <STDIN>;

print gx(finger $username);

13.4.3 Exercise 3
#!/usr/bin/perl -w

use strict;

print gx(finger “whoami’);

260

PerlClass.com for ACT Students August Feb 2007

System interaction 13

13.5 Platform dependency issues

Note that the examples given above will not work consistently on all operating
systems. In particular, the use of system() calls or backticks with UNIX-specif-
ic commands will not work under Windows NT. Slightly less obviously, the
use of backticks on NT can sometimes fail when the output of a command is
sent explicitly to the screen rather than being returned by the backtick opera-
tion.

The same situation used to apply to MacOS, but now that MacOS is Linux-
based and tends to have much better support for free and open source software,
portability has basically become a Windows versus POSIX situation. With
Linux, MacOS, Solaris, and every other flavor of UNIX all living in the POSIX
camp and Microsoft survives as an anomaly.

PerlClass.com for ACT Students August 2007 261

13 System interaction

13.6 Security considerations

Many of the examples given above can result in major security risks if the com-
mands executed are based on user input. Consider the example of a simple fin-
ger program which asked the user who they wanted to finger:

#!/usr/bin/perl -w

use strict;
print "Who do you want to finger? “;
my $username = <STDIN>;

print "~ finger $username’;

Imagine if the user's input had been skud; cat /etc/passwd, Or worse yet, skud;
rm -rf /. The system would perform both commands as though they had been
entered into the shell one after the other.

Luckily, Perl's -t flag can be used to check for unsafe user inputs.

#!/usr/bin/perl -wT

RTFM !

6 356 - 360

23 557 - 566
perlsec

19 767 - 770

B 294 light

262 PerlClass.com for ACT Students August Feb 2007

System interaction 13

-1 stands for "taint checking". Data input by the user is considered "tainted"
and until it has been modified by the script, may not be used to perform shell
commands or system interactions of any kind. This includes system interactions
such as open (), chmod (), and any other built-in Perl function which interacts
with the operating system.

The only thing that will clear tainting is referencing substrings from a regexp
match. The perisec online documentation contains a simple example of how to
do this. Read it now, and use it to complete the following exercises.

Note that you'll also have to explicitly set sexv{'pat'} to something safe (like
/bin) as well.

Advanced

There is a Safe module available from CPAN that will let
you setup sand boxes (similar to the JVM) that you can run
Perl code in with arbitrary restrictions.

13.6.1 Exercises

1. Modify the finger program above to perform taint checking (Answer: exer-
cises/perlinter/answers/taintfinger.pl)

2. Take one of your scripts using open () Or opendir() and modify it to accept
a filename as user input. Turn taint checking on. What sort of regular ex-

pression could you use to check for valid filenames? (Answer:

exercises/perlinter/answers/taintfile.pl)

PerlClass.com for ACT Students August 2007 263

13 System interaction

13.7 Answers

13.7.1 Exercise 1
#!/usr/bin/perl -wT
use strict;
$ENV{PATH} = "/usr/bin";

print "What user do you want to finger? ";
my $username = <STDIN>;

if ($username =~ /~(\w+)$/) {

$username = $1; # $username now untainted
system("finger $username");
} else {

die "You're not allowed to finger $username";

}

13.7.2 EXxercise 2
#!/usr/bin/perl -wT

use strict;

print "What file do you want to output to? “;
my $filename = <STDIN>;

if ($filename =~ /~([-\w.14)$/) {

$filename = $1; # $filename now untainted
} else {

die "Bad filename in $filename";

open (COUNT, ">$filename") || die ("Can't open $filename: $!");

foreach (1..100) {

264 PerlClass.com for ACT Students August Feb 2007

System interaction 13

print COUNT "$ \n";

close COUNT;

PerlClass.com for ACT Students August 2007 265

13 System interaction

13.8 Section summary

« The system() function can be used to perform system commands. s! is set if
any error Occurs.

- The backtick operator can be used to perform a system command and return
the output. The gx () quoting function/operator works similarly to backticks.

- The above methods may not result in platform independent code.

- Data input by users or from elsewhere on the system can cause security prob-
lems. Perl's -1 flag can be used to check for such "tainted" data

- Tainted data can only be untainted by referencing a substring from a pattern
match.

266 PerlClass.com for ACT Students August Feb 2007

Chapter 14: Refer-
ences and data struc-
tures

In this section...

In this section, we look at Perl's powerful reference syntax and how it
can be used to implement complex data structures such as multi-di-
mensional lists, hashes of hashes, and more.

14 References and data structures

14.1 Assumed knowledge

For this section, it is assumed that you have a good understanding of Perl's data
types: scalars, arrays, and hashes. Prior experience with languages which use
pointers or references is helpful, but not required.

268 PerlClass.com for ACT Students August Feb 2007

References and data structures
14

14.2 Introduction to references

Perl's basic data type is the scalar. Arrays and hashes are made up of scalars, in
one- or two-dimensional lists. It is not possible for an array or hash to be a
member of another array or hash under normal circumstances.

However, there is one thing about an array or hash which is scalar in nature --
its memory address. This memory address can be used as an item in an array or
list, and the data extracted by looking at what's stored at that address. This is
what a reference is.

RTFEM !

Src Chap Pgs #
Nutshell 2™ 4 75-77
Camel 2™ 4 243 -275
Camel 3" 8 242 - 267
perldoc perlref
Cookbook 2™ 11 407 - 443
Learning 3" B 296 light

. k
Learning 4"

Also Chapter 1 in Advanced Perl Programming and Tom
Christiansen's FMTEYEWTK (Far More Than You Ever
Wanted To Know) tutorials contain information about refer-
ences. They're available from the Perl website
(http://www.perl.com/)

PerlClass.com for ACT Students August 2007 269

http://www.perl.com/

14 References and data structures

14.3 Uses for references

There are three main uses for Perl references.

14.3.1 Creating complex data structures

Perl references can be used to create complex data structures, for instance hash-
es of arrays, arrays of hashes, hashes of hashes, and more.

14.3.2 Passing arrays and hashes to subroutines and func-

tions

Since all arguments to subroutines are flattened to a list of scalars, it is not pos-
sible to use two arrays as arguments and have them retain their individual iden-

tities.
my @l = gw(a b c);
my @2 = qw(d e f);

printargs(@al, @a2);

sub printargs {
print "@ \n";
}

The above example will printouta b ¢ d e f.

References can be used in these circumstances to keep arrays and hashes passed
as arguments separate.

14.3.3 Object oriented Perl

References are used extensively in object oriented Perl. In fact, Perl objects are
references to data structures.

270 PerlClass.com for ACT Students August Feb 2007

References and data structures
14

14.4 Creating and dereferencing references

To create a reference to a scalar, array or hash, we prefix its name with a back-

slash:

my $scalar = "This is a scalar";

my @rray = qw(a b c);

my Shash = (
'sky' => 'blue’,
‘apple’ => ‘red',
‘grass'’ => ‘green’

);

my $scalar ref = \$scalar;

my $array ref = \@array;

my $hash ref %hash;

Note that all references are scalars, because they contain a single item of infor-
mation: the memory address of the actual data.

This is what a reference looks like if you print it out:

% perl -e 'my $foo ref = \$foo; print "$foo ref\n";'

SCALAR (0x80c697c¢)

% perl -e 'my $bar ref = \@bar; print "$bar ref\n";'
ARRAY (0x80c6988)

% perl -e 'my $baz ref = \%baz; print "$baz ref\n";'
HASH (0x80c6988)

You can find out whether a scalar is a reference or not by using the ref () func-
tion, which returns a string indicating the type of reference, or undef if a scalar
is not a reference..

PerlClass.com for ACT Students August 2007 271

14

272

References and data structures

RTFEM !

4 77

5 126

3 204

4 251 - 252 Other tricks with ref-

erences

8 258

29 773
-f ref

11 409

13 499

Also in Advanced Perl Programming.

Dereferencing (getting at the actual data that a reference points to) is achieved
by prepending the appropriate variable-type punctuation to the name of the ref-
erence. For instance, if we have a hash reference shash_reference we can deref-
erence it by looking for $$hash_reference

my $new scalar
my @new_array
my %new_hash

$$scalar ref;
@$array ref;
%$hash ref;

In other words, wherever you would normally put a variable name (like
new_scalar) you can put a reference variable (like $scalar_ref).

Here's how you access array elements or slices, and hash elements:

print $$array ref[0]; # prints the first element of the

PerlClass.com for ACT Students August Feb 2007

References and data structures

14
array referenced by $array ref
print @$array ref[0..2]; # prints an array slice
print $$hash ref{'sky'}; # prints a hash element's value

The other way to access the value that a reference points to is to use the
"arrow" notation. This notation is usually considered to be better Perl style than
the one shown above, which can have precedence problems and is less visually
clean.

print $array ref->[0];
print $hash ref->{'sky'};

PerlClass.com for ACT Students August 2007 273

14

References and data structures

14.5 Passing multiple arrays/hashes as argu-
ments

274

If we were attempt to pass two arrays together to a subroutine, they would be
flattened out to form one large array.

my @fruits = qw(apple orange pear banana);
my @rodents = qw(mouse rat hamster gerbil rabbit);
my @books = gw(camel llama panther sheep);

mylist(@fruit, @rodents);

print out all the fruits and then all the rodents
sub mylist {
my @list = @ ;
foreach (@list) {
print "$ \n";

}

If we want to keep them separate, we need to pass the arrays by references:

myreflist(\@fruit, \@rodents);

sub myreflist {
my ($firstref, $secondref) =@ ;
print "First list:\n";
foreach (@$firstref) {
print "$ \n";
}
print "Second list:\n";
foreach (@$secondref) {
print "$ \n";

PerlClass.com for ACT Students August Feb 2007

References and data structures
14

14.6 Complex data structures

References are most often used to create complex data structures. Since hashes
and arrays only accept scalars as elements, references (which are inherently
scalars) can be used to create arrays of arrays or hashes, and hashes of arrays or
hashes.

my %categories = (

"fruits' => \@fruits,
'rodents’ => \@rodents,
'"books => \@books,

);

to print out "gerbil"...
print $categories{'rodents'}->[3];

PerlClass.com for ACT Students August 2007 275

14 References and data structures

14.7 Anonymous data structures

We can use anonymous data structures to create complex data structures, to
avoid having to declare many temporary variables. Anonymous arrays are cre-
ated by using square brackets instead of round ones. Anonymous hashes use
curly brackets instead of round ones.

the old two-step way:

my @array = qw(a b c d);

my $array ref = \@array;

if we get rid of $array ref, @array will still hang round using
up memory. Here's how we do it without the intermediate step,
by creating an anonymous array:

my $array ref = ['a', 'b', 'c', 'd'];

look, we can still use qw() too...

my $array ref = [gw(a b c d)];

more useful yet, put these anon arrays straight into a hash:

my Stransport = (

‘cars' => [qw(toyota ford holden porsche)],
'planes’ => [qw(boeing harrier)],
'boats’ => [gw(clipper skiff dinghy)],

The same technique can be used to create anonymous hashes:

The old, two-step way:

my Shash = (

276 PerlClass.com for ACT Students August Feb 2007

References and data structures

14
a => 1,
=> 2 ,
=> 3

)i
my $hash ref = \$hash;

the quicker way, with an anonymous hash:
my $hash ref = {

a => 1,
b => 2,
C => 3

PerlClass.com for ACT Students August 2007 277

14 References and data structures

14.8 EXxercises

1. Create a complex data structure as follows:

a. Create a hash called spizza_prices which contains prices for small,
medium and large pizzas.

b. Create a hash called spasta_prices which contains prices for small,
medium and large serves of pasta.

c. Create a hash called smilkshake_prices which contains prices for small,
medium and large milkshakes.

d. Create a hash containing references to the above hashes, so that given a
type of food and a size you can find the price of it.

e. Convert the above hash to use anonymous data structures instead of the
original three pizza, pasta and milkshake hashes

f. Add a new element to your hash which contains the prices of salads
(AHSWGI'Z exercises/perlinter/answers/food .pl)

2. Create a subroutine which can be passed a scalar and a hash reference.
Check whether there is an element in the hash which has the scalar as its
key. Hint: use exists for this. (Answer: exercises/perlinter/answers/ex—
ists.pl)

278 PerlClass.com for ACT Students August Feb 2007

References and data structures
14

14.9 Answers

14.9.1 Exercise 1
#!/usr/bin/perl -w

use strict;

my %pizza prices = (
"small" => 6,
"medium” => 8,
"medium” => 10,

);

my S%pasta prices = (
"small" => 4,
"medium" => 5,
"large" => 7,

);

my %milkshake prices = (
"small" => 2,
"medium” => 3,
"large" => 4,
);

original, hash reference way...

my S%food prices = (

"pizza" => %pizza prices,
"pasta” => %pasta prices,
"milkshakes" => %smilkshake prices,

);
and here's how we do the one with anonymous hashes

my S%anon_food prices = (
“pizza" = {

PerlClass.com for ACT Students August 2007 279

14 References and data structures

"small" => 6,
"medium" => 8,
"medium" => 10,
}
"pasta” = {
"small" => 4,
"medium" => 5,
"large" => 7,
}
"milkshakes" => {
"small" => 2,
"medium" => 3,
"large" => 4,
}

);
add an element...

$anon_food prices{"salad"} = {

"small" => 3,
"medium" => 5,
"large" = 7,

+;

14.9.2 EXxercise 2
#!/usr/bin/perl -w

use strict;

set up some initial variables and stuff

my $scalar = "quux";

my Shash = (

"foo" => "The first metasyntactic variable",
"bar" => "The second metasyntactic variable",
"baz" => "The third metasyntactic variable",

280 PerlClass.com for ACT Students August Feb 2007

References and data structures
14

print "Element exists\n" if my exists($scalar, \%hash);
sub my exists {

my ($scalar, $hashref) =@ ;
return 1 if exists($hashref->{$scalar});

PerlClass.com for ACT Students August 2007 281

14

References and data structures

14.10 Section summary

282

References are scalar data consisting of the memory address of a piece of
Perl data, and can be used in arrays, hashes, etc wherever you would use a
normal scalar

References can be used to create complex data structures, to pass multiple ar-
rays or hashes to subroutines, and in object-oriented Perl.

References are created by prepending a backslash to a variable name.

References are dereferenced by replacing the name part of a variable name
(eg foo in sfoo) with a reference, for example replace foo with $foo_ref to
get ssfoo_ref

References to arrays and hashes can also be dereferenced using the arrow —>
notation.

References can be passed to subroutines as if they were scalars.
References can be included in arrays or hashes as if they were scalars.

Anonymous arrays can be made by using square brackets instead of round;
anonymous hashes can be made by using curly brackets instead of round.
These can be assigned directly to a reference, without any intermediate step.

PerlClass.com for ACT Students August Feb 2007

Chapter 15: peristyle

In this chapter...

We will learn what it means to be stylish in Perl.

15

perlstyle

15.1 peristyle 5.8.8

284

What follows is the perlstyle page form the Perl 5.8.8 distribution. It raises a
number of points worth considering while developing in Perl.

Each programmer will, of course, have his or her own preferences in regards to
formatting, but there are some general guidelines that will make your programs
easier to read, understand, and maintain.

The most important thing is to run your programs under the -w flag at all times.
You may turn it off explicitly for particular portions of code via the no warn-
ings pragma or the $"W variable if you must. You should also always run under
use strict or know the reason why not. The use sigtrap and even use di-
agnostics pragmas may also prove useful.

Regarding aesthetics of code lay out, about the only thing Larry cares strongly
about is that the closing curly bracket of a multi-line BLOCK should line up
with the keyword that started the construct. Beyond that, he has other prefer-
ences that aren't so strong:

4-column indent.

Opening curly on same line as keyword, if possible, otherwise line up.

Space before the opening curly of a multi-line BLOCK.

One-line BLOCK may be put on one line, including curlies.

No space before the semicolon.

Semicolon omitted in "short" one-line BLOCK.

Space around most operators.

Space around a "complex" subscript (inside brackets).

Blank lines between chunks that do different things.

Uncuddled elses.

No space between function name and its opening parenthesis.

Space after each comma.

PerlClass.com for ACT Students August Feb 2007

perlstyle

15

Long lines broken after an operator (except and and or).
Space after last parenthesis matching on current line.

Line up corresponding items vertically.

Omit redundant punctuation as long as clarity doesn't suffer.

Larry has his reasons for each of these things, but he doesn't claim that everyone

else's mind works the same as his does.

Here are some other more substantive style issues to think about:

Just because you CAN do something a particular way doesn't mean that
you SHOULD do it that way. Perl is designed to give you several ways to

do anything, so consider picking the most readable one. For instance
open(F00,$foo) || die "Can't open $foo: $!";

is better than
die "Can't open $foo: $!" unless open(F00,$foo0);

because the second way hides the main point of the statement in a modifi-

er. On the other hand
print "Starting analysis\n" if $verbose;

is better than
$verbose && print "Starting analysis\n";

because the main point isn't whether the user typed -v or not.

Similarly, just because an operator lets you assume default arguments
doesn't mean that you have to make use of the defaults. The defaults are
there for lazy systems programmers writing one-shot programs. If you
want your program to be readable, consider supplying the argument.

Along the same lines, just because you CAN omit parentheses in many

places doesn't mean that you ought to:
return print reverse sort num values %array;
return print(reverse(sort num (values(%array))));

PerlClass.com for ACT Students August 2007 285

15

286

perlstyle

When in doubt, parenthesize. At the very least it will let some poor
schmuck bounce on the % key in vi.

Even if you aren't in doubt, consider the mental welfare of the person who
has to maintain the code after you, and who will probably put parentheses
in the wrong place.

Don't go through silly contortions to exit a loop at the top or the bottom,
when Perl provides the last operator so you can exit in the middle. Just

"outdent" it a little to make it more visible:
LINE:
for (;;) {
statements;
last LINE if $foo;
next LINE if /~#/;
statements;

Don't be afraid to use loop labels--they're there to enhance readability as
well as to allow multilevel loop breaks. See the previous example.

Avoid using grep() (or map()) or “backticks™ in a void context, that is,
when you just throw away their return values. Those functions all have re-
turn values, so use them. Otherwise use a foreach() loop or the
system() function instead.

For portability, when using features that may not be implemented on ev-
ery machine, test the construct in an eval to see if it fails. If you know
what version or patchlevel a particular feature was implemented, you can
test $1 ($PERL_VERSION in English) to see if it will be there. The Config
module will also let you interrogate values determined by the Configure

program when Perl was installed.

Choose mnemonic identifiers. If you can't remember what mnemonic
means, you've got a problem.

While short identifiers like $gotit are probably ok, use underscores to

PerlClass.com for ACT Students August Feb 2007

perlstyle 15

separate words in longer identifiers. It is generally easier to read

$var names_ like this than $VarNamesLikeThis, especially for non-
native speakers of English. It's also a simple rule that works consistently
with VAR NAMES LIKE THIS.

Package names are sometimes an exception to this rule. Perl informally
reserves lowercase module names for "pragma" modules like integer
and strict. Other modules should begin with a capital letter and use
mixed case, but probably without underscores due to limitations in primi-
tive file systems' representations of module names as files that must fit
into a few sparse bytes.

You may find it helpful to use letter case to indicate the scope or nature of
a variable. For example:

$ALL CAPS HERE constants only (clashes with perl vars!)
$Some Caps Here package-wide global/static
$no caps here function scope my() or local() variables

Function and method names seem to work best as all lowercase. E.g.,
$obj->as string().

You can use a leading underscore to indicate that a variable or function
should not be used outside the package that defined it.

If you have a really hairy regular expression, use the /x modifier and put
in some whitespace to make it look a little less like line noise. Don't use
slash as a delimiter when your regexp has slashes or backslashes.

Use the new and and or operators to avoid having to parenthesize list op-
erators so much, and to reduce the incidence of punctuation operators like
&& and | |. Call your subroutines as if they were functions or list operators
to avoid excessive ampersands and parentheses.

Use here documents instead of repeated print() statements.

Line up corresponding things vertically, especially if it'd be too long to fit

PerlClass.com for ACT Students August 2007 287

15

288

perlstyle

on one line anyway.

$IDX = $ST MTIME;

$IDX = $ST ATIME if $opt u;
$IDX = $ST CTIME if $opt c;
$IDX = $ST SIZE if $opt s;

mkdir $tmpdir, 0700 or die "can't mkdir $tmpdir: $!'";
chdir($tmpdir) or die "can't chdir $tmpdir: $!";
mkdir 'tmp', 0777 or die "can't mkdir $tmpdir/tmp: $!";

Always check the return codes of system calls. Good error messages
should go to STDERR, include which program caused the problem, what
the failed system call and arguments were, and (VERY IMPORTANT)
should contain the standard system error message for what went wrong.

Here's a simple but sufficient example:
opendir(D, $dir) or die "can't opendir $dir: $!'";

Line up your transliterations when it makes sense:
tr [abc]
[xyz];

Think about reusability. Why waste brainpower on a one-shot when you
might want to do something like it again? Consider generalizing your
code. Consider writing a module or object class. Consider making your
code run cleanly with use strict and use warnings (or -w) in effect.
Consider giving away your code. Consider changing your whole world
view. Consider... oh, never mind.

Try to document your code and use Pod formatting in a consistent way.
Here are commonly expected conventions:

use C<> for function, variable and module names (and more gener-
ally anything that can be considered part of code, like filehandles or
specific values). Note that function names are considered more
readable with parentheses after their name, that is function().

use B<> for commands names like cat or grep.

PerlClass.com for ACT Students August Feb 2007

perlstyle 15

use F<> or C<> for file names. F<> should be the only Pod code for
file names, but as most Pod formatters render it as italic, Unix and
Windows paths with their slashes and backslashes may be less read-
able, and better rendered with C<>.

Be consistent.

Be nice.

PerlClass.com for ACT Students August 2007 289

Chapter 16: About
databases

In this chapter...

This chapter talks about databases in general, and the different types
of databases which can be used with Perl.

16 About databases

16.1 What is a database?

. A database is a collection of related information.

- The data stored in a database is persistent.

292 PerlClass.com for ACT Students August Feb 2007

About databases 16

16.2 Types of databases

There are many different types of databases, including:
- Flat-file text databases

- Associative flat-file databases such as Berkeley DB
- Relational databases

- Object databases

- Network databases

- Hierarchical databases such as LDAP

Relational databases are by far the most useful type commonly available, and
this training module focusses largely on them, after looking briefly at flat file
text databases.

PerlClass.com for ACT Students August 2007 293

16

About databases

16.3 Database management systems

294

A database management system (DBMS) is a collection of software which can
be used to create, maintain and work with databases. A client/server database
system is one in which the database is stored and managed by a database serv-
er, and client software is used to request information from the server or to send
commands to the server.

PerlClass.com for ACT Students August Feb 2007

About databases 16

16.4 Uses of databases

Databases are commonly used to store bodies of data which are too large to be
managed on paper or through simple spreadsheets. Most businesses use
databases for accounts, inventory, personnel, and other record keeping.
Databases are also becoming more widely used by home users for address
books, cd collections, recipe archives, etc. There are very few fields in which
databases cannot be used.

PerlClass.com for ACT Students August 2007 295

16 About databases

16.5 Chapter summary

A database 1s a collection of related information.

- Data stored in a database 1s persistent

- There are a number of different types of databases, including flat file, rela-
tional, and others

- Database management systems are collections of software used to manage
databases

- Databases are widely used in many fields

296 PerlClass.com for ACT Students August Feb 2007

Chapter 17: Textfiles
as databases

In this chapter...

In this chapter we investigate text-based or "flat file" databases and
how to use Perl to manipulate them. We also discuss some of the lim-
itations of this database format.

17 Textfiles as databases

17.1 Delimited text files

A delimited text file is one in which each line of text is a record, and the fields
are separated by a known character.

The character used to delimit the data varies according to the type of data.
Common delimiters include the tab character (\t in Perl) or various punctuation
characters. The delimiter should always be one which does not appear in the
data.

Delimited text files are easily produced by most desktop spreadsheet and
database applications (eg Microsoft Excel, Microsoft Access). You can usually
choose "File" then "Save As" or "Export", then select the type of file you would
like to save as.

Imagine a file which contains peoples' given names, surnames, and ages, delim-
ited by the pipe (1) symbol:

Fred|Flintstone|40
Wilma|Flintstone|36
Barney|Rubble|38
Betty|Rubble|34
Homer|Simpson|45
Marge|Simpson|39
Bart|Simpson|11
Lisa|Simpson|9

The file above is available in your exercises directory as delimited. txt.

17.1.1 Reading delimited text files

To read from a delimited text file:

#!/usr/bin/perl -w

use strict;

298 PerlClass.com for ACT Students August Feb 2007

Textfiles as databases 17

open (INPUT, "delimited.txt") or die "Can't open data file: $!";

while (<INPUT>) {
chomp; # remove newline
my @fields = split(/\|/, $);
print "$fields[1], $fields[0]: $fields[2]\n";

close INPUT;

This should print out:

Flintstone, Fred: 40
Flintstone, Wilma: 36

And so on.

17.1.2 Searching for records

One of the common uses of databases is to search for specific records.

#!/usr/bin/perl -w
use strict;
Find out what record the user wants:

print "Search for: ";
chomp (my $search string = <STDIN>);

open (INPUT, "delimited.txt") or die "Can't open data file: $!";

while (<INPUT>) {
chomp; # remove newline
my @fields = split(/\|/, $);

test whether the string matches given or family name
if ($fields[@] =~ /$search string/

PerlClass.com for ACT Students August 2007 299

17 Textfiles as databases

or $fields[1l] =~ /$search string/) {
print "$fields[1], $fields[0]: $fields[2]\n";

close INPUT;

17.1.3 Sorting records

Sorting records from a flat text database can be quite difficult. Simply sorting
the items line by line is one simplistic approach:

#!/usr/bin/perl -w

use strict;

open (INPUT, "delimited.txt") or die "Can't open data file: $!";
my @records = sort <INPUT>;

foreach (@records) {
chomp; # remove newline
my @fields = split(/\|/, $);
print "$fields[1], $fields[0]: $fields[2]\n";

close INPUT;

The above technique can only sort on the first field of the data (in the case of
our example, that would be the given name) and may have difficulties when it
encounters the delimiter.

To sort by any other field, we would first need to load the data into a list of lists
(using references), then use the sort () function's optional first argument to
specify a subroutine to use for sorting:

#!/usr/bin/perl -w

300 PerlClass.com for ACT Students August Feb 2007

Textfiles as databases 17

use strict;
open (INPUT, "delimited.txt") or die "Can't open data file: $!";
while (<INPUT>) {

chomp;

my @this record = split(/\|/, $);

build a list-of-lists containing references to each record
push (@records, \@this record);

sort takes an optional argument of what subroutine to use to sort
the data...

my @sorted = sort given name order @records;

foreach $record (@sorted) {

we have to print the items via a reference to the array...
print "$record->[1], $record->[0]: $record->[2]\n";

subroutine to implement sorting order
sub given name order {
$a->[0] cmp $b->[0];

Obviously this can be quite tricky, especially if the programmer is not totally
familiar with Perl references. It also requires loading the entire data set into
memory, which would be very inefficient for large databases.

17.1.4 Writing to delimited text files

The most useful function for writing to delimited text files is join, which is the
logical equivalent of sp1it.

#!/usr/bin/perl -w

PerlClass.com for ACT Students August 2007 301

17

302

Textfiles as databases

use strict;

open OUTPUT, ">>delimited.txt" or die "Can't open output file: $!";
my @record = qw(George Jetson 35);

print OUTPUT join("|", @record), "\n";

PerlClass.com for ACT Students August Feb 2007

Textfiles as databases 17

17.2 Comma-separated variable (CSV) files

Comma separated variable files are another format commonly produced by
spreadsheet and database programs. CSV files delimit their fields with commas,
and wrap textual data in quotation marks, allowing the textual data to contain

commas if required:

"Fred","Flintstone", 40
"Wilma","Flintstone", 36
“Barney", "Rubble",38
"Betty", "Rubble", 34
"Homer", "Simpson", 45
"Marge","Simpson",39
“Bart","Simpson",11
"Lisa","Simpson",9

CSV files are harder to parse than ordinary delimited text files. The best way to
parse them is to use the Text::ParseWords module:

#!/usr/bin/perl -w

use strict;
use Text::ParseWords;

open INPUT, "csv.txt" or die "Can't open input file: $!";

while (<INPUT>) {
my @fields = quotewords("," 0, $);

}

The three arguments to the quotewords () routine are:
« The delimiter to use

- Whether to keep any backslashes that appear in the data (zero for no, one for
yes)

- A list of lines to parse (in our case, one line at a time)

PerlClass.com for ACT Students August 2007 303

17 Textfiles as databases

17.3 Problems with flat file databases

17.3.1 Locking

When using flat file databases without locking, problems can occur if two or
more people open the files at the same time. This can cause data to be lost or
corrupted.

If you are implementing a flat file database, you will need to handle file locking
using Perl's f10ck function.

17.3.2 Complex data

If your data is more complex than a single table of scalar items, managing your
flat file database can become extremely tedious and difficult.

17.3.3 Efficiency

Flat file databases are very inefficient for large quantities of data. Searching,
sorting, and other simple activities can take a very long time and use a great
deal of memory and other system resources.

304 PerlClass.com for ACT Students August Feb 2007

Textfiles as databases 17

17.4 Chapter summary
- The two main types of text database use either delimited text or comma sepa-
rated variables to store data

- Delimited text can be read using Perl's sp1it function and written using the
join function

- Comma separated files are most easily read using the Text::ParseWords mod-
ule

- There are several problems with flat file databases including locking, effi-
ciency, and difficulties in handling more complex data

PerlClass.com for ACT Students August 2007 305

Chapter 18: Relational
databases

In this chapter...

The first section of this training session focuses on database theory,
and covers relational database systems, and SQL - the language used
to talk to them.

18

Relational databases

18.1 Tables and relationships

308

In a relational database, data is stored in tables. Each table contains data about a
particular type of entity (either physical or conceptual).

For instance, our sample database is the inventory and sales system for Acme
Widget Co. It has tables containing data for the following entities:

Table 18-1. Acme Widget Co Tables

Table Description

stock_item Inventory items

customer Customer account details

saleperson Sales people working for Acme Widget Co.
sales Sales events which occur

Tables in a database contain fields and records. Each record describes one enti-
ty. Each field describes a single item of data for that entity. You can think of it
like a spreadsheet, with the rows being the records and the columns being the
fields, thus:

Table 18-2. Sample table

ID number Description Price Quantity in stock
1 widget $9.95 12
2 gadget $3.27 20

Every table must have a primary key, which is a field which uniquely identifies
the record. In the example above, the Stock ID number is the primary key.

The following figures show the tables used in our database, along with their
field names and primary keys (in bold type).

PerlClass.com for ACT Students August Feb 2007

Relational databases

stock item
d:1nt(ll) aub hcrem ent
descripton: varchar(80)
price: foatid 2)
quantity: nt(11)

/?\ salesperson
I :1bt(ll) auto hcrem ent
: nam e: varchar80)
T
1
sales

d:1ht(ll) aub_icrement
saks date:dat
custom er d: nt(11)

saksperson_d:nt(11)
stock iem :iht(l)
quantiy: ht(11)
prie: foatd 2)

customer

:1nt(11l) autb ncrem ent
nam e: varchar(80)
address: varchar255)
suburb: varchar(50)

state: char@)

postcode: char(10)

Hlustration 18-4: UML-style ERD of the example schema

Table 18-3. the stock_item table

stock _item
id

description

price

quantity

Table 18-4. the customer table

customer
id

name

address

PerlClass.com for ACT Students August 2007

18

309

18

310

suburb

state

postcode

salesperson

id

name

Table 18-6. the sales table

sales

id

sale_date

salesperson_id

customer_id

stock item_id

quantity

price

Relational databases

Table 18-5. the salesperson table

PerlClass.com for ACT Students August Feb 2007

Relational databases 18

18.2 Structured Query Language

SQL is a semi-English-like language used to manipulate relational databases. It
1s based on an ANSI standard, though very few SQL implementations actually
adhere to the standard.

SQL statements are mostly case insensitive these days. While most books and
references use upper-case, these notes use lower-case throughout for readabili-
ty, and because the likelihood of needing to deal with older databases which
only understand upper-case is becoming increasingly slim.

The syntax given in these course notes is cut down for simplicity; for full infor-
mation, consult your database system's documentation. The MySQL documen-
tation is available on our system in /usr/doc/mysql-doc and /usr/doc/mysql-
manual, Or by pointing your web browser at http://training.netizen.com.au/.

18.2.1 General syntax

SQL is case usually insensitive, apart from table and field names (which may or
may not be case sensitive depending on what platform you're on -- on UNIX
they are usually case sensitive, on Windows they usually aren't).

String data can be delimited with either double or single quotes. Numerical data
does not need to be delimited.

Wildcards may be used when searching for string data. A ¢ (percent) sign is
used to indicated multiple characters (much as an asterisk is used in DOS or
UNIX filename wildcards) while the underscore character (_) can be used to in-
dicate a single character, similar to the » under UNIX or DOS.

The following comparison operators may be used:

Table 18-7. Comparison Operators

Operator Meaning
= Equality
> Greater than

PerlClass.com for ACT Students August 2007 311

18

312

Relational databases

< Less than

>= Greater than or equal to
<= Less than or equal to
<> Inequality

like Wildcard matching

In the following syntax examples, the term conditionis used as shorthand
for any expression which can be evaluated for truth, for instance 2 + 2 = 4 or

name like "AS%".

Conditions may be combined by using and and or; use parentheses to indicate
precedence. For instance, name 1like "aA%" or name like "B%" Will find all
records where the ““name" field starts with A or B.

18.2.1.1 SELECT

An SQL select statement is used to select certain rows from a table or tables.
A select query will return as many rows as match the criteria.

select fieldl [, field2, field3] from tablel [, table2]

where condition

order by field [desc]

select id, name from customer;
select id, name from customer order by name;
select id, name from customer order by name desc;

We can use a select statement to obtain data from multiple tables. This is re-
ferred to as a “"join".

select * from customer, sales where customer.id = sales.customer id

PerlClass.com for ACT Students August Feb 2007

Relational databases 18

18.2.1.2 INSERT
An insert query is used to add data to the database, a row at a time.

The columns names are optional to make typing queries easier. This is fine for interactive

use, however it is very bad practice to omit them in programs. Always specify column
names in insert statements.

insert into tablename (col namel, col name2, col name3) values (val-
uel, value2, value3);

insert into stock item (id, description, price, quantity) values (O,
‘doodad', 9.95, 12);

Note that since the id field is an auto_increment field in the Acme inventory
database we've set up, we don't need to specify a value to go in there, and just
use zero instead --- whatever we specify will be replaced with the auto-incre-
mented value. Auto-increment fields of some kind are available in most

database systems, and are very useful for creating unique ID numbers.

18.2.1.3 DELETE
A delete query can be used to delete rows which match a given criteria.

delete from tablename where condition

delete from stock item where quantity = 0;

18.2.1.4 UPDATE

The update query is used to change the values of certain fields in existing
records.

update tablename set fieldl = expression, field2 = expression

where condition

update stock item set quantity = (quantity - 1) where id = 4;

PerlClass.com for ACT Students August 2007 313

18

314

18.2.1.5 CREATE

Relational databases

The create statement is used to create new tables in the database.

create table tablename (

column coltype options,

column coltype options,

primary key (colname)

)

Data types include (but are not limited to):

Table 18-8. Some data types

INT an integer number

FLOAT a floating point number

CHAR(n) character data of exactly n characters

VARCHAR(n) character data of up to n characters (field
grows/shrinks to fit)

BLOB Binary Large OBject

DATE A date in YYYY-MM-DD format

ENUM enumerated string value (eg "Male" or "Fe-
male")

Data types vary slightly between different database systems. The full range of
MySQL data types is outlined in section 7.2 of the MySQL reference manual.

create table contactlist (
id int not null auto increment,
name varchar(30),
phone varchar(30),
primary key (id)

PerlClass.com for ACT Students August Feb 2007

Relational databases 18

18.2.1.6 DROP

The arop statement is used to delete a table from the database.
drop table tablename

drop table contactlist

PerlClass.com for ACT Students August 2007 315

18 Relational databases

18.3 Chapter summary

A database table contains fields and records of data about one entity

SQL (Structured Query Language) can be used to manipulate and retrieve
data in a database

A seLEcT query may be used to retrieve records which match certain criteria
- An 1nsErRT query may be used to add new records to the database

- A peLETE query may be used to delete records from the database

- An uppaTE query may be used to modify records in the database

- A creaTE query may be used to create new tables in the database

- A prop query may be used to remove tables from the database

316 PerlClass.com for ACT Students August Feb 2007

Chapter 19: MySQL

In this chapter...

In this section we examine the popular database MySQL, which is
available for free for many platforms. MySQL is just one of many
database systems which can be accessed via Perl's DBI module.

19 MySQL

19.1 MySQL features

19.1.1 General features

. Fast
. Lightweight
« Command-line and GUI tools

- Supports a fairly large subset of SQL, including indexing, binary objects
(BLOBSs), etc

- Allows changes to structure of tables while running
- Wide userbase

- Support contracts available

19.1.2 Cross-platform compatibility

- Available for most UNIX platforms
. Available for Windows NT/95/98 (there are license differences)
. Available for OS/2

« Programming libraries for C, Perl, Python, PHP, Java, Delphi, Tcl, Guile (a
scheme interpreter), and probably more...

- Open-source ODBC

318 PerlClass.com for ACT Students August Feb 2007

MySQL 19

19.2 Comparisions with other popular DBMSs

19.2.1 PostgreSQL

MySQL and PostgreSQL are very similar in many ways. MySQL is driven by
one company while PostgreSQL is an open source project with major contribu-
tions coming from a variety of companies and individuals.

More information: http://www.postgresql.org/

19.2.2 Oracle, Sybase, etc

MySQL will not give you the features of Oracle or other enterprise-level
database management systems. In particular, MySQL lacks triggers and views.
The price you pay for this is that Oracle costs a lot, and requires heavy hard-
ware to run on and is much more maintenance intensive. MySQL is better suit-
ed to small-to-medium database applications such as web-based database appli-
cations, and will do so happily on a common PC.

More information: http://www.oracle.com/

PerlClass.com for ACT Students August 2007 319

19 MySQL

19.3 Getting MySQL

MySQL can be downloaded from http://www.mysql.com/0Or mirror sites world-
wide. It is also available in packaged binary format for various operating sys-
tem distributions, including RedHat and Debian linux.

Installation instructions come with the software, but in brief:

19.3.1 Red Hat Linux

Download the appropriate RPM packages, and type rpm —i packagename.rpm

MySQL is included with Fedora, Red Hat Enterprise, CentOS, and any other
current Red Hat-derived Linuxes. So the standard package installers should
have no trouble installing this for you. For instance;

yum install mysql

19.3.2 Debian Linux

Use apt-get, dselect, O dpkg to install the .deb packages. For instance, apt-get

install mysqgl.

19.3.3 Compiling from source

Download the tar.gz file from http://www.mysql.com/ and read the reapmE file.

Thentype./configure,make,andnmke install.

19.3.4 Binaries for other platforms

Binaries are available for many platforms, including Windows and some com-
mercial UNIX platforms. Follow the installation instructions found in the

reaDME file.

320 PerlClass.com for ACT Students August Feb 2007

MySQL

19.4 Setting up MySQL databases

€S.

A tool called mysgiadmin is distributed with MySQL. This tool allows the
database administrator (DBA) to create, remove, or otherwise manage databas-

Table 19-1. Mysqladmin commands:

create databasename

Create a new database

drop databasename

Delete a database and all its tables

flush-hosts Flush all cached hosts
flush-logs Flush all logs
flush-tables Flush all tables

kill id, id, ... Kill mysql threads

password new—-password

Change old password to new-

password

processlist Show list of active threads in
server

reload Reload grant tables

refresh Flush all tables and close and
open logfiles

shutdown Take server down

status Gives a short status message from
the server

variables Prints variables available

version Get version info from server

PerlClass.com for ACT Students August 2007

command line or by reading the MySQL reference manual.

19

More help for this command is available by typing mysqladmin ——help from the

321

19

MySQL

19.4.1 Creating the Acme inventory database

To create a database called inventory, we would perform the following steps as

the user who has permission to run mysgladmin (€g root):

% mysqgladmin create inventory

% mysgladmin reload

19.4.2 Setting up permissions

322

To set up security permissions for the inventory database, we would need to

create appropriate records in the mysq1 database (that's right, it's a database

which has the same name as the database server). This is the central repository

for access control information for all databases served by your MySQL server.

Typically, you will want to:

- create an entry in the dv table for the database

- set the default permissions for the database

- create an entry in the user table for any users who should be allowed to ac-

cess the database

- set default permissions for each user

All these are achieved by performing simple INSERT or UPDATE queries on

the tables in question.

Table 19-2. Available permissions include ...

Select May perform SELECT queries
Insert May perform INSERT queries
Update May perform UPDATE queries
Delete May perform DELETE queries
Create May create new tables

Drop May drop (delete) tables
Reload May reload the database
Shutdown May shut down the database

PerlClass.com for ACT Students August Feb 2007

MySQL 19

Process Has access to processes on the OS

File Has access to files on the OS's file system

19.4.3 Creating tables

The SQL statements used to create tables are documented in the MySQL manu-
al. creaTE statements are used to create each individual table by specifying the
fields for each table, their data types and other options.

Below is an example --- these SQL statements create the Acme Widget Co. ta-
bles we will be working with throughout this session. The output you see is

generated by the mysqldump program, and can be read back into a database

via command line redirection, eg mysql database< filename.

#
Table structure for table 'customer'
#
CREATE TABLE customer (
id int(11) DEFAULT '@' NOT NULL auto increment,
name varchar(80),
address varchar(255),
suburb varchar(50),
state char(3),
postcode char(10),
PRIMARY KEY (id)

);

#
Table structure for table 'sales’
#
CREATE TABLE sales (
id int(11) DEFAULT '©' NOT NULL auto increment,
sale date date,
customer id int(11),
salesperson id int(11),
stock item id int(11),
quantity int(11),
price float(4,2),

PerlClass.com for ACT Students August 2007 323

19

324

MySQL

PRIMARY KEY (id)
);

#

Table structure for table 'salesperson'

#

CREATE TABLE salesperson (
id int(11) DEFAULT '©@' NOT NULL auto increment,
name varchar(80),
PRIMARY KEY (id)

);

#
Table structure for table 'stock item'
#
CREATE TABLE stock item (
id int(11) DEFAULT '@' NOT NULL auto increment,
description varchar(80),
price float(4,2),
quantity int(11),
PRIMARY KEY (id)
);

PerlClass.com for ACT Students August Feb 2007

MySQL 19

19.5 The MySQL client

To talk to any database server, you will need to use a client of some kind.
MySQL comes with a text-based client by default, but there are graphical
clients available, as well as ODBC drivers to allow you to interact with a
MySQL database from Windows applications such as Microsoft Access.

The command line client can be invoked from the command line with the mysq1
command. The nysq1 command takes a database name as a required argument,
as well as other optional arguments such as -p, which causes the client to ask
for a password for access to the database if access controls have been set up.

You can see all the options available on the command line by typing mysq1 -

help.

Advanced

You can set up access controls on a database by editing the
data in the mysq1 database (i.e. type mysql mysql on the com-
mand line) or by using the nysglaccess command. Type
mysglaccess —-help for more information about this com-

mand.

$ mysql -p databasename
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2 to server version: 3.21.33b

Type 'help' for help.
mysql>

The MySQL client allows you to type in commands on one or many lines.
When you finish a statement, type ; to end, same as for Perl.

To quit the client, type quit or \q.

PerlClass.com for ACT Students August 2007 325

19

326

MySQL

For a full outline of commands available in the client, type nelp or \n. It will

give you this message:

mysql> \h

MySQL commands:

help (\h)
? (\h)
clear (\c)
connect (\r)
and host
edit
exit

go

print
quit
rehash
status
use

~

P e e e T e e)
~ - - s s s~
cC nw ko o K —0m
N ' ' ' ' '

Connection id:

Display this text

Synonym for “help'

Clear command

Reconnect to the server. Optional arguments are db

Edit command with $EDITOR

Exit mysql. Same as quit

Send command to mysql server

print current command

Quit mysql

Rebuild completion hash

Get status information from the server

Use another database. Takes database name as argument

(Can be used with mysqladmin kill)

PerlClass.com for ACT Students August Feb 2007

MySQL 19

19.6 Understanding the MySQL client prompts

The prompt that shows when you are using the MySQL client tells you a lot
about what's going on.

The normal prompt looks like this:

mysql>

This means it is waiting for you to enter an SQL query.

If you are in the middle of entering an SQL query, it will be waiting for a semi-
colon to terminate the query, and will look like this:

->

If you have opened a set of quotes but not closed them, you will see one of
these prompts:

PerlClass.com for ACT Students August 2007 327

19 MySQL

19.7 EXxercises

1. Connect to a database which has the same name as your login (for instance,
stuo1) by typing mysql -p stu01 (the -p flag causes it to ask you for your
password, which in this case is the same as your login password). The

database you are connecting to is your own personal copy of the Acme
Widget Co. inventory and sales database mentioned in the previous section

2. Type show tables to show a list of tables in this database

3. Type describe customer to see a description of the fields in the table cus-

tomer
4. Type select * from customer to perform a simple SQL query

5. Try selecting fields from other tables. Try both select * and select
fieldl, field2type queries.

6. Use the where clause to limit which records you select
7. Use the order by clause to change the order in which records are returned

8. Insert a record into the customer table which contains your own name and
address details

9. Update the price of widgets in the stock_item table to change their price to
$19.95

When developing database applications, it is often useful to keep a client pro-
gram such as this one open to test queries or check the state of your data. You
can open multiple telnet sessions to our training system to do this if you wish.

328 PerlClass.com for ACT Students August Feb 2007

MySQL 19

19.8 Chapter summary
- MySQL is one of many database systems which can be used as the back-end
to a web site
- MySQL can be downloaded from http://www.mysql.com/ or mirror sites

- The MySQL command line client can be used to interact with MySQL
databases

- The MySQL client allows the user to type in SQL queries and prints results
to the screen.

PerlClass.com for ACT Students August 2007 329

Chapter 20: The DBI
and DBD modules

In this chapter...

In this section we look at the Perl module which can be used to inter-
act with many database servers: DBI.

20

The DBI and DBD modules

20.1 What is DBI?

332

Like the Perl modules discussed in last week's CGI programming course, the
DBI and DBD modules are written by Perl people and distributed for free via
CPAN (the Comprehensive Perl Archive Network).

DBI stands for "Database Interface" while DBD stands for "Database Driver".
You need both types of modules, working together, in order to access databases
using Perl.

RTFEM !

12 411 - 423
DBI
14 562 - 578
B 291 light

PerlClass.com for ACT Students August Feb 2007

The DBl and DBD modules

20.2 DBI documentation set

C P ﬁ N Home - Authors - Recent - MNews - Mirrors - FAQ - Feedback

in IAII vl CPAM Search

Tim Bunce = DBI-1 53

DBI-1.53
This Release [DBI-1.53 [Download] [Browse] 01 Mov 2006

Other Releases 05152 — naaugeons -] _Goto |
Links | [CPAN Testers | | Discussion Forum] [Yiew/Report Bugs (5)] [Tools |
CPAN Testers FPaAsS (35) [Wiew |
Rating i (27) [View | [Rate this distribution]
License Lnknown
Special Files MANFEST METAyml Makefile PL README

Eundle:DEI A bundle to install DBl and reguired madules. 11.03
DED:DEM a DB driver for DEM & MLDEM files 0.03
DED: ExampleP 11.12
DED:File Base class for writing DEI drivers 0.35
DBED:MullP 11.04
DED: Prosey A proxy driver for the DB 0.2004
DED: Sponge Create a DBl statement handle from Perl data 1110
DBl Database independent interface far Perl 153
DBl Const: Getinfo: ANSI ISOVIEC SQL/CLI Constants for Getlnfo 1.03
DBl Const: Getlnfor CDBC ODEC Caonstants for Getlnfo 1.03
DBl Const: GetinfoReturn Data and functions for describing Getlnfo results 1.04
DBl Const: GetinfoType Data describing Getlnfo type codes 1.05
DEILDED Perl DBI Database Driver Writer's Guide 11.22
DEI:DBD: Metadata Generate the code and data far some DEl metadata methods 1.05
DElLFAQ The Frequently Asked Questions for the Perld Database Interface 0.38
DElProfile Perfarmance profiling and benchmarking for the DEI 1.07
DBl ProfileData manipulate DBI::ProfileDumper data dumps 1.0
DElProfileDumper prafile DBl usage and output data to a file 1.0
DEl ProfileDumper: Apache capture DBI profiling data from Apache/mad_perl 11
DElProfileSubs Subroutines far dynamic profile Path

DBl ProxServer a server for the DBD::Proxy driver 0.3005
DElLSAL: MNano a very tiny SAL engine 0.03
DEl:Changes List of significant changes to the DBI

DEl:PureFerl a DBl emulation using pure perl {(na C/%S compilation reguired)

DEl:Roadmap Planned Enhancements for the DB

DEILW320DBC An experimental DB emulation layer for Win32: ODBC

TASKS Want to help? These things need doing. .

Win32 DEIODEC Win32::0DBC emulation layer far the DEI

dbiprof command-line client for DBI::PrafileData

dbiprosey A proxy server for the DED::Proxy driver

hosted by pearl.org, harg\lare provided by
.

Shopping

PerlClass.com for ACT Students August 2007

20

333

20 The DBI and DBD modules

20.3 Supported database types

Databases supported by Perl's DBI module include:
« Oracle

- Sybase

- Informix

- MySQL

- Msql

- Ingres

- Postgres

- Xbase

- DB2

.+ ... and more

334 PerlClass.com for ACT Students August Feb 2007

The DBl and DBD modules 20

20.4 How does DBI work?

DBI is a generic interface which acts as a "funnel" between the programmer
and multiple databases.

DBI protects you from needing to know the minutiae of connecting to different
databases by providing a consistent interface for the programmer. The only
thing you need to vary is the connection string, to indicate what sort of database
you wish to connect to.

To use DBI, you need to install the DBI module from CPAN, as well as any
DBD modules for the databases you use. For instance, to use MySQL you need
to install the psp: :Mysql module.

Advanced

To 1nstall DBI, download the DBI module from CPAN
(http://www.perl.com/CPAN), unzip it using a command like
tar -xzvf DBL.tar.gz, then follow the instructions in the

README file distributed with the module.

PerlClass.com for ACT Students August 2007 335

20 The DBI and DBD modules

20.5 DBI/DBD syntax

The syntax of the database modules is best found by using the perldoc com-
mand. perldoc DBI will give you general information applicable to all DBI
scripts, while perldoc DBD:: yourdatabasewill give information specific to

your own database. In our case, we use perldoc DBD::mysql.

DBI is an object oriented Perl module, like the Text: :Template and Mail::Mail-
er modules covered in the CGI Programming in Perl training module. This
means that when we connect to the database we will be creating an object
which is called a "database handle" which refers to a specific session with the
database. Thus we can have multiple sessions open at once by creating multiple
database handles.

We can also create statement handle objects, which are Perl objects which refer
to a previously prepared SQL statement. Once we have a statement handle, we
can use it to execute the underlying SQL as often as we want.

20.5.1 Variable name conventions

The following variable name conventions are used in the DBD/DBI documenta-
tion:

Table 20-1. DBI module variable naming conventions

Variable name | Meaning

$dbh database handle object

$sth statement handle object

Src Return code (boolean: true=ok, false=error)

Srv Return value (usually an integer)

Gary List of values returned from the database, typically

a row of data

Srows Number of rows processed (if available, else -1)

336 PerlClass.com for ACT Students August Feb 2007

The DBl and DBD modules 20

20.6 Connecting to the database

use DBI;

my $driver = 'mysql’;

my $database = 'database name'; # name of your database here
my $username = undef; # your database username
my $password = undef; # your database password

note that username and password should be assigned to if your
database
uses authentication (ie requires you to log in)

we set up a connection string specific to this database
my $dsn = "DBI:$driver:database=$database";

make the actual connection - this returns a database handle we can
use later

my $dbh = DBI->connect($dsn, $username, $password);

when you're done (at the end of your script)
$dbh->disconnect();

PerlClass.com for ACT Students August 2007 337

20

The DBI and DBD modules

20.7 Executing an SQL query

338

set up an SQL statement
my $sql statement = "select * from customer";
my $sth = $dbh->prepare($sql statement)
or die "Could not prepare: " . $dbh->errstr();

execute it
$sth->execute() or die "Could not execute: " . $dbh->errstr();

how many rows did we get?
my $num_rows = $sth->rows();

my $num_fields = $sth->{'NUM OF FIELDS'};

close the sql query, if we don't want it any more.
$sth->finish();

PerlClass.com for ACT Students August Feb 2007

The DBl and DBD modules

20.8 Doing useful things with the data

get an array full of the next row of data that matches the query
(the most common, and simplest, case)
while (my @ary = $sth->fetchrow array()) {

print "The first field is $ary[0]\n";

get a hash reference instead

(the more complicated, but more useful, version)

while (my $hashref= $sth->fetchrow hashref()) {
print "Name is $hashref->{'name'}\n";

you can also get an arrayref

(equally complicated and not quite as useful)

while (my $ary ref = $sth->fetchrow arrayref()) {
print "The first field is $ary ref->[0]\n";

Advanced

Of the above methods, fetchrow_array() is the only one that
does not require an understanding of Perl references. Refer-
ences are not a beginner-level topic, but for those who are
interested, they are documented in chapter 4 of the Camel.
They are worth learning if only for the added benefit of be-
ing able to access fields by name when using the
fetchrow_hashref method.

PerlClass.com for ACT Students August 2007

20

339

20 The DBI and DBD modules

20.9 An easier way to execute non-SELECT
queries

If you wish to execute a query such as INSERT, UPDATE, or DELETE, you
may find it easier to use the do () method:

$dbh->do("delete from sales")
|| warn("Can't delete from sales table");

This method returns the number of rows affected, or undef if there 1s an error.

340 PerlClass.com for ACT Students August Feb 2007

The DBl and DBD modules 20

20.10 Quoting special characters in SQL

Sometimes you want to use a value in your SQL which may contain characters
which have special behavior in SQL, such as a percent sign or a quote mark.
Luckily, there is a method which can automatically escape all special characters:

my $string = "20% off all stock";
my $clean string = $dbh->quote($string);

PerlClass.com for ACT Students August 2007 341

20 The DBI and DBD modules

20.11 Exercises

1. Use exercises/perldb/scripts/easyconnect.pl tO connect to your Acme

Widget Co. database. You will need to edit some of the lines at the top.
2. Use a while loop to output data a row at a time

3. Check all your statements for indications of failure, and output messages to
the user using warn () if any of the steps fail.

20.11.1 Advanced exercises

1. If you wish, you can use a hash reference instead of an array

2. Change the SQL in easyconnect.pl to use a non-SELECT statement, and
use the do method instead of the prepare and execute methods. Don't forget
to check the return value!

342 PerlClass.com for ACT Students August Feb 2007

The DBl and DBD modules 20

20.12 Chapter summary

- The DBI module provides a consistent interface to a variety of database sys-
tems

« The DBI module can be downloaded from CPAN

« Documentation for the DBI module can be found by typing perldoc DBI

PerlClass.com for ACT Students August 2007 343

Chapter 21: Acme
Widget Co. Exercises

In this chapter...

In the second half of this training module, we will be tying together
what we have learned about SQL and DBI, and creating a simple ap-
plication for Acme Widget Co. to assist them in inventory manage-
ment, sales, and billing.

21 Acme Widget Co. Exercises

21.1 The Acme inventory application

In your exercises/per1db/ directory you will find a subdirectory called acme/
which contains the outline of the Acme inventory application which you will
build upon for the rest of today.

346 PerlClass.com for ACT Students August Feb 2007

Acme Widget Co. Exercises 21

21.2 Listing stock items

The shell of a stock-listing script is available in your exercises/perldb/acme/

directory as stocklist.pl.

#!/usr/bin/perl -w
use strict;
use DBI;

my $driver = 'mysql’;

my $database "trainXX';

my $username "trainXX';

my $password ‘your password here';

my $dsn = "DBI:$driver:database=$database";
my $dbh = DBI->connect($dsn, $username, $password)
|| die $DBI::errstr;

my $sql statement = "select * from stock item";
my $sth = $dbh->prepare($sql statement);
$sth->execute() or die ("Can't execute SQL: " . $dbh->errstr());

while (my @ary = $sth->fetchrow array()) {
print <<"END";

ID: $ary[0]
Description: $ary[1]
Price: $ary[2]
Quantity: $ary[3]
END

}

$dbh->disconnect();

1. Fill in the variables indicated (sdatabase, $sql_statement, €tC)
2. Test your script from the command line

3. Sort the output in alphabetical order by Description

PerlClass.com for ACT Students August 2007 347

21 Acme Widget Co. Exercises

21.2.1 Advanced exercises:

1. If you are familiar with Perl references, convert the script to use
fetchrow_hashref ()

2. Ask the user to specify a field to sort by, either as a command line argu-
ment or on STDIN. If the sort order parameter is given, use it to change the
sort order in your SQL statement and re-output the result, otherwise default

to something sensible such as ID

348 PerlClass.com for ACT Students August Feb 2007

Acme Widget Co. Exercises 21

21.3 Adding new stock items

1. Write a script which prompts the user for input, asking for values for de-

scription, quantity and price. Remember that the stock item's ID will be au-
tomatically filled in by the database, as it is an "auto increment" field.

2. Next, create an SQL query to add a record to the database. Output a mes-
sage to the user indicating the success (or failure) of the operation. A sam-

ple script to get you started is available in exercises/peridb/acme/add-
stock.pl

21.3.1 Advanced exercises

1. Check that the price is a number (use regular expressions for these checks)
2. Check that it has two decimal places

3. Check that the number of items in stock is a number

PerlClass.com for ACT Students August 2007 349

21 Acme Widget Co. Exercises

21.4 Entering a sale into the system

1. The program exercises/perldb/acme/sale.pl provides an interface which
can be used to input data pertinent to the occurence of a sale
2. Write a script which records the sale in the sales table

3. Your script will also have to update the stock_item table to reduce the num-

ber of items still in stock.

4. What happens if you try to buy/sell more items than are available? Put in a
check to stop this from happening.

350 PerlClass.com for ACT Students August Feb 2007

Acme Widget Co. Exercises 21

21.5 Creating sales reports

1. Copy the code from the previous example's script to create a script that asks

the user for a salesperson's ID number and a start and end date.

2. Use the script to output a sales report for the chosen salesperson for the pe-
riod between the two dates.

21.5.1 Advanced exercises

1. Create an extra option for "all" sales people, which shows all the sales peo-
ple in descending order of sales made. You may need to use an SQL group
by clause to achieve this.

PerlClass.com for ACT Students August 2007 351

21 Acme Widget Co. Exercises

21.6 Searching for stock items

1. Create a script which asks a user for a string to search for in a stock item's
description (eg "dynamite").

2. Allow the user to choose either "Full name", "Beginning of name" or "Part
of name" as a search type.

3. Create different SQL queries using L1xE to search the data depending on
their choices

21.6.1 Advanced exercises

1. Change the script so that people can use DOS/UNIX style wildcards (» and
?) then use their wildcard expression in your SQL query - convert the wild-
cards to SQL-style wildcards by using regular expressions

352 PerlClass.com for ACT Students August Feb 2007

Chapter 22: What is
CGI?

In this chapter...

In this section we will define the term CGI and learn how web
servers use CGI to provide dynamic and interactive material. We ex-
plore the Hypertext Transfer Protocol as it applies to both static and
CGlI-generated content, and examine raw HTTP requests and re-
sponses by telnetting to a web server.

22

What is CGI?

22.1 Definition of CGl

354

CGI is the Common Gateway Interface, a standard for programs to interface
with information servers such as HTTP (web) servers. CGI allows the HTTP
server to run an executable program or script in response to a user request, and
generate output on the fly. This allows web developers to create dynamic and
interactive web pages.

CGI programs can be written in any language. Perl is a very common language
for CGI programming as it is largely platform independent and the language's
features make it very easy to write powerful applications. However, some CGI
programs are written in C, shell script, or other languages.

It is important to remember that CGI is not a language in itself. CGI is merely a
type of program which can be written in any language.

PerlClass.com for ACT Students August Feb 2007

What is CGI? 22

22.2 Introduction to HTTP

To understand how CGI works, you need some understanding of how HTTP
works.

HTTP stands for HyperText Transfer Protocol, and (not very surprisingly) is
the protocol used for transferring hypertext documents such as HTML pages on
the World Wide Web.

For the purposes of this course, we will only be looking at HTTP version The
current version, 1.1, is specified in RFC 2068 and contains many more features,
but none of them are necessary for a basic understanding of CGI programming.
An HTTP cheat-sheet, containing some common terminology and a table of sta-
tus codes, appears in Appendix E.

RTFEM !

RFCs, or "Request For Comment" documents, can be ob-
tained from the Internet Engineering Task Force (IETF)
website (http://www.ietf.org/) or from mirrors such as the
RFC mirror at Monash University
(ftp://ftp.monash.edu.au/pub/rfc/).

A simple HTTP transaction, such as a request for a static HTML page, works as
follows:

1. The user types a URL into his or her browser, or specifies a web address by
some other means such as clicking on a link, choosing a bookmark, etc

2. The user agent connects to port 80 of the HTTP server
3. The user agent sends a request such as GET /index.html
4. The user agent may also send other headers

5. The HTTP server receives the request and finds the requested file in its
filesystem

PerlClass.com for ACT Students August 2007 355

ftp://ftp.monash.edu.au/pub/rfc/

22 What is CGI?

6. The HTTP server sends back some HTTP headers, followed by the contents
of the requested file

7. The HTTP server closes the connection
When a user requests a CGI program, however, the process changes slightly:
1. The user agent sends a request as above
2. The HTTP server receives the request as above
3. The HTTP server finds the requested CGI program in its file system
4. The HTTP server executes the program
5. The program produces output
6. The output includes HTTP headers
7. The HTTP server sends back the output of the program

8. The HTTP server closes the connection

356 PerlClass.com for ACT Students August Feb 2007

What is CGI? 22

22.3 Terminology

authentication
The process by which a client sends username and password information to
the server, in an attempt to become authorized to view a restricted re-
source.

client
An application program that establishes connections for the purpose of
sending requests.

Content-type
The media type of the body of the response, as given in the content-type:
header. Examples include text/html1, text/plain, image/gif, etc.

method
Indicates what the server should do with a resource. Case sensitive. Valid
methods include: GET, HEAD, POST

request

An HTTP request message sent by a client to a server

resource

A network data object or service which can be identified by a URL.

response

An HTTP response message sent by a server to a client

Server

An application program that accepts connections in order to service re-
quests by sending back responses.

PerlClass.com for ACT Students August 2007 357

22

358

What is CGI?

status code
A 3-digit integer indicating the result of the server's attempt to understand
and satisfy the request. A table of status codes and their meanings appears
below.

Uniform Resource Identifier (URI)
URIs are formatted strings which identify - via name, location, or any other
characteristic - a network resource.

Uniform Resource Locator (URL)

A web address. May be expressed absolutely (eg
http://www.example.com/services/index.html) Or in relation to a base URI
(eg ../index.ntm1) See also URI.

user agent

The client which initiates a request. These are often browsers, editors, spi-
ders (web-traversing robots) or other end-user tools.

PerlClass.com for ACT Students August Feb 2007

What is CGI?

22.4 HTTP status codes

Table 22-1. HTTP status codes

Code Meaning

200 OK

201 Created

202 Accepted

204 No Content

301 Moved Permanently
302 Moved Temporarily
304 Not Modified

400 Bad Request

401 Unauthorized

403 Forbidden

404 Not Found

500 Internal Server Error
501 Not Implemented
502 Bad Gateway

503 Service Unavailable

PerlClass.com for ACT Students August 2007

22

359

22 What is CGI?

22.5 HTTP Methods

22.5.1.1 GET

The GET method means retrieve whatever information is identified by the re-
quest URI. If the request URI refers to a data-producing process (eg a CGI pro-
gram), it is the produced data which is returned, and not the source text of the
process.

22.5.1.2 HEAD

The HEAD method is identical to GET except that the server will only return
the headers, not the body of the resource. The meta-information contained in
the HTTP headers in response to a HEAD request should be identical to the in-
formation sent in response to a GET request. This method can be used to obtain
meta-information about the resource without transferring the body itself.

22.5.1.3 POST

The POST method is used to request that the server use the information encod-
ed in the request URI and use it to modify a resource such as:

- Annotation of an existing resource

- Posting a message to a bulletin board, newsgroup, mailing list, or similar
group of articles

- Providing data {such as the result of submitting a form} to a data-handling
process

- Updating a database

360 PerlClass.com for ACT Students August Feb 2007

What is CGI? 22

22.6 EXxercises

The HTTP request/response process is usually transparent to the user. To see
what's going on, let's connect directly to the web server and see what happens.

Login to the system as for the Introduction to Perl course:
1. Open the telnet program, TeraTerm

2. Connect to the training server (your instructor will give you the hostname
or IP number)

3. Login using the username and password you were given

4. From the UNIX command line, type telnet localhost 80 -- this connects to
port 80 of the server, where the HTTP daemon (aka the web server) is lis-
tening. You should see something like this:

training:~> telnet localhost 80
Trying 1.2.3.4
Connected to training.netizen.com.au.
Escape character is '"*]'.
5. Ask the web server for a static document by typing: GET /index.html
utTP/1.0 then press enter twice to send the request. Note that this command

1S case sensitive.

6. Look at the response that comes back. Do you see the headers? They should
look something like this:

HTTP/1.1 200 OK

Date: Tue, 28 Mar 2000 02:42:37 GMT

Server: Apache/1.3.6 (UNIX)

Connection: close

Content-Type: text/html

This will be followed by a blank line, then the content of the file you asked
for. Then you will see "Connection closed by foreign host", indicating that

the HTTP server has closed the connection.

If you miss seeing the headers because the body is too long, try using the sHEAD
method instead of GET.

PerlClass.com for ACT Students August 2007 361

22 What is CGI?

7. Telnet to port 80 again and ask the web server for a CGI script's output by

typing GET /cgi-bin/localtime.cgi HTTP/1.0

8. Now let's get some status codes other than 200 ok from the web server:

« GET /not_here.html HTTP/1.0 (a file which doesn't exist)
+ GET /unreadable.html HTTP/1.0 (a file with the permissions set wrong)

« GET /protected.html HTTP/1.0 (a file protected by HTTP authentication -
we cover this later on today)

« GET /redirected.html HTTP/1.0 (a file which is redirected to a different
URL)

« ENCRYPT /index.html HTTP/1.0 (a method which isn't known to our serv-
er)

362 PerlClass.com for ACT Students August Feb 2007

What is CGI? 22

22.7 What is needed to run CGI programs?

There are several things you need in order to create and run Perl CGI programs.
- a web server

- web server configuration which gives you permission to run CGI

. a Perl interpreter

- appropriate Perl modules, such as CGL.pm

- a shell account is extremely useful but not essential

Most of the above requirements will need your system administrator or ISP to
set them up for you. Some will be wary of allowing users to run CGI programs,
and may require you to obey certain security regulations or pay extra for the
privilege. The most common security requirement is that CGI programs must
run under cgiwrap. This is discussed later, in the section on security.

PerlClass.com for ACT Students August 2007 363

22

What is CGI?

22.8 Chapter summary

364

- CGI stands for Common Gateway Interface

- HTTP stands for Hypertext Transfer Protocol. This is the protocol used for

transferring documents and other files via the World Wide Web.

- HTTP clients (web browsers) send requests to HTTP (web) servers, which

are answered with HTTP responses

- The request/response can be examined by telnetting to the appropriate port of

a web server and typing in requests by hand.

PerlClass.com for ACT Students August Feb 2007

Chapter 23: Gene-
rating web pages with
Perl

In this chapter...

In this section, we will create a simple "Hello world" CGI program
and run it, then extend upon that to integrate parts of Perl taught in
previous modules. Alternative quoting mechanisms are briefly cov-
ered, and we also discuss debugging techniques for CGI programs.

23 Generating web pages with Perl

23.1 Your public_html directory

The training server has been set up so that each user has their own web space
underneath their home directory. All files which will be accessible via the web
should be placed in the directory named public_htm1. This is common for most
personal home pages.

The directory ~username/public_html on the UNIX file system maps to the
URL nttp://hostname/~username/ via the web. So if your login name is stuo3
and you are using the PerlClass.com training server at perlclass.fini.net, you
can access your web pages at nttp://perlclass.fini.net/~sty03. Of course,
you will need to replace both the hostname and username to match your specif-
ic setup.

366 PerlClass.com for ACT Students August Feb 2007

Generating web pages with Perl
23

23.2 The CGl directory

CGI scripts are usually kept in a separate directory from plain HTML files.
This directory is most commonly called cgi-bin (the "bin" stands for "binary"
but really just means "executable files", whether compiled binaries or interpret-
ed scripts such as Perl programs). The web server is usually set up so that you
only have permission to run CGI programs from the cgi-bin directory, for se-

curity reasons.
1. Change to your public_html directory

2. If you type Is to get a directory listing, you will see that you have several

HTML files here, as well as a cgi-bin directory.

3. Change to your cgi-bin directory and type Is, and you will see that the ex-

ample scripts for this course are already installed here.

If you were setting this up for yourself, you would need to be sure of the fol-

lowing:
1. That your home directory is world executable
2. That your public_html directory is world executable
3. That all your HTML files are world readable

4. That your cgi-bin directory is world executable - note that it is not compul-
sory to have a cgi-bin directory - some server configurations allow you to
execute a CGI script from any directory.

5. That all your CGI scripts are world readable and executable

PerlClass.com for ACT Students August 2007 367

23

Generating web pages with Perl

23.3 The HTTP headers

368

Every CGI script must output an HTTP header giving a MIME content type,
such as content-type: text/html, With a blank line after it:

print "Content-type: text/html\n\n";

Put this at the top of every CGI script, as the first thing that's printed.

Advanced

If your output is of another MIME type, you should print out
the appropriate content-type: header - for instance, a CGI

program which outputs a random GIF image would use con-
tent-type: image/gif

PerlClass.com for ACT Students August Feb 2007

Generating web pages with Perl
23

23.4 HTML output

Any other output of your script will be sent back to the web browser just as you
specify. Since we're outputting content of the type text/htm1 we should make
our scripts output HTML.:

print "<hl>Hello, world!</h1>\n";

The above example 1s already in your cgi-bin directory as hello.cgi.

PerlClass.com for ACT Students August 2007 369

23

23.5

23.5.1

370

Generating web pages with Perl

Running and debugging CGI programs

When writing CGI programs, there are many problems which may affect their
execution. Since these will not always be easily understood by examining the
web browser output, there are other ways to check how your program is run-
ning:

1. First, check that your program runs by running it from the command line. It

may be that you've made a syntax error, or that your program has the wrong
permissions

2. Second, try opening it in a browser. If your program runs on the command
line but does not output content to the browser, you may have forgotten to
print out the content-type: text/html header, or forgotten to leave a blank
line between the header and the body, or may have made an error in your
HTML output.

3. Thirdly, check the web server's log files. Where these are will vary from
system to system. On our system, they're in /var/1og/apache, and you can
check them using cat, less, tail, or any other tool of your choice. If you
don't know what these commands do, check their manual pages by typing
man cat, man less, etc.

Exercises

1. Look at the output of the nhello.cgi script by pointing a web browser (such
as Netscape) at http://hostname/~trainxx/cgi-bin/hello.cgi (replace

hostname with the hostname or IP address of the training server, and XX
with your number)

2. Modify nello.cgi to set a variable sname and include that name in the greet-
ing. (Don't forget to use strict;)

3. Run your modified hello.cgi from the command line to ensure that it runs.

4. Press the re1oad button in your browser to see if your modifications worked
correctly.

PerlClass.com for ACT Students August Feb 2007

Generating web pages with Perl
23

23.6 Quoting made easy

It can be annoying to output HTML using double quotes. You may find your-
self doing things like this:

print "\n";
print "A hypertext link\n";

Escaping all those quotes with backslashes can get tedious and unreadable.

Luckily, there are a couple of ways around it.

23.6.1 Here documents

“Here” documents allow you to print everything until a certain marker is

found:

print <<"END";

A hypertext link
END

You can specify what end marker you want on in the print statement.

The fact that the marker is in double quotes means that the material up until the
end marker is found will undergo interpolation in the same way as any double-
quoted string. If you use single quotes, it'll act like a single-quoted string, and

no interpolation will occur.

Advanced

If you use backticks, it will execute each line via the shell.

PerlClass.com for ACT Students August 2007 371

23 Generating web pages with Perl

The end marker must be on a line by itself, at the very start of the line. Note
also that the print statement has a semi-colon on the end.

372 PerlClass.com for ACT Students August Feb 2007

Generating web pages with Perl
23

23.7 Pick your own quotes

Another way of avoiding excessive backslashes in your code is to use the gq ()
or g () operators/functions.

RTFEM !

4 46
2 41
2 63 - 64
perlop
1 3
3 43 -44 qw()

print qq(\n);
print qq(A hypertext link\n);

Like the matching and substitution operators m// and s///, the quoting opera-
tors can use just about any character as a delimiter:

print qq(A hypertext link\n);
print qq'!'A hypertext link\n!;
print qql[A hypertext link\n];
print qg#A hypertext link\n#;

If the opening delimiter is a bracket type character, the closing delimiter will be
the matching bracket.

Always choose a delimiter that isn't likely to be found in your quoted text. A

PerlClass.com for ACT Students August 2007 373

23 Generating web pages with Perl

slash, while common in non-HTML uses of the function, is not very useful for
quoting anything containing HTML closing tags like </p>.

374 PerlClass.com for ACT Students August Feb 2007

Generating web pages with Perl
23

23.8 EXxercises

The following exercises practice using CGI to output different Perl data types
(as taught in Introduction to Perl) such as arrays and hashes. You may use plain
double quotes, ~“here" documents, or the quoting operators as you see fit.

1. Write a CGI program which creates an array then outputs the items in an
unordered list (HTML's <u1> element) using a foreach loop. If you need
help with HTML, there's a cheat sheet in Chapter 34 starting on page 481.

2. Modify your program to print out the keys and values in a hash, like this:
- Name is Fred
- Sex is male

. Favorite colour is blue

3. Change your CGI program so that you output a table instead of an un-
ordered list, with the keys in one column and the values in another. An ex-
ample of how this could be done is in cgi-bin/hashtable.cgi

PerlClass.com for ACT Students August 2007 375

23

Generating web pages with Perl

23.9 Environment variables

23.9.1

376

In Perl, there is a special variable called sexv which contains all the environ-
ment variables which are set.

When a web server runs a CGI program, certain environment variables are set
to provide information about the web server, the request made by the user
agent, and other pertinent information.

Examples of environment variables available to your CGI script include
HTTP_USER_AGENT which describes the user agent or browser used to make
the request, and HIT'TP_REFERER, which indicates the referring page (if any).

Exercises

1. Modify your table-printing script from the previous exercise to print out the
hash sEnv.

2. The nTTP_USER_AGENT environment variable contains the type of browser
used to request the CGI script.

- Write a script which prints out the user agent string for the requesting
browser

- Take a look at what various browsers report themselves as -- try
Netscape, Internet Explorer, or Lynx from the UNIX command line. You
will note that Microsoft browsers purport to be "Mozilla compatible” (i.e.
compatible with Netscape).

- Use a regular expression to determine when a certain browser (for in-
stance, Microsoft Internet Explorer) is being used, and output a message
to the user.

3. The urTP_REFERER (YeS, it's spelt incorrectly in the protocol definition) envi-
ronment variable contains the URL of the page from which the user fol-
lowed a link to your CGI program. If you call up your CGI program by typ-
ing its URL straight into the browser, the artr_reFErRER Will be an empty
string. Create an HTML page that points to your CGI program and see what

PerlClass.com for ACT Students August Feb 2007

Generating web pages with Perl
23

the rREFERER environment variable says.

PerlClass.com for ACT Students August 2007 377

23

Generating web pages with Perl

23.10 Chapter summary

378

- CGI scripts are programs written in Perl or any other language that output

web content such as HTML pages

« CGI scripts must output a Content-type header and a blank line before any-

thing else

- Debugging techniques for CGI:

- Run the script from the command line
- Try opening it in the browser

- Check the logs

- Various techniques are available for quoting text, including "here" documents

and Perl quoting functions such as qq().

- The sEnv special variable can be used to access environment variables via

CGI scripts, including such variables as HTTP_USER_AGENT and
HTTP_REFERER

PerlClass.com for ACT Students August Feb 2007

Chapter 24: Process-
ing form input

In this chapter...

CGI programs are often used to accept and process data from HTML
forms. In this section, we take a quick look at HTML forms and use
the cct module to parse form data.

24 Processing form input

24.1 A quick look at HTML forms

To be able to use CGI to accept user input, you will probably need to under-
stand HTML forms. There's an HTML cheat-sheet in Chapter 33 starting on

page 477 of these notes, but here's a brief run-down of the major parts of
HTML forms:

380 PerlClass.com for ACT Students August Feb 2007

Processing form input

24.2 The FORM element

The rorM element 1s a block level element - that means that the browser will

present it on a new line, like it does with headings and paragraphs.

The rorM element's attributes include:

Table 24-1. FORM element attributes

Attribute

Example

Description

METHOD

METHOD="POST"

The HTTP method to use to send
the form's contents back to the web
server. It can be post or GeT -- the
differences are explained the the
HTTP cheat sheet appendix.

ACTION

ACTION="../cgi-

bin/myscript.cgi”

The relative or absolute URL of the
CGI program which is to process
the form's data

Other attributes exist, but will not be used in this course.

PerlClass.com for ACT Students August 2007

24

381

24 Processing form input

24.3 Input fields

Some of the input fields you can use in your form include:

24.3.1 TEXT

A text input field <INPUT TYPE="TEXT" NAME="email_address">

24.3.2 CHECKBOX

Creates a yes/no checkbox. Saying cueckep will make it checked by default.

<INPUT TYPE="CHECKBOX" NAME="send email" CHECKED>

24.3.3 SELECT

Creates a drop-down list of items. Saying serect murtipLE Will allow for multi-
ple choices to be made.

<SELECT NAME="hobbies">
<OPTION VALUE="philately">Philately</OPTION>
<OPTION VALUE="gardening">Gardening</OPTION>
<OPTION VALUE="programming">Programming</0OPTION>
<OPTION VALUE="cookery">Cookery</OPTION>
<OPTION VALUE="reading">Reading</OPTION>
<OPTION VALUE="bushwalking">Bushwalking</OPTION>
</SELECT>

24.3.4 SUBMIT

Creates a button which, when pressed, will submit the form.

<INPUT TYPE="SUBMIT" VALUE="Press me!">

382 PerlClass.com for ACT Students August Feb 2007

Processing form input 24

24.4 The ccI module

24.4.1 What is a module?

A module is a collection of useful functions which you can use in your pro-
grams. They are written by Perl people worldwide, and distributed mostly
through CPAN, the Comprehensive Perl Archive Network.

Perl modules save you heaps of time - by using a module, you save yourself
from "reinventing the wheel". Perl modules also tend to save you from making
silly mistakes again and again while you try to figure out how to do a given
task.

One common (but fiddly) task in CGI programming is taking the parameters
given in an HTML form and turning them into variables that you can use.

The parameters from an HTML form are encoded in this "percent-encoded"
format:

name=Kirrily&company=Netizen%$20Pty.%20Ltd.

If you use the POST method, these parameters are passed via STDIN to the
CGI script, whereas GET passes them via the environment variable
oUERY_STRING. This means that as well as simply parsing the character string,
you need to know where to look for it as well.

The easiest way to parse this parameter line is to use cct module.

PerlClass.com for ACT Students August 2007 383

24 Processing form input

RTFEM !

10 376 - 398

Cal
756 - 791

24.4.2 Using the cGr module
To use the cct module, simply put the statement use cc1; at the top of your
script, thus:
#!/usr/bin/perl -w
use strict;

use CGI;

24.4.3 Accepting parameters with ccI

To accept form parameters into our CGI script as variables, we can say that we
specifically want to use the parans part of the CGI module:
#!/usr/bin/perl -w

use strict;
use CGI 'param';

This provides us with a new subroutine, param, which we can use to extract the

384 PerlClass.com for ACT Students August Feb 2007

Processing form input 24

value of the HTML form's fields.

#!/usr/bin/perl -w

use strict;
use CGI 'param';

my $name = param('name');
print "Content-type: text/html\n\n";
print "Hello, $name!";

24.4.4 Debugging with the cGI module's offline mode

When you run a CGI script from the command line, you will see a prompt like
this:

(offline mode: enter name=value pairs on standard input)

This allows you to enter parameters in the form name=value for testing and de-
bugging purposes. Use CTRL-D (the UNIX end-of-file character) to indicate
that you are finished.

(offline mode: enter name=value pairs on standard input)

name=fred
age=40
~D

24.4.5 Exercises

1. Write a simple form to ask the user for their name. Type in the above script
and see if it works.

2. Add some fields to your form, including a checkbox and a drop down
menu, and print out their values. What are the default true/false values for a
checkbox?

PerlClass.com for ACT Students August 2007 385

24 Processing form input

3. What happens if you use the serect murTiPLE form functionality? Try as-
signing that field's parameters from it to an array instead of a scalar, and
you will see that the data is handled smoothly by the cct module. Print
them out using a foreach loop, as in earlier exercises.

386 PerlClass.com for ACT Students August Feb 2007

Processing form input 24

24.5 Practical Exercise: Data validation

Your trainer will now demonstrate and discuss the use of cct for validation of
data entered into a web form. An example form is in your public_html directo-
ry as validate.html and the validation CGI script is available in your cgi-bin

directory as validate.cgi.

#!/usr/bin/perl -w

use strict;
use CGI 'param';

print "Content-type: text/html\n\n";
my @errors;

push (@errors, "Year must be numeric") if param('year') =~ /\D/;
push (@errors, "You must fill in your name") if param('name') eq "";
push (@errors, "URL must begin with http://")

if param('url') !~ m!~http://!;

if (@errors) {
print "<h2>Errors</h2>\n";
print "\n";
foreach (@errors) {
print "$ \n";
}
print "\n";
} else {
print "<p>Congratulations, no errors!</p>\n";

24.5.1 Exercises

1. Open the form for the validation program in your browser. Try submitting

the form with various inputs.

PerlClass.com for ACT Students August 2007 387

24

Processing form input

24.6 Practical Exercise: Multi-form "Wizard" inter-

face

388

Your trainer will now demonstrate and discuss how you can use what you've
just learned to create a multi-form "wizard" interface, where values are remem-
bered from one form to the next and passed using hidden fields.

<INPUT TYPE="HIDDEN" VALUE="..." NAME="...">

Source code for this example is available as cgi-bin/wizard.cgi.

First, we print some headers and pick up the "step" parameter to see what step
of the wizard interface we're up to. We have four subroutines, named step1
through stepa, which do the actual work for each step.

#!/usr/bin/perl -w

use strict;
use CGI 'param';

print <<"END";
Content-type: text/html

<html>

<body>

<h1l>Wizard interface</hl>
END

my $step = param('step') || O;

stepl() unless $step;
step2() if $step == 2;
step3() if $step == 3;
step4() if $step == 4;

print <<"END";

PerlClass.com for ACT Students August Feb 2007

Processing form input 24

</body>
</html>
END

Here are the subroutines. The first one is fairly straightforward, just printing

out a form:
#
Step 1 -- Name
#
sub stepl {
print qq(
<h2>Step 1: Name</h2>
<p>
What is your name?
</p>
<form method="POST" action="wizard.cgi">
<input type="hidden" name="step" value="2">
<input type="text" name="name">
<input type="submit">
</form>
);
}

Steps 2 through 4 require us to pick up the CGI parameters for each field that's
been filled in so far, and print them out again as hidden fields:

#
Step 2 -- Quest
#
sub step2 {
my $name = param('name');
print qq(
<h2>Step 2: Quest</h2>
<p>

What is your quest?

PerlClass.com for ACT Students August 2007 389

24 Processing form input

</p>

<form method="POST" action="wizard.cgi">

<input type="hidden" name="step" value="3">
<input type="hidden" name="name" value="$name">
<input type="text" name="quest">

<input type="submit">

</form>
);
}
#
Step 3 -- favorite colour
#
sub step3 {
my $name = param('name’);
my $quest = param('quest');
print qq(
<h2>Step 3: Silly Question</h2>
<p>
What is the airspeed velocity of an unladen swallow?
</p>
<form method="POST" action="wizard.cgi">
<input type="hidden" name="step" value="4">
<input type="hidden" name="name" value="$name">
<input type="hidden" name="quest" value="$quest">
<input type="text" name="swallow">
<input type="submit">
</form>
);
}

Step 4 simply prints out the values that the user entered in the previous steps:

390 PerlClass.com for ACT Students August Feb 2007

Processing form input 24

Step 4 -- finish up

#
sub step4 {
my $name = param('name');
my $quest = param('quest');
my $swallow = param('swallow');
print qq(
<h2>Step 4: Done!</h2>
<p>
Thank you!
</p>
<p>
Your name is $name. Your quest is $quest. The air-
speed
velocity of an unladen swallow is $swallow.
</p>
);
}

24.6.1 EXxercises

1. Add another question to the wizard.cgi script.

PerlClass.com for ACT Students August 2007 391

24 Processing form input

24.7 Practical Exercise: File upload

cc1 can also be used to allow users to upload files. Your trainer will demon-
strate and discuss this. Source code for this example is available in your cgi-
bin directory as upload.cgi

First off, you need to specify an encoding type in your form element. The at-
tribute to set 1S ENCTYPE="multipart/form-data".

<html>

<head>

<title>Upload a file</title>
</head>

<body>

<hl>Upload a file</hl>

Please choose a file to upload:

<form action="upload.cgi" method="POST" enctype="multipart/form-
data">

<input type="file" name="filename">

<input type="submit" value="O0K">

</form>

</body>

</html>

cct handles file uploads quite easily. Just use param() as usual. The value re-
turned is special -- in a scalar context, it gives you the filename of the file up-
loaded, but you can also use it in a filehandle.

#!/usr/bin/perl -w

use strict;
use CGI 'param';

my $filename = param('filename');
my $outfile = "outputfile";

392 PerlClass.com for ACT Students August Feb 2007

Processing form input 24

print "Content-type: text/html\n\n";

There will probably be permission problems with this open

statement unless you're running under cgiwrap, or your script

is setuid, or $outfile is world writable. But let's not worry
about that for now.

open (OUTFILE, ">$outfile") || die "Can't open output file: $!";

This bit is taken straight from the CGI.pm documentation --
you could also just use "while (<$filename>)" if you wanted

my ($buffer, $bytesread);

while ($bytesread=read($filename,$buffer,1024)) {
print OUTFILE $buffer;

close OUTFILE || die "Can't close OUTFILE: $!";

print "<p>Uploaded file and saved as $outfile</p>\n";

print "</body></html>";

PerlClass.com for ACT Students August 2007 393

24 Processing form input

24.8 Chapter summary

« The cct module can be used to parse data from HTML forms

- Its most common use is parameter parsing; other functions are also available
- To use it, type use CGI 'param'; at the top of your script

- Obtain each item of data using the param() function

- cc1 can be used to implement web applications of any complexity, including
data validation, multi-form wizards, file upload, and more

394 PerlClass.com for ACT Students August Feb 2007

Chapter 25: Security
issues

In this chapter...

In this section we examine some security issues arising from the use
of CGI scripts, including authentication and access control, and the
risk of tainted data and how to avoid it.

25 Security issues

25.1 Authentication and access control for CGl
scripts

A common question asked by new CGI programmers is "How do I protect my
web site with a CGI script?" There are various ways to use CGI programs to
ask for usernames and passwords and perform authentication, but in fact the
best way to perform authentication and access control comes with your web
server and doesn't require any programming at all.

The reason that password protection is often connected with CGI programs is
that CGI programs are more likely to interact with the web server's underlying
file system, backend databases, or other things which need to be kept secure.
Many programmers assume that because CGI can be used for password protec-
tion, it is the right choice for the job. This is not necessarily true.

One of the best ways to password protect web pages is by using the web
server's own authentication and access control mechanisms. Since we're using
the Apache web server, we'll look at how to do it with that.

25.1.1 Why is CGI authentication a bad idea?

Authentication (i.e. username and password checking) is hard to do correctly in
CGI. Some common pitfalls include:

- Username and password strings are sent as parameters in a GET query, and
end up in the URL (eg
http://example.com/my.cgi?username=fredspassword=secret). These details
can then end up in peoples' bookmark files, other sites' referer logs, and so
on.

- Sometimes username and password details are passed back and forth using
"cookies". Many users choose to have cookies disabled due to privacy con-
cerns, and the website will therefore be unusable to them. No such problem
exists with HTTP authentication via the web server

On the other hand, the main disadvantage of HTTP authentication is that the au-

396 PerlClass.com for ACT Students August Feb 2007

Security issues 25

thentication tokens remain active until the user shuts their browser down. This
can be a problem in public computer labs and other locations where users may
share PCs.

PerlClass.com for ACT Students August 2007 397

25

Security issues

25.2 HTTP authentication

If a web page or CGI script requires a username and password to view it, the

HTTP conversation between the client and the server goes like this:

1.
2.
3.
4,
5.

10.

398

The user specifies a URL

The user agent connects to port 80 of the HTTP server
The user agent sends a request such as GET /index.html
The user agent may also send other headers

The HTTP server realises that authentication must be performed {usually
by looking up configuration files}

. The HTTP server returns a status code 401, meaning "Unauthorized", and

also a header saying www-aAuthenticate: and the name of the authentication
domain, for instance "Acme Widget Co. Staff". This usually appears in the
browser's dialog box as "Please provide a username and password for Acme
Widget Co. Staff".

. The browser presents a dialog box or other means by which the user can en-

ter their username and password, which the user fills in then clicks "OK"

. The browser sends a new request, this time including an extra header say-

ing Authorization: and the appropriate credentials

. If the HTTP server finds that the credentials are valid, it sends back the re-

source requested and closes the connection

Otherwise, it sends back another response with status code 401 (and proba-
bly a body containing an error message), which the user agent should
recognise as meaning that the authentication failed, and display the body.

PerlClass.com for ACT Students August Feb 2007

Security issues 25

25.3

25.3.1

Access control

The way access control is handled varies from one web server to another. If
your web server is not Apache, you will need to contact your web server ad-
ministrator or read the documentation it came with, as only Apache is covered
in this course.

Apache implements HTTP authentication with the use of a password file and
either server configurations or a .htaccess file in the web directory, which con-
tains server configuration directives. Our server has been set up to allow you to

use the .nhtaccess file.

A password file has already been set up for your use. It's /etc/apache/train-
ing.passwd and uses the same usernames and passwords as your login accounts.
You can look at it by typing cat /etc/apache/training.passwd

To use this password file, create a file in your public_htm1 directory called
.htaccess, containing the following text:

AuthType Basic

AuthName "Secret stuff"

AuthUserFile /etc/apache/training.passwd
require valid-user

This authentication will apply to the directory in which the .ntaccess file is
placed and any subdirectories.

Exercises

1. Create a .ntaccess file in your public_html directory, as above

2. Use your web browser to request one of your HTML files or CGI scripts,
and observe the authentication process

3. Why would it be a bad idea to put the password file in the same directory as
the web pages or CGI scripts?

PerlClass.com for ACT Students August 2007 399

25

Security issues

25.4 Tainted data

400

Sometimes you will want to write a CGI script which interacts with the system.
This can result in major security risks if the commands executed on the system
are based on user input. Consider the example of a finger program which asked
the user who they wanted to finger.

#!/usr/bin/perl -w
use strict;

print "Who do you want to finger? ";
my $username = <STDIN>;
print ~finger $username’; # backticks execute shell command

Imagine if the user's input had been skud; cat /etc/passwd, Or worse yet, skud;
rm -rf / The system would perform both commands as though they had been
entered into the shell one after the other.

Luckily, Perl's -t flag can be used to check for unsafe user inputs.

#!/usr/bin/perl -wT

PerlClass.com for ACT Students August Feb 2007

Security issues 25

RTFEM !

6 356 - 360

23 557 - 566
perlsec

19 767 - 770

B 294 light

-1 stands for "taint checking". Data input by the user, either via the command
line or an HTML form, is considered "tainted", and until it has been modified
by the script, may not be used to perform shell commands or system interac-

tions of any kind.

The only thing that will clear tainting is referencing substrings from a regexp
match. perldoc perlsec contains a simple example of how to do this, about 7
pages down. Read it now, and use it to complete the following exercises.

Note that you'll also have to explicitly set sexv{'pata'} to something safe (like

/bin) as well.

25.4.1 Exercises

1. The HTML file finger.nhtml asks the user for an account name about which

to obtain information {using the UNIX system's finger command}. It calls
the CGI script cgi-bin/finger.cgi Which uses taint checking.

2. Why is the data input by the user tainted?

3. Add a -7 flag to the shebang line of finger.cgi so that the script performs
taint checking

PerlClass.com for ACT Students August 2007 401

25 Security issues

4. Try re-submitting the form - it should fail

5. To untaint the data, you need to clean up any unwanted characters. Use
some code similar to that in perldoc perlsec to remove anything other than

alphanumeric characters and assign the valid part of the user input to a new
variable.

402 PerlClass.com for ACT Students August Feb 2007

Security issues 25

25.5 cgiwrap

Many large sites, such as ISPs and educational institutions, require users to run
their CGI scripts using a program called cgiwrap. This program causes the CGI
script to execute as if being run by the owner, instead of the web server's user
ID. What this means is that the script will have permission to read and write the
user's files, and will not be able to cause any damage on the system that the
user could not cause.

PerlClass.com for ACT Students August 2007 403

25

Security issues

25.6 Secure HTTP

404

Another somewhat related topic is secure HTTP, which uses the HTTPS proto-
col to open a secure connection and encrypts all data between the web client
and server. This is often used to make online credit card transactions more se-
cure.

CGI scripts can be run on a secure server exactly as they would run on any oth-
er server.

PerlClass.com for ACT Students August Feb 2007

Security issues 25

25.7 Chapter summary

- HTTP authentication can be used to password protect web pages

- The Apache web server implements HT'TP authentication. This can be con-
figured via a .htaccess file

- There is a security risk from tainted data --- data entered by a user which is
used for subsequent system interaction

- Perl has built-in checking for tainted data, which can be turned on my using
the - command line switch

- Data can be untainted by referencing a substring in a match, as shown in
perldoc perlsec.

- Some web servers use cgiwrap to run CGI scripts under their owner's user
ID.

« Secure HTTP can be used to provide an encrypted channel of communication
between the web client and server.

PerlClass.com for ACT Students August 2007 405

Chapter 26: Other re-
lated Perl modules

In this chapter...

In this section we are briefly introduced to Perl modules which may
be useful to us in developing CGI applications, including modules for
failing gracefully, encoding and decoding URLS, and filling in tem-
plates.

26 Other related Perl modules

26.1 Useful Perl modules

There are several common problems faced by CGI programmers: failing grace-
fully, creating valid URLs from any text, using a template to insert variables
into HTML, sending email based on CGI parameters, et cetera. Since these
problems are so common, people have written modules to solve them. This sec-
tion explains some of the most useful modules to save you from having to re-
invent the wheel.

Each of these modules can be downloaded from CPAN (the Comprehensive
Perl Archive Network) (http://www.perl.com/CPAN) and installed either using
the CPAN module distributed with Perl, or by following the steps described in
the reapmr file distributed with each module.

408 PerlClass.com for ACT Students August Feb 2007

Other related Perl modules 26

26.2 Failing gracefully with cG1::carp

The errors given in the web server's error logs are not always easy to read and
understand. To make life easier, we can use a Perl module called cc1: :carp to
add timestamps and other handy information to the logs.

use CGI::Carp;

We can also make our errors go to a separate log, by using the carpout part of
the module. This needs to be done inside a Bec1n block in order to catch com-
piler errors as well as ones which occur at the interpretation stage.

BEGIN {
use CGI::Carp qw(carpout);
open(LOG, ">>cgi-logs/mycgi-log") ||
die("Unable to open mycgi-log: $!'\n");
carpout (LOG);
}

Lastly, we can cause any fatal errors to have their error messages and diagnos-
tic information output directly to the browser:

use CGI::Carp 'fatalsToBrowser';

PerlClass.com for ACT Students August 2007 409

26 Other related Perl modules

RTFEM !

Src Chap Pgs #
Nutshell 2™ 8 192
Camel 2™ 7 385
Camel 3" 32 878
perldoc Carp
Cookbook 2™ 12 473 - 475

rd

Learning 3

. b
Learning 4"

26.2.1 Exercise

1. Use the cc1: :carp module in one of your scripts

2. Deliberately cause a syntax error, for instance by removing a semi-colon or
quote mark, or inserting a die ("argh!"); statement, and see what happens

410 PerlClass.com for ACT Students August Feb 2007

Other related Perl modules 26

26.3 Encoding URIs with URI: :Escape
Sometimes we want to output anchor tags referring to another
CGI script, and pass parameters along with it, thus:

O'Reilly's Programming Perl

However, spaces and apostrophes aren't allowed in URIs, so we have to encode
them into the "percent-encoded" format. This format replaces most non-al-
phanumeric characters with two hexadecimal digits. For instance, a space be-
comes %20 and a tilde becomes %7E.

The Perl module we use to encode URISs in this manner 1S UrI: :Escape. Its doc-
umentation is available by typing perldoc URI::Escape.

Use it as follows:
#!/usr/bin/perl -w

use strict;
use URI: :Escape;

my Sbook_lookup =
"lookup.cgi?title=Programming Perlé&publisher=0'Reilly";

my Sencoded_url = uri_escape(S$address);
my Soriginal_url = uri_unescape($encoded_url);

26.3.1 Exercise

1. Try out the above script cgi-bin/escape.cgi you'll need to print out the

values of Sencoded_url and Soriginal_url

PerlClass.com for ACT Students August 2007 411

26 Other related Perl modules

26.4 Creating templates with Text: :Template

By this stage in the day you have probably spent a great deal of time outputting
HTML either via a long list of print statements or by using a "here document"
or other shortcut. What if you wanted to have a template HTML output file
which was filled in with the appropriate variables?

Luckily, there is a Perl module to do this, called Text::Temp1ate. Unluckily, it
uses a concept we haven't covered yet, but which we will now explain.

Text::Template 18 different to the other modules we have used so far today, in
that it is an object oriented module. Object oriented Perl modules can be very
powerful, but require some background knowledge to understand how they
work.

26.4.1 Introduction to object oriented modules

Before embarking on this task, we need to have an understanding of how Perl's
object-oriented modules work. Not all modules are object oriented (Ur1: :Es-
cape, for example, is not), and some can be used either way (CGI is one of
these), but some require us to work with them in this way.

A software object, like a real-life object, has attributes (things that describe the
object) and methods (things you can do with, or to, the object). Consider the
real-life example of a cup:

Table 26-1. Attributes and Methods of a cup

Object Attributes Methods
Cup - colour « drink from it
- handle (does it have one?) - fill it up
- contents (water, coffee, etc) . smash it
- fullness

Note that when you smash a cup, you aren't smashing the generic class of cups,

412 PerlClass.com for ACT Students August Feb 2007

Other related Perl modules 26

26.4.2

but rather a specific instance - this cup, not "cups in general". This is what we
call an instance of a class -- remember that, as we'll use it later.

Using the Text::Template module

Like the cup, our text template has attributes and methods.

Table 26-2. Attributes and Methods of Text::Template

Text::Template . TYPE - the type of . £i11_in() - fill in

template it is, eg a the template
file, a string you
created earlier, etc

« SOURCE - the filehan-
dle or variable name
in which the tem-

plate can be found

Before we can actually use these attributes and methods in any useful way, we
have to create a new instance of the class. This is the same as how we needed a
specific cup, rather than the general class of cups.

using the class in general
use Text::Template;

instantiating the class and setting some attributes for the new in-
stance

my Sletter = new Text::Template{'TYPE' => 'FILE', 'SOURCE' => 'let-
ter.tmpl'};

We can then perform a method on it, thus:

my $finished_letter = S$letter—->fill_in();

This will fill in any variables found in the template file.

PerlClass.com for ACT Students August 2007 413

26 Other related Perl modules

26.4.3 Exercise

1. Type perldoc Text:: Template and look at the documentation for this

module

2. cgi-bin/letter.cgi implements the example above. Examine the source
code.

3. Make some changes to the letter template and see if they work.

414 PerlClass.com for ACT Students August Feb 2007

Other related Perl modules 26

26.5 Sending email with Mail::Mailer

The Mail::Mailer module can be used to send email from a CGI script (or, for
that matter, any script). Like Text::Template, it is an Object Oriented module.
The object it creates is a "mailer" object, which can be opened and then printed
to as if it were a filehandle.

#!/usr/bin/perl -w

use strict;
use Mail::Mailer;

my Smailer = new Mail::Mailer;

the open() method takes a hash reference with keys which are mail
header names and values which are the values of those mail headers

Smailer—->open({

From => 'fred@example.com',
To => 'barney@example.com',
Subject => 'Web form submission'’

}o)s

we can print to Smailer just as we would print to STDOUT or any
other file handle...

print $mailer gqg(
Dear Barney,

Here is a form submission from your website:

Name : Sname
Email: Semail
Comments: Scomments

Love, Fred.

) ;

Smailer->close();

PerlClass.com for ACT Students August 2007 415

26 Other related Perl modules

Advanced

You can also open a pipe to sendmail directly, but doing this
correctly can be difficult. This is why we recommend

Mail::Mailer to avoid re-inventing the wheel.

26.5.1 Exercises

1. Create an HTML form with fields for name, email and comment

2. Use the above script (cgi-bin/mail.cgi) to mail the results of the script to
yourself. You will need to edit it to work fully:

- Use CGIL.pm to pick up the parameters
- Change the email address to your own address

- Print out a "thank you" page once the form has been submitted -- don't
forget the Content-type header

416 PerlClass.com for ACT Students August Feb 2007

Other related Perl modules 26

26.6 Chapter Summary

« The cG1::carp module can be used to help CGI programs fail gracefully

« The vr1: :Escape module can be used to encode and decode percent-encoded
URLs

« The Text::Template module can be used to easily fill in text templates, in-
cluding HTML templates.

« The mMail::Mailer module can be used to send email based on the information
entered in an HTML form

- All these modules can be downloaded from CPAN, the Comprehensive Perl
Archive Network

PerlClass.com for ACT Students August 2007 417

Chapter 27: Conclu-

sSion

In the conclusion...

Summing up and various paths for further study.

27

Conclusion

27.1 Day 1: What you've learned

420

Now you've completed PerlClass.com's Introduction to Perl module, you

should be confident in your knowledge of the following fields:

What is Perl? Perl's features; Perl's main uses; where to find information
about Perl online

Creating Perl scripts and running them from the UNIX command line, in-
cluding the use of the -w flag to enable warnings

Perl's three main variable types: scalars, arrays and hashes

The strict pragma, lexical scoping, and their benefits

Perl's most common operators and functions, and their use

Perl's concept of truth; existence and definedness of variables
Conditional and looping constructs: if, while, foreach and others.

Regular expressions: the matching and substitution operators; simple
metacharacters; quantifiers; alternation and grouping

PerlClass.com for ACT Students August Feb 2007

Conclusion 27

27.2 Day 2: What you've learned

Now you've completed PerlClass.com's Intermediate Perl module, you should
be confident in your knowledge of the following fields:

- File I/O, including opening files and directories, opening pipes, finding infor-
mation about files, recursing down directories, file locking, and handling bi-
nary data

- How to use advanced regular expression techniques such as multiline match-
ing and backreferences

. The use of various Perl functions

- System interaction, including: system calls, the backtick operator, interacting
with the file system, dealing with users and groups, dealing with processes,
network communications, and security considerations

. Advanced Perl data structures and references

PerlClass.com for ACT Students August 2007 421

27 Conclusion

27.3 Day 3: What you've learned

Now you've completed PerlClass.com's CGI Programming in Perl module, you
should be confident in your knowledge of the following fields:

« What CGI 1s

- How HTTP allows web user agents (browsers) to communicate with web
servers and retreive documents

- How to perform HTTP requests by using telnet to connect to the web server
- How to generate simple web pages using Perl
- How to access environment variables from CGI scripts

- Various methods of quoting text, including "here" documents and the qq ()
type functions

- How to process data from HTML forms using the CGI module

- How to use the CGI module for applications such as data validation, simple
"wizard" interfaces, and file uploads

- Security issues related to CGI programming, including authentication and ac-
cess control, dealing with tainted data, secure web servers, etc.

« The use of various Perl modules related to CGI programming, including
CGI::Carp, URI::Escape, Text::Template, and Mail::Mailer

- A basic understanding of object oriented Perl modules

422 PerlClass.com for ACT Students August Feb 2007

Conclusion 27

27.4 Day 4: What you've learned

Now you've completed PerlClass.com's Database Programming with Perl mod-
ule, you should be confident in your knowledge of the following fields:

- Database terminology, including tables and relationships, fields and records,
etc

- Flat file database manipulation including delimited and CSV text files
- Basic SQL queries, including seLECT, INSERT, DELETE, and UPDATE queries

- Features of MySQL, where to get MySQL from, and how to set up MySQL
databases

- Using the MySQL command line client to perform SQL queries
- Using Perl's DBI module to interact with databases

- Applying Perl skills from previous training modules to create database appli-
cations

PerlClass.com for ACT Students August 2007 423

27 Conclusion

27.5 Where to now?

To further extend your knowledge of Perl, you may like to:
- Borrow or purchase the books listed in our "Further Reading" section (below)

- Follow some of the URLs given throughout these course notes, especially the
ones marked "Readme"

- Install Perl on your home or work computer
- Practice using Perl from day to day

- Install Perl and MySQL (or other database servers) on your home or work
computer

- Install Perl and a web server such as Apache on your home or work computer
- Practice using Perl for CGI programming on a daily basis
- Practice using Perl to interact with databases
- Join a Perl user group such as Perl Mongers (http://www.pm.org/)
- Richmond Perl Mongers (http://richmond.pm.org/)
- Hampton Roads Perl Mongers (http://norfolk.pm.org/)

424 PerlClass.com for ACT Students August Feb 2007

Conclusion 27

27.6 Further reading -- books

- Alligator Descartes & Tim Bunce, "Programming the Perl DBI", O'Reilly and
Associates, 2000

- Randy Jay Yarger, George Reese & Tim King, "mSQL and MySQL", O'Reil-
ly and Associates, 1999

- Tom Christiansen and Nathan Torkington, The Perl Cookbook, O'Reilly and
Associates, 1998. ISBN 1-56592-243-3.

- Jeffrey Friedl, Mastering Regular Expressions, O'Reilly and Associates,
1997. ISBN 1-56592-257-3.

- Joseph N. Hall and Randal L. SchwartzEffective Perl Programming, Addi-
son-Wesley, 1997. ISBN 0-20141-975-0.

PerlClass.com for ACT Students August 2007 425

27 Conclusion

27.7 Online

426 PerlClass.com for ACT Students August Feb 2007

Conclusion 27

27.8 The Perl home page (http://www.perl.com/)

OREILLY*

peri.
‘THE SOURCE FOR PERL i,
o b | ST i Y e Sian In/My Account | view cart

Then.

Savertizement

M site Foeds
[subsarbe o patcam's
B Reheea

I New to RSS2

Perl.com

Perl.com includes resources on dowrloading and installing Perl, 3 siv-nart tutarial
on learning Perl, the Catalyst web application framework, and hundreds of other
articles and resources to help new and experienced programmers refine their
skills and contribute to the worldwide Perl commurity.

CPAN Review

Related Books

Perd Best
pracuces
by bamian

Conway
July 2005
$35.95 Usp
CPAN Module Revie

XML

tom

1 recently needed to fiter and process some Atom feeds. T know enough XML that
I could process them with my own SAX filter, but this seemed like a better " book:
opportunity to se the XML::stom module, Fortunately, it was very easy. chromatic | " Morebooks

I More CPAN Reviews

Perl Jobs
Perl Weblog Posts

R S —
S O'Rilly vodia,
Perl Jobs e e

Compettion n the marketace i 2 gaod thing ight? S0 now e have both e Eusats)
perl.org and jobs.perl.com. I'm al to start looking for a new Perl job - so o Sr. Web Develop
ot Soe whtch tris o thom 2 ot ussful. Curently e oad thore Dave Cross \inutlapacheimosaliper and
Qoo soures
: S O Resly Media, Inc.
Grants: Calls for Proposals (5ebastopol, California)
+ Senior Softvare Enginasr
1f yau have an idea for doing some wark for the Perl community and you think it's | (aua/Per/tGOULinus/uin/wab
worthy of a grant, please send your grant entry to 2ery

tpf-proposals@perl-foundation org. Submission deadline is the last day of

5t O'Reilly Media, Tnc.
(sebastopol, California)
February, voting starts in March... read mare Curtis foe

London Needs Perl Programmers ievs All Jobs
posta Job

Dave Cross just posted a short analysis of Perl Programmers in London and the

job situation there. This matches what I've heard, and what I noticed when I was

in Europe last summer. There's plenty of work available for people... read more

chromatic O'Reilly Learning Center

Why Do You Contribute to

Perl for CGI Programming
It's important to understand volunteer mativation to encourage further altruistic
and mutually bensficial behavior. O'Reilly Editor Andy Oram has created a shart
survey for people to contribute to community documentation: "Do you answer
questions on mailing lists about how to... read more chromatic

In this course, participants will
learn nat only CGI, but the
computer language Perl. This
language is generally regarded
as the most useful computer
language for processing an
manipulating text based data

" More ONLamp Posts

Articles " More

Advanced HTML:: Template: Widgets

HTML::Template is & templating module for HTML made
powerful by its simplicity. Its minimal set of operations
enforces a strict separation between presentation and Iogic.
However, sometimes that minimalism makes templates
unwieldy. Philinp Janert demonstrates how to reuse
templates smaller than an entire page--and how this
simplfies your applications.

Sponsored By;

DON'T TAKE
BAD CAREER

Unix and Unix-like systems often come with compilers andt

ke Ules, Windews oSt rarsy 4o, 10stling e ADVICE

madules on Windows can be somewhat difficult by hand

Fortunately, ActiveState's PPM utility takes away much of the
ain, and it's highly customizable too. Josh Stroschein

demanstrates haw to install Perl modules with PEM and how

to create your own repositaries

Painless Windows Module Installation with PPM

Understanding o

Using Java Classes in Perl

Java has a huge amount of standard libraries and APls. Some
of them don't have Perl squivalents yst. Fortunately, using
Java classes from Perl is easy--with Inline: Java. Andrew
Hanenkamp shows you how.

" View the archive

Perl Recipe of the Day

Y VYou want the standard Exporter module to define the sxternal Get good tips
interface to your modle. from tech pros at
I Do it now Dice Discussions.

{ niscuss J
[R discussions

Ads by Vahoo!

h Dad Learn To Be Rich windows tutorial Womble Carlyle
Workshops Tutanal for Windaws XP by Video Exparts in Lifa Sciences Law Download Our

Fres Workshaps in the Norfolk ares, Fab Professor - Laarn at Your Fras Whitepaper
v

Contact Us | Advertise with Us | Privacy Policy | Press Center | Jobs | Submissions Guidelines

opyright © 2000-2008 O'Reilly Media, Inc. All Rights Reserued.
Al tradamarks and registared badamsiks shpearing on the O Raily Nebuork ore the properéy of their respacive ounars

For problems or assistance with this site, email help@oreillynst. com

PerlClass.com for ACT Students August 2007 427

http://www.perl.com/

27 Conclusion

27.9 Perl Monks (http://www.perimonks.com)/)

P?lr p www.pair.com

Patholo gically Eclectic Rubbish Lister

I Scarch

| Lag in| Create a new user| The Monastery Gates |
The Monastery Gates | Seckess of Pesl Wigd| PeelM onks Discussion
| Obfuscation| Fo Perl | P

| Uses
| Code | Postry | Becent Threads | Nowest Mol

(#131=superdos: print wd replies, xml) Meed Help??
Donations gladly accepted tog [
IEyoure new here please read PerlMonks FAQ —
and Create a new user. Facaword
I temeniberme LOgin

password reminder
Create 4 New User

Chatterhox

“Want Mega XP7 Prepare to have your hopes dashed, join in on the: poll ideas quest (11273 days remain)

Jhew

= 3 [dintalevi]: So {Tures, this is just for suckers, right?

Fork and WWW.Mechanize: Can agent be shared? 4 replies by cormanaz e and idits.)

cmifeD i3, 2007 e 12117 [davido] - Fortunately there's ome of both bom every e
Good day monks. I am frying to get the hang of using multiple processes with WWW:Mechanize. [think T'e just about got it Sigured out except for one thing. Can cifferent processes [davids] ' questioning my sty for continaing my 50

share the same mech object? In ofher words can I subseription actually.. they keep cutting out the stations [
like

e a (lntelev]): Ok, so don't pay for that? On KM do they let
= o ou ze-listen 1o things you liked befoe or time-shift stuff?

Fisfresh

 Fow do Tuse this? | Other (B clients

[Othezs huking in the Monastery: (15)

e
dintelevi

i

=

fralentin
=90 e_sovrds
ercase

t

any rio

TIVANE

=2
&
&
P
]

g
B
E\E%‘
i

e 3007.01.39 0425 GBIT
how would you detect a math expression 2reclies zm - Soctians
onFeb 18, 2007 at 1043 Mﬁﬁ ;:“:ke‘vr‘:a“f};:ﬂ vf‘:::m
Twas having a discussion with a friend on google calculator, and it soon tumed to how google could detect it was math expression and not a query, 2-+4/6*8 e ion

L

27.9.1 The Perl Monks Guide to the Monastery

Welcome to PerlMonks, the Monastery of Perl. We hope your stay is long and
enjoyable. You are probably wondering what this is all about. Hopefully this
page will answer some of those questions.

In the words of different people, PerIMonks is:

- amedium for making Perl as non-intimidating to learn and as easy to use

as possible;

- a place for Perl programmers (such as you) to improve your skills and

share your expertise;

- a community which allows everyone to grow and learn from each other.

428 PerlClass.com for ACT Students August Feb 2007

http://www.perlmonsk.com/

Conclusion 27

27.9.1.

27.9.1.

1 Finding Your Way Around

The Monastery has a number of areas, called "Sections", where you can read
and contribute to discussions in a threaded messageboard-like forum format.
There are also other useful repositories of information which will assist you in
your Perl and PerlMonks endeavors.

1.1 Sections

Seekers of Perl Wisdom - The place you can go when you have got a question

on how to do something or are unsure why something just isn't working. Then
other Perl Monks can offer you their wisdom and suggestions.

Meditations - Have you found out something amazing about Perl that you just
need to share with everyone. Have you had a Perl epiphany, or found something
in Perl that just blows your mind. This is the place for those neat little tricks and
amazing discoveries.

PerlMonks Discussion - For discussions relating specifically to this web site,

and how things work around here. For example, if you think the Monastery
could be improved in some particular way, raise it for discussion here.

Categorized Questions and Answers - Our own ever-growing compendium of

"frequently asked" Perl-related questions and their answers. If you're faced with
a problem and your inclination is to think "I'm sure this has been solved a thou-
sand times before", then check here before you go posting to Seekers of Perl

Wisdom.

Tutorials - An ever-growing online textbook from which you can learn the ba-

sics of Perl or some groovy stuff that you haven't tried before. This area is man-
aged by the Pedagogues.

Obfuscated code - Got code that it would take a Perl grand master to under-

stand? Put it here so we can stare at it in awe after we've run it and found out
what it does.

PerlClass.com for ACT Students August 2007 429

http://www.perlmonks.com/index.pl?node_id=1597
http://www.perlmonks.com/index.pl?node=Pedagogues
http://www.perlmonks.com/index.pl?node_id=954
http://www.perlmonks.com/index.pl?node_id=479
http://www.perlmonks.com/index.pl?node_id=479
http://www.perlmonks.com/index.pl?node_id=1843
http://www.perlmonks.com/index.pl?node_id=1040
http://www.perlmonks.com/index.pl?node_id=480
http://www.perlmonks.com/index.pl?node_id=479

27

27.9.1.

430

Conclusion

Perl Poetry - The name pretty much says it all.

Cool Uses for Perl - Have you automated a part of your life that wouldn't have

been possible without the power of Perl? Are you using Perl to do something
unique and humorous that you're convinced no one else has thought of? Tell us
about it!

Snippets Section - Have you written something clever that is incredibly useful,

but hard to write the first time? Add it here so people can benefit and learn from
it.

Code Catacombs - The place to put your full-blown programs and scripts that

others might find useful.

Reviews - If you are shopping around for the Perl module or book which is just
right for your needs, read these reviews — written by your fellow Perl Monks
— to help you make an informed decision.

Conversely, if you have used a module or read a book, and you think other Perl
Monks might benefit from your experiences, please share them here by writing a
review!

Perl News - Relevant news and announcements from the Perl Community. Pulls

together items from sources such as use Perl; and O'Reilly.

1.2 Information

The PerlMonks FAQ - Your one-stop shop for Nearly Everything You Ever
Wanted To Know About PerlMonks. Maintained by the SiteDocClan.

Tidings - aka What's New at PerIMonks.

Voting/Experience System - Many newcomers are confused by this aspect of

PerlMonks. This should clear things up.

Perl FAQ and Library - Our local copy of the standard Perl documentation set,

PerlClass.com for ACT Students August Feb 2007

http://www.perlmonks.com/index.pl?node_id=148
http://www.perlmonks.com/index.pl?node_id=382
http://www.perlmonks.com/index.pl?node_id=5938
http://www.perlmonks.com/index.pl?node_id=545862
http://www.perlmonks.com/index.pl?node=SiteDocClan
http://www.perlmonks.com/index.pl?node=PerlMonks FAQ
http://www.perl.com/
http://use.perl.org/
http://www.perlmonks.com/index.pl?node_id=23771
http://www.perlmonks.com/index.pl?node_id=21144
http://www.perlmonks.com/index.pl?node_id=1747
http://www.perlmonks.com/index.pl?node_id=1967
http://www.perlmonks.com/index.pl?node_id=1044
http://www.perlmonks.com/index.pl?node_id=1590

Conclusion 27

27.9.1.

for your convenience. Note, however, that the content is not being maintained
and is now a couple versions old.

QOutside Links - Various other sites that Perl Monks might find useful. Note,
however, that this has been superceded by Where can I find more information

on.... See especially PerlMonks-Related Resources on Other Servers.

1.3 Find Interesting Nodes

The Monastery Gates - The "default" page of the web site, it shows recent

nodes from all sections which have been deemed most worthy of public expo-
sure — the "face" of PerIMonks.

Super Search - Full-text and title searches, with additional filtering by section,

age, author, and many other criteria.

Newest Nodes - An up-to-the minute listing of all the nodes which were created
since "the last time you checked".

Recently Updated Home Nodes - Similar to Newest Nodes, a listing of the user

homenodes which have been modified since "the last time you checked". (Note
that only changes designated by their authors as "significant" will register in this
list.)

Recently Active Threads - A threaded view of the Monastery's active content.

It's like Newest Nodes on steroids.

Selected Best Nodes - A random selection of 50 of the top 2000 nodes, as
ranked by node reputation. The selection is re-sampled daily.

Best Nodes - The top 10 nodes of the Day, the Week, and the Month, and the
top 20 nodes of the Year.

Worst Nodes - The bottom 10 nodes of the Day, the Week, and the Month, and
the bottom 20 nodes of the Year.

PerlClass.com for ACT Students August 2007 431

http://www.perlmonks.com/index.pl?node_id=9488
http://www.perlmonks.com/index.pl?node_id=9066
http://www.perlmonks.com/index.pl?node_id=18538
http://www.perlmonks.com/index.pl?node_id=328478
http://www.perlmonks.com/index.pl?node=Newest Nodes
http://www.perlmonks.com/index.pl?node_id=397425
http://www.perlmonks.com/index.pl?node_id=3628
http://www.perlmonks.com/index.pl?node_id=16902
http://www.perlmonks.com/index.pl?node_id=3628
http://www.perlmonks.com/index.pl?node_id=3989
http://www.perlmonks.com/index.pl?node=The Monastery Gates
http://www.perlmonks.com/index.pl?node_id=579676
http://www.perlmonks.com/index.pl?node_id=483101
http://www.perlmonks.com/index.pl?node_id=483101
http://www.perlmonks.com/index.pl?node=Outside Links

27

27.9.1.

432

Conclusion

Saints in our Book - "Saints" here is more figurative, or honorary; this is a list

of Monks who have at least 3000 experience points, which technically makes
them Level 13: Curate, not Level 26: Saint.

1.4 Additional Miscellany

The St. Larry Wall Shrine - A neat compendium of articles by and about the

creator of Perl.

Offering Plate - If you find this place to be of value, you can show your appre-

ciation by helping defray the costs of keeping the site up and running.
Awards - Accolades and other noteworthy public mentions of PerlMonks.

Craft (deprecated) - This was a place for perlsmiths to showcase their code.

New submissions should go in the Code Catacombs section, but Craft still

makes an interesting read.

Buy Stuff - Yes, you can actually buy Perl and PerlMonks related gear... such as
a t-shirt with the famous camel code obfu on it!

PerlClass.com for ACT Students August Feb 2007

http://www.perlmonks.com/index.pl?node_id=45213
http://www.perlmonks.com/index.pl?node_id=29195
http://www.perlmonks.com/index.pl?node=Craft
http://www.perlmonks.com/index.pl?node=Code Catacombs
http://www.perlmonks.com/index.pl?node_id=481
http://www.perlmonks.com/index.pl?node=Awards
http://www.perlmonks.com/index.pl?node_id=71130
http://www.perlmonks.com/index.pl?node=The St. Larry Wall Shrine
http://www.perlmonks.com/index.pl?node_id=244022
http://www.perlmonks.com/index.pl?node_id=504005
http://www.perlmonks.com/index.pl?node_id=5938
http://www.perlmonks.com/index.pl?node_id=3559

Conclusion 27

27.10 The Perl Journal (http://www.tpj.com/)

Founded in 1996 by Jon Orwant, The Perl Journal was published through Jan-
uary 2006, and was the leading publication for and about Perl Programming.

PerlClass.com for ACT Students August 2007 433

27 Conclusion

27.11 Perl Mongers (http://www.pm.ord/)

Many localities have formed Perl Mongers groups to help encourage more users

of Perl and to let Perl fans socialize.

Perl Mongers

%Perl

mongers . . _ .
=t Ferl Mongers is a loose association of international Perl User Groups.

Perl Mongers

Copyright® 2006 The Perl Foundation.
The Perl camel imade is g trademark of 2'Reilly Media, Inc. Used with permission.

434 PerlClass.com for ACT Students August Feb 2007

http://www.pm.org/

Conclusion 27

27.12 The Richmond Perl Mongers (http://wik-
I.fini.net/bin/view/RichmondPM)

The Richmond Perl Mongers are the closest group that meets regularly.
FINI: e

Hello Christopher
Hicks)

Richmond Perl Mongers

This is the viki for Fichmond Perl Mongers (Fichmond.prm). Some of the information on this wii is carefull cantroled, but for the most part feel free to make
contributions 2nd suggestions. e
Meetings
28 Richmondph web
March Lok for a mesting around Spm, Thursday, 8-Mar-2007, at Panora ersad, 1601 Wilaw Lawn Drive. Typically we can be found in the small area Just to
the left after you enter. General Discussion & 2. -~ Johringersoll - 12 Feb 2007

The focus of these mostings ars on socialization, getting to mest sach other and get a chance to talk with someone in parson about Perl (versus doing all @ Nosfications
communications via the Intemet). At some point in the near future we wil focus upon forming some technical lessons for people to share and learn from each & statistics

& pretorences

Resources
W ettywals

Christicks

e

wain
Atticles periclass
RealtyDemo
Perl Hacks Richmond.pm's favorite perl hacks. B Richmonde
Sandbos
Supplementary prototypes Discussion B st
i

Richmand Perl Mangers has a discussion list, (Note: the membarship list was lost in early Aprl 2008. If you haven't heard anything from us recently, please
resubscribe. Thanks!)

--Matt Avitable (ugust 10, 2008)

Bundee your Perl code into a CPAN-style distribution,

~-Steve Kirkup(May 18th, 2006)

Testing Modules A quick ovarview of medules that can ba usad to supplemant your distributions,

~-Steve Kirkup(apr 26th, 2006)

Extra note on the above testing modules article. Steve mentioned Test::Class last PM meeting, [was a bit worried it would be overkil, but it tums out that it
makes tests easier to wiite. As an added bonus, you can group the tests logically within subroutines, and have the benefit of simple setup/teardown hooks.
This madule is definitsly worth a laok if you are testing lots of cade.

One (very minar) gotcha is that Test::Class uses Attribute::Handiers. That's not a bad thing, but If you had the masechistic idea of running yeur tests fram a
madl_perl enviranment, den't expect it to wark, Attribute:: Handlers uses CHECK blocks, which never run in mad_perl

~Matt Avitablo
Historic

Earlier Meetings

Fobruary 2007 On &-Feb-2007 we had 3 discussion of various tapics and a dema of writing 0O Perl from seratch

January 2007: We met araund Spm, Thursday, L1-January-2007, at Panera &raad, 1501 Willow Lawn Orive. The discussiens included use of referances, esp.
hash references.

December 2006: sacial mesting ran from ~ & to 7pm, Dacember 14, 2006 at Panera Bread, 1601 Wilow Lawn Drive. Allan walked us through 2n agplication
using XML Twig,

November 2006: Our mesting at Panera Bread, Wilew Lawn had a brief discussion of Template Toalit followsd by 3 damo by Alan of mad-perl in his warking
web site Attp://ths net/.

Octaber 2006: A sacial meeting accured araund Spm, Octaber 12th, 2006, at the new Paners Bread at 1601 Wilaw Lawn Drive, Matt provided us with 2 good
intro to Mad_per basics. -~ Johningersol - 13 Oct 2006

September: 4 social meeting #as held at 5pm, September 14th, 2006, at Panera Bread, 1601 Wilow Lawn Drive. The primary topic was Perl reguiar
expressions and discussion regarding what would suit the roup best regardng more permanent place. -~ John Ingersol

August: 4 sacial mesting accured on o about Spm, August 10th, 2006 at the Innsbrook Panera Bread location. One result of the meeting was the beginning
of a perl Hacks section in the wiki

July: 4s of July Sth, we expect to hold yet another social mesting at 5pm, July 13th, 2006 at Panera Bread on Brosd Strest, sbout midway between Gaskins
and Cox Roads. Topics and future programs welcome.

June: At 5pm on June 8th, we held = (very sparse) social meeting at Panera 8read, Innsbrook, on Brosd Street.

May: At Som on May 11th, we held 2 sacial meeting at Panera Bread on Broad Street.

April: We held a sccial mesting at Spm, April L3th, 2006 at Panra Bread on Broad Strset, about midway between Gaskins and Cox Roads.
March: This meating was canceled

Febuary: Originally scheduled for the 9th, it was moved to the 16th at 4pm. To lear more please read MeetinaFeb2nns

January: Notes from the first mesting are available at Mesting)sn2006.

Wiki
fi mondPM Web:

. Search (Vore options in WebSesrch)

+ WebChanges: Display recent changes to the RichmondPi web

+ Weblndex: List all RichmandPM topics in alphabstical order. See also the faster webTogictist

- WetHiotify: Subscribe to an e-mail alert sent when somsthing changes in the RichmandPM web

+ Webstatistics: View access statistics of the RichmondPi web

+ Webprafarences: Prafarences of the RichmandPM wab (TwikiPrefarences has sita-wide prefarances)

ki find TWiki Web:

- Twiki.WelcomeGuest: Lask hers first to get you raling on wikifin
+ Twikisite: Explains what 2 wiki.fin site is
» TwlkiResistration: Create your acoount in order to sdit topics,
- How to edt text:
+ GocdStyle: Things to cansider when changing text,
» TeutFormattingFulos: Easy to leam rules for editing text
+ TedtFormattngFad: Answers to frequently asked questions about text formatting,

Notes:

+ 1If you are not familar with the wiki fini collsboration platform, please wisit WelcomeGusst first

Edit | WYSIWYG | Attach | printable | Raw Viow | Eacklinks: Web, All Webs | History: 161 < 60 < 59 < 58 < 157 | More topic actions

@ Twild

Hllustration 5: The Richmond Perl Mongers Home Page

The Richmond.PM site is powered by Twiki.

PerlClass.com for ACT Students August 2007 435

http://wiki.fini.net/bin/view/RichmondPM
http://wiki.fini.net/bin/view/RichmondPM

27 Conclusion

27.13 London Perl Mongers and NMS

The London Perl Mongers have a group project known as NMS which provides
an alternative set of scripts for the Matt's Script Archive scripts which had be-
come quite outdated. http://nms-cgi.sourceforge.net/ is the official site for the
rewritten scripts. The improvement is so drastic and desperately needed that
Matt's Script Archive site itself refers new users to the NMS scripts.

436 PerlClass.com for ACT Students August Feb 2007

http://nms-cgi.sourceforge.net/

Conclusion

27.14 O'Rellly's Perl books

27

O'Reilly is the leading technical publisher of books about Perl, and many other

wonderful Internet technologies. Their Perl books are written by core folks who

have developed the language.

O’REILLY"

Home I

Complete List | B

| | Qut of Print | ©rder Info

MY ACCOUNT | UIEW SART & &

TOPICS
b Business & Culture
¥ Databases

¥ Design & Graphics

-

Digital Audio & Widea

-

Digital Photography

¥ Hardware

¥ Home & Office

¥ Metworking & Sys Admin
¥ Operating Systerns

* Frograrming

WMET & Windows
Programming

LSEES

c#

CAC+H+

Certification
Games

Java

Cther Programming
Perl

FHP

Project & Career
Management

Python
Ruby
Secure Prograrmming
Wisual Basic
web Services
wML
b Soience & Math
F Security
¥ Zoftware Engineering

¥ The Weh

INTERMATIOMAL SITES

e |

Perl

PUBLICATION DATE
—_—

% Mastering Regular Expressions, Third Edition
By Jeffrey E. F. Friedl

August 2006

$44.99 USD

Written in the lucid, entertaining tone that makes a complex, dry topic
becomne crystal-clear to programmers, and sprinkled with solutions to

. complex real-world problems, Mastering Regular Expressions, 3rd Edition,
offers a wealth of . Read more.

Building Tag Clouds in Perl and PHP
By Jim Burmngardner

May 2006

$9.99 USD

e Tag clouds are everywhere on the web these days. First popularized by the
‘_’ web sites Flickr, Technorati, and del.icio.us, these amorphous clumps of
words now appear on a slew of .. Read moare,

PERL| Perl Hacks
By chromatic, Damian Conway, Curtis Poe
HA:EE May 2006 '
$29.99 UsD

Perl Hacks taps into the collective wisdom of the warld's most creative Perl
gurus, 50 you can learn from their experiences, It's the perfect book for
experienced developers looking for... Read mare.

Intermediate Perl

By Randal L. Schwartz, brian d foy, Tom Phoenix

March 2006

$39.99 UsD

Perl programmers need a clear roadmap for improving their skills,
Intermediate Perl teaches a working knowledge of Perl's objects,

references, and rodules -- all of which rakes the language so... Read
mare,

wicked Cool Perl Scripts
By Stewe Oualline

February 2006

$29.95 USD

WICKED COOL
PERL SCRIPTS

lllustration 6: http://www.oreilly.com/pub/topic/perl

PerlClass.com for ACT Students August 2007

Buy Direct and Save

Buy 2 Books
Get the 3rd FREEI
Use discount code "opcl0”

All orders over $29,95 qualify
far free shipping within
the US.

Radar Web 2.0 Report

web 2.0
Principles and
|1 Best Practices
— what does
web 2.0 mean
far your
company? Get
= the latest on
the why, what,
who, and how of Web 2.0 in
this O'Reilly Radar Repart,
Read maore,

Short Cuts

Good. Fast. Cheap.
O'Reilly Short Cuts

PDF docurnents on cutting
edge topics, Focused
information in an easy-to-use,
portable package.

Mew titles include:

« CompTla A+Essentials
220-601 Exam Guide

.

Lead Generation on the
web

« WWhat's Mew in Apache
Web Server 2.27

I' Wiew all Short Cuts

Local Bookstores

437

27

print | or

Conclusion

-

ToPIGS
» Business & Culture,
» Databases
» Design & Graphics
» Digital Audio & videa
» Digital Photography
» Hardware

» Home & Office

» Wetworking & Sys Admin

» Operating Systsms
~ Programming

NET & Windaws
Programming

Ajax
c#

ciCH
Gertification
Games

Java

Other Pragramming
perl

PHP

Project & Carser
Management

Python
Ruby
Secure Pragramming
Visual Basic
Web Services
®ML
» Science & Math
» security
» Software Engineering
» The Web

INTERNATIONAL SITES

EIT=CE

BESTSELLING

Learning Perl, Fourth Edition

By Randal L. Schwartz, Tom Phoenix, brian d foy
July 2005

$33.95 USD

Informed by their ysars of success at teaching Perl as consultants, the
authors have re-engineered the Lama to better match the pace and scope
appropriate for readers getting started with . Read more

Programming Perl, Third Edition
o By Larry Wall, Tomn Christiansen, Jon Orwant
July 2000
$49.95 USD

Programming Perl is ot just a book about Perl; it is also 2 unique
introduction to the language and its culture, as one might expect only fram
its authors. This... Read more

Mastering Regular Expressions, Third Edition
By Jeffrey E. F. Fried!

$44.99 USD

Writtsn in the lucid, entertaining tons that makes 3 complex, dry topic
become crystal-clear ta pragrammers, and sprinkled with solutions to
complex resl-world problems, Mastering Regular Expressions, 3rd Edition,
offers a wealth of... Read more,

N Perl Cookbook, Second Edition
By Tom Christiansen, Nathan Torkington
) | August 2003
448,95 USD

Find a Perl programmer, and you'l find a copy of Perl Cookhook nearby.
Perl Gookbook is 3 comprehensive collsctian of problems, solutions, and
o practical examples fr anyone programming in Perl... Rea

Regular Expression Pocket Reference
By Tony Stubblebine

August 2003

$9.95 USD

1deal as an introduction for beainners and a quick reference for advanced
programmers, Reqular Expression Packst Reference is a comprehensive
quide to requisr expression APIs for C, Perl, PHP, Java,. Read more.

Perl Pocket Reference, Fourth Edition
&y Johan Vromans

1uly 2002

$3.95 USD

The Perl Pockst Reference, dth Edition provides 3 complete averview of the
Ferl programming langusge, all packed into 3 convenient, carry-around
booklet. It is updated for Perl 5.8, and covers... Read mare.

Perl Best Practices
By Damian Conway

$39.95 USD

Perl Best Practices offers 4 collection of 256 guidelines on the art of coding
to help you write better Perl code—in fact, the best Perl code you possibly
can. The... Read more

Perl in a Nutshell, Second Edition

By Stephen Spainhour, Ellen Siever, Nathan Patwardhan
June

§29.95 USD

This complete guide to Perl includes the basics of the programming
language itself, plus CGI programeming, XML processing, netwark
programiming, database interaction, and araphical user interfaces. The
expanded second edition... Read more

Intermediate Perl

By Randal L. Schwartz, brian d foy, Tom Phoenix
March 2006

$39.99 USD

Perl programmers need 2 clear roadmap for improving their skills
Intermediate Perl teaches & working knowledge of Perl's objects,
references, and modules - all of which makes the languags so.

re.

Read

Beginning Perl for Bioinformatics
By James Tisdal

October 2001

$38.95 USD

This book shews biclogists with litle or no pregramming experience how to
use Perl, the ideal language for bielogical data analysis. Each chapter
- Focuses on solving a particular problem or... Read more

Perl Hacks

By chromatic, Damian Conway, Curtis Poe
Hay 2006

$29.99 USD

Perl Hacks taps into the collective wisdom of the world's most creative Perl
[| ourus, s you can learn from their experiences. It's the perfect boak for
experienced developers looking for.. Read more

about O'Reilly | Contact | Jobs | Press Room | How to Advertise | Privacy Policy

2007, O'Reilly Medis, Inc.

Buy Direct and Save

Buy 2 Books
Get the 3rd FREE!
Use dizcouns code "ape10”
All orders auer $29.95 qualify
for free shipping nithin
els

Radar Web 2.0 Report

web 2.0
Principles and
W2 | pest Practices
web 2.0 mean
for your
company? Get
= the latest on
the hy, what,
who, and how of Web 2.0 in
this O'Reilly Radar Report
Read more

Short Cuts

Good. Fast. Cheap.
O'Reilly Short Cuts

PDF documents on cutting
edae topics. Focused
infarmation in an sasy-to-use,
portsble packsge

New titles include

 CompTIA A+Essentials
220-601 Exam Guide

+ Lead Generation on the
web

+ What's New in Apache
web Server 2.27

I view all Short Cuts

Local Bookstores

Team O'Reilly (US/CA) and
Club O'Reilly (International)
ars stores who have joined in
partnership with C'Reilly to
ensure plentiful stock of
current and earlier titles.

all trademarks and registered trademarks appearing on oreilly.com are the property of their respective awners.

lllustration 7: The most significant O'Reilly Perl books

27.15 Newsgroups

438

PerlClass.com for ACT Students August Feb 2007

Conclusion 27

- comp.lang.perl.announce newsgroup
- comp.lang.perl.moderated newsgroup

- comp.lang.perl.misc newsgroup

PerlClass.com for ACT Students August 2007 439

Chapter 28: Win32::-
EventLog

In this chapter...

We will show how to use Win32::EventlLog to derive various kinds of
informatoin from the Windows Event Log. You will also see how to
use Perl to backup your EventLog and create your own events.

28 Win32::EventLog

28.1 Win32::EventLog Examples

The following example illustrates the way in which the Win32::EventLog mod-
ule can be used. It opens the System Event Log and reads through it from oldest
to newest. For each record from the source event log it extracts the full text of
the entry and prints out the event log message text.

use Win32::EventLog;

my $handle = Win32::EventLog->new("System", $ENV{ComputerName})
or die "Can't open System EventLog";

$handle->GetNumber($recs) or die "can't get number of recs";

$handle->GetOldest($base) or die "can't get index of oldest rec";

while ($x < $recs) {

$handle->Read (EVENTLOG FORWARDS READ|EVENTLOG SEEK READ,
$base + $x, $hashRef

) or die "Can't read EventLog entry #$x";

if ($hashRef->{Source} eq "EventLog") {
Win32::EventlLog: :GetMessageText ($hashRef);
print "Entry $x: $hashRef->{Message}\n";

}

$X++:

To backup and clear the event logs on a remote machine do the following:

use Win32::EventLog;
my $my server = '\\my-server'; # your server name here

my ($date) = join('-"',
(

442 PerlClass.com for ACT Students August Feb 2007

Win32::EventLog 28

(split /\s+/, scalar localtime)[0,1,2,4]
);
my $dest;

for my $event log (qw(Application System Security)) {
$handle = Win32::EventLog-new($event log, $my server)
or die "Can't open $event log event log on $my server";
$dest = 'C:\BackupEventLogs\$event log\' . $date . '.evt';
$handle->Backup($dest) or warn "Could not backup and clear"
" the $event log event log on \\\\$my server ($"E)\n";
$handle->Close;

PerlClass.com for ACT Students August 2007 443

28 Win32::EventLog

28.2 Win32::EventLog Reference

This module implements most of the functionality available from the Win32
API for accessing and manipulating Win32 Event Logs. The access to the
EventlLog routines is divided into those that relate to an EventLog object and its
associated methods and those that relate other EventLog tasks (like adding an
EventLog record).

28.2.1 The EventLog Object and its Methods

The following methods are available to open, read, close and backup EventLogs.

Win32::EventLog->new(SOURCENAME [,SERVERNAME]);

The new() method creates a new EventLog object and returns a handle to
it. This hande is then used to call the methods below.

The method is overloaded in that if the supplied SOURCENAME argument
contains one or more literal '\' characters (an illegal character in a
SOURCENAME), it assumes that you are trying to open a backup eventlog
and uses SOURCENAME as the backup eventlog to open. Note that when
opening a backup eventlog, the SERVERNAME argument is ignored (as it
is in the underlying Win32 API). For EventLogs on remote machines, the
SOURCENAME parameter must therefore be specified as a UNC path.

$handle->Backup (FILENAME) ;

The Backup() method backs up the EventLog represented by $handle. It
takes a single arguemt, FILENAME. When $handle represents an Event-
Log on a remote machine, FILENAME is filename on the remote machine

444 PerlClass.com for ACT Students August Feb 2007

Win32::EventLog 28

and cannot be a UNC path (i.e you must use CA\TEMP\App.EVT). The
method will fail if the log file already exists.

$handle->Read (FLAGS, OFFSET, HASHREF);

The Read() method read an EventLog entry from the EventLog represented
by $handle.

$handle->Close();

The Close() method closes the EventLog represented by $handle. After

Close() has been called, any further attempt to use the EventLog represent-
ed by $handle will fail.

$handle->Get0Oldest (SCALARREF) ;

The GetOldest() method number of the the oldest EventLog record in the
EventLog represented by $handle. This is required to correctly compute the
OFFSET required by the Read() method.

$handle->GetNumber (SCALARREF) ;

The GetNumber() method returns the number of EventLog records in the
EventLog represented by $handle. The number of the most recent record in
the EventlLog is therefore computed by

$handle->Get0Oldest ($oldest);
$handle->GetNumber($lastRec);
$lastRecOffset=$oldest+$lastRec;

PerlClass.com for ACT Students August 2007 445

28

446

Win32::EventLog

$handle->Clear(FILENAME) ;

The Clear() method clears the EventLog represented by $handle. If you
provide a non-null FILENAME, the EventLog will be backed up into
FILENAME before the EventLog is cleared. The method will fail if FILE-
NAME is specified and the file refered to exists. Note also that FILE-
NAME specifies a file local to the machine on which the EventLog resides
and cannot be specified as a UNC name.

$handle->Report (HASHREF) ;

The Report() method generates an EventLLog entry. The HASHREF should
contain the following keys:

Computer

The Computer field specfies which computer you want the EventLLog
entry recorded. If this key doesn't exist, the server name used to create
the $handle is used.

Source

The Source field specifies the source that generated the EventLog en-
try. If this key doesn't exist, the source name used to create the $han-
dle is used.

EventType

PerlClass.com for ACT Students August Feb 2007

Win32::EventLog 28

The EventType field should be one of the constants
EVENTLOG_ERROR TYPE = An Error event is being logged.
EVENTLOG_WARNING TYPE = A Warning event is being logged.

EVENTLOG_INFORMATION TYPE = An Information event is be-
ing logged.

EVENTLOG_AUDIT SUCCESS = A Success Audit event is being
logged (typically in the Security EventLog).

EVENTLOG AUDIT FAILURE = A Failure Audit event is being
logged (typically in the Security EventLog).

These constants are exported into the main namespace by default.

Category = The Category field can have any value you want. It is specif-
ic to the particular Source.

EventID = The EventID field should contain the ID of the message that
this event pertains too. This assumes that you have an associated message
file (indirectly referenced by the field Source).

Data = The Data field contains raw data associated with this event.

Strings = The Strings field contains the single string that itself contains
NUL terminated sub-strings. This are used with the EventID to generate
the message as seen from (for example) the Event Viewer application.

28.2.2 Other Win32::EventLog functions

The following functions are part of the Win32::EventLog package but are not
callable from an EventLog object.

PerlClass.com for ACT Students August 2007 447

28 Win32::EventLog

GetMessageText (HASHREF) ;

The GetMessageText() function assumes that HASHREF was obtained by
a call to $handle->Read(). It returns the formatted string that represents
the fully resolved text of the EventLLog message (such as would be seen in
the Windows NT Event Viewer). For convenience, the key 'Message' in the
supplied HASHREEF is also set to the return value of this function.

If you set the variable $Win32::EventLog::GetMessageText to 1 then each
call to $handle->Read() will call this function automatically.

448 PerlClass.com for ACT Students August Feb 2007

Chapter 29: Win32::Ne
tAdmin

In this chapter...

You will learn how to manage Windows network groups and users in
Perl.

The Win32::NetAdmin module offers control over the administratoin
of Windows groups and user over a Windows network.

29 Win32::NetAdmin

29.1 Example

Simple script using Win32::NetAdmin to set the login script for
all members of the NT group "Domain Users". Only works if you
run it on the PDC. (From Robert Spier <rspier@seas.upenn.edu>)

FILTER TEMP DUPLICATE ACCOUNTS
Enumerates local user account data on a domain controller.

FILTER NORMAL ACCOUNT
Enumerates global user account data on a computer.

FILTER INTERDOMAIN TRUST ACCOUNT
Enumerates domain trust account data on a domain controller.

FILTER WORKSTATION TRUST ACCOUNT
Enumerates workstation or member server account data on a domain
controller.

FILTER SERVER TRUST ACCOUNT
Enumerates domain controller account data on domain controller.

HOoH R WK OH OH OH OH OH R WK OHOH K OH KR W K

use Win32::NetAdmin gw(GetUsers GroupIsMember
UserGetAttributes UserSetAttributes);

my Shash;
GetUsers("", FILTER NORMAL ACCOUNT , \%hash)
or die "GetUsers() failed: $"E";

foreach (keys %hash) {
my ($password, $passwordAge, $privilege,
$homeDir, $comment, $flags, $scriptPath);
if (GroupIsMember("", "Domain Users", $)) {
print "Updating $ ($hash{$ })\n";
UserGetAttributes("", $, $password, $passwordAge,
$privilege, $homeDir, $comment,
$flags, $scriptPath)

450 PerlClass.com for ACT Students August Feb 2007

Win32::NetAdmin 29

or die "UserGetAttributes() failed: $"E";
$scriptPath = "dnx_login.bat"; # the new login script
UserSetAttributes("", $, $password, $passwordAge,
$privilege, $homeDir, $comment, $flags, $scriptPath)
or die "UserSetAttributes() failed: $"E";

PerlClass.com for ACT Students August 2007 451

29

Win32::NetAdmin

29.2 Win32::NetAdmin provided functions

452

Note: All of the functions return false if they fail, unless otherwise noted. When
a function fails call Win32::NetAdmin::GetError() rather than GetLastError() or
$/E to retrieve the error code.

server is optional for all the calls below. If not given the local machine is as-
sumed.

GetError()

Returns the error code of the last call to this module.

GetDomainController(server, domain, returnedName)

Returns the name of the domain controller for server.

GetAnyDomainController(server, domain, returnedName)

Returns the name of any domain controller for a domain that is directly
trusted by the server.

UserCreate(server, userName, password, passwordAge, privilege, home-
Dir, comment, flags, scriptPath)

Creates a user on server with password, passwordAge, privilege, homeDir,
comment, flags, and scriptPath.

UserDelete(server, user)

Deletes a user from server.

PerlClass.com for ACT Students August Feb 2007

Win32::NetAdmin 29

UserGetAttributes(server, userName, password, passwordAge, privilege,
homeDir, comment, flags, scriptPath)

Gets password, passwordAge, privilege, homeDir, comment, flags, and
scriptPath for user.

UserSetAttributes(server, userName, password, passwordAge, privilege,
homeDir, comment, flags, scriptPath)

Sets password, passwordAge, privilege, homeDir, comment, flags, and
scriptPath for user.

UserChangePassword(domainname, username, oldpassword, newpassword)

Changes a users password. Can be run under any account.

UsersExist(server, userName)

Checks if a user exists.

GetUsers(server, filter, userRef)

Fills userRef with user names if it is an array reference and with the user
names and the full names if it is a hash reference.

GroupCreate(server, group, comment)

Creates a group.

GroupDelete(server, group)

Deletes a group.

GroupGetAttributes(server, groupName, comment)

PerlClass.com for ACT Students August 2007 453

29 Win32::NetAdmin

Gets the comment.

GroupSetAttributes(server, groupName, comment)

Sets the comment.

GroupAddUsers(server, groupName, users)

Adds a user to a group.

GroupDeleteUsers(server, groupName, users)

Deletes a users from a group.

GroupIsMember(server, groupName, user)

Returns TRUE if user is a member of groupName.

GroupGetMembers(server, groupName, userArrayRef)

Fills userArrayRef with the members of groupName.

LocalGroupCreate(server, group, comment)

Creates a local group.

LocalGroupDelete(server, group)

Deletes a local group.

LocalGroupGetAttributes(server, groupName, comment)

Gets the comment.

454 PerlClass.com for ACT Students August Feb 2007

Win32::NetAdmin

29

LocalGroupSetAttributes(server, groupName, comment)

Sets the comment.

LocalGroupIsMember(server, groupName, user)

Returns TRUE if user is a member of groupName.

LocalGroupGetMembers (server, groupName, userArrayRef)

Fills userArrayRef with the members of groupName.

LocalGroupGetMembersWithDomain(server, groupName, userRef)

This function is similar LocalGroupGetMembers but accepts an array or a

hash reference. Unlike LocalGroupGetMembers it returns each user name
as DOMAIN\USERNAME. If a hash reference is given, the function returns to
each user or group name the type (group, user, alias etc.). The possible

types are as follows:

$SidTypeUser = 1;
$SidTypeGroup = 2;
$SidTypeDomain = 3;
$SidTypeAlias = 4;
$SidTypeWellKnownGroup
$SidTypeDeletedAccount
$SidTypelnvalid = 7;
$SidTypeUnknown = 8;

LocalGroupAddUsers(server, groupName, users)

Adds a user to a group.

LocalGroupDeleteUsers(server, groupName, users)

Deletes a users from a group.

PerlClass.com for ACT Students August 2007

455

29

456

Win32::NetAdmin

GetServers(server, domain, flags, serverRef)

Gets an array of server names or an hash with the server names and the
comments as seen in the Network Neighborhood or the server manager.
For flags, see SV_TYPE_* constants.

GetTransports(server, transportRef)

Enumerates the network transports of a computer. If transportRef is an ar-
ray reference, it is filled with the transport names. If transportRef is a hash
reference then a hash of hashes is filled with the data for the transports.

LoggedOnUsers(server, userRef)

Gets an array or hash with the users logged on at the specified computer. If
userRef is a hash reference, the value is a semikolon separated string of
username, logon domain and logon server.

GetAliasFromRID(server, RID, returnedName)
GetUserGroupFromRID(server, RID, returnedName)

Retrieves the name of an alias (i.e local group) or a user group for a RID
from the specified server. These functions can be used for example to get
the account name for the administrator account if it is renamed or local-
ized.

Possible values for RID:
DOMAIN ALIAS RID ACCOUNT OPS
DOMAIN ALIAS RID ADMINS
DOMAIN ALIAS RID BACKUP OPS
DOMAIN ALIAS RID GUESTS
DOMAIN ALIAS RID POWER USERS
DOMAIN ALIAS RID PRINT OPS
DOMAIN ALIAS RID REPLICATOR
DOMAIN_ALIAS RID SYSTEM OPS
DOMAIN ALIAS RID USERS

PerlClass.com for ACT Students August Feb 2007

Win32::NetAdmin 29

DOMAIN GROUP RID ADMINS
DOMAIN GROUP RID GUESTS
DOMAIN GROUP_RID USERS
DOMAIN USER RID ADMIN
DOMAIN USER RID GUEST

GetServerDisks(server, arrayRef)

Returns an array with the disk drives of the specified server. The array con-
tains two-character strings (drive letter followed by a colon).

PerlClass.com for ACT Students August 2007 457

Chapter 30: Other Perl
Win32 Modules

In this chapter...

This section documents three other modules that are useful for Win-
dows NT administration.

30

Other Perl Win32 Modules

30.1 Win32::NetResource

This module offers control over the network resources of Win32.Disks, printers etc can

be shared over a network.

30.1.1

460

Examples

Enumerating all resources on the network

#

This example displays all the share points in the entire
visible part of the network.

#

use strict;
use Win32::NetResource qw(:DEFAULT GetSharedResources GetError);
my $resources = [];
unless(GetSharedResources($resources, RESOURCETYPE ANY)) {
my $err;
GetError($err);
warn Win32::FormatMessage($err);

foreach my $href (@$resources) {
next if ($$href{DisplayType} != RESOURCEDISPLAYTYPE SHARE);

foreach(keys %$href){
print "$: $href->{$ }\n";

Enumerating all resources on a particular host

#

This example displays all the share points exported by the
local host.

#

PerlClass.com for ACT Students August Feb 2007

Other Perl Win32 Modules

use strict;

30

use Win32::NetResource qw(:DEFAULT GetSharedResources GetError);
if (GetSharedResources(my $resources, RESOURCETYPE ANY,

)) A

{ RemoteName => "\\\\"
Win32: :NodeName() }

foreach my $href (@$resources) {

foreach(keys %$href) { print "$: $href->{$ }\n"; }

30.1.2 Data Types

There are two main data types required to control network resources. In Perl these are

represented by hash types.

30.1.2.1 %NETRESOURCE

Key

Value

Scope

Scope of an Enumeration:
RESOURCE_CONNECTED,
RESOURCE_GLOBALNET,
RESOURCE_REMEMBERED.

Type

The type of resource to Enum:
RESOURCETYPE_ANY All resources
RESOURCETYPE_DISK Disk resources

RESOURCETYPE_PRINT Print resources

DisplayType

The way the resource should be displayed.
RESOURCEDISPLAYTYPE_DOMAIN

The object should be displayed as a domain.
RESOURCEDISPLAYTYPE_GENERC

The method used to display the object does not matter.

PerlClass.com for ACT Students August 2007 461

30

Other Perl Win32 Modules

Key

Value

RESOURCEDISPLAYTYPE_SERVER
The object should be displayed as a server.
RESOURCEDISPLAYTYPE_SHARE

The object should be displayed as a sharepoint.

Usage

Specifies the Resources usage: RE-
SOURCEUSAGE_CONNECTABLE, RE-
SOURCEUSAGE_CONTAINER.

LocalName

Name of the local device the resource is connected to.

RemoteName

The network name of the resource.

Comment

A string comment.

Provider

Name of the provider of the resource

30.1.2.2 %SHARE_INFO

This hash represents the SHARE_INFO_502 struct.

Key Value
netname Name of the share.
type type of share.
remark A string comment.
permissions Permissions value
maxusers the max # of users.

current-users

the current # of users.

path

The path of the share.

passwd

A password if one is req'd

462

PerlClass.com for ACT Students August Feb 2007

Other Perl Win32 Modules 30

30.1.3 Functions

Note: All of the functions return false if they fail.

GetSharedResources (\@Resources,dwType, \%sNetResource = NULL)
Creates a list in @Resources of %NETRESOURCE hash references.

The return value indicates whether there was an error in accessing any of
the shared resources. All the shared resources that were encountered (until
the point of an error, if any) are pushed into @Resources as references to
%NETRESOURCE hashes. See example below. The \%NetResource argu-
ment is optional. If it is not supplied, the root (that is, the topmost contain-
er) of the network is assumed, and all network resources available from the
toplevel container will be enumerated.

AddConnection (\%NETRESOURCE, $Password, $UserName, $Connection)

Makes a connection to a network resource specified by 2NETRESOURCE

CancelConnection($Name, $Connection, $Force)

Cancels a connection to a network resource connected to local device
$name.$Connection is either 1 - persistent connection or 0, non-persistent.

WNetGetLastError($ErrorCode, $Description, $Name)

Gets the Extended Network Error.

GetError($ErrorCode)

Gets the last Error for a Win32::NetResource call.

GetUNCName($UNCName, $LocalPath);

Returns the UNC name of the disk share connected to $LocalPath in
$UNCName. $LocalPath should be a drive based path. e.g. "C:\\share\\sub-

PerlClass.com for ACT Students August 2007 463

file://share//subdir

30

d_irﬂ

Other Perl Win32 Modules

Note: $servername is optional for all the calls below. (if not given the local ma-

chine is assumed.)

NetShareAdd (\%SHARE, $parm err,$servername = NULL)

Add a share for sharing.

NetShareCheck($device, $type, $servername = NULL)

Check if a directory or a device is available for connection from the net-

work through a share. This includes all directories that are reachable

through a shared directory or device, meaning that if C:\foo is shared,

C:\foo\bar is also available for sharing. This means that this function is

pretty useless, given that by default every disk volume has an administra-

tive share such as "C$" associated with its root directory.

$device must be a drive name, directory, or a device. For example, "C:",
"C:\dir", "LPT1", "D$", "IPC$" are all valid as the $device argument. $type
is an output argument that will be set to one of the following constants that

describe the type of share:

STYPE_DISKTREE

Disk drive

STYPE_PRINTQ

Print queue

STYPE_DEVICE

Communication device

STYPE_IPC

Interprocess communication (IPC)

STYPE_SPECIAL

Special share reserved for interprocess
communication (IPC$) or remote adminis-
tration of the server (ADMINS$). Can also
refer to administrative shares such as C$,

464 PerlClass.com for ACT Students August Feb 2007

file://share//subdir

Other Perl Win32 Modules 30

STYPE_DISKTREE |Disk drive

D$, etc.

NetShareDel($netname, $servername = NULL)

Remove a share from a machines list of shares.

NetShareGetInfo($netname, \%SHARE, $servername=NULL)

Get the %2SHARE_INFO information about the share $netname on the
server $servername.

NetShareSetInfo($netname,\%SHARE, $parm err,$servername=NULL)

Set the information for share $netname.

PerlClass.com for ACT Students August 2007 465

30

Other Perl Win32 Modules

30.2 Win32::Service

30.2.1

466

Examples

The first script gets a hashref that contains information about all of the services
on the current host. It then retrieves status information for each of those into an-
other hashref.

use Win32::Service;
my (%service, %status);
Win32::Service::GetServices('',\%services);

foreach my $key (sort keys %services) {
print "Display Name\t: $key, $services{$key}\n";
Win32::Service::GetStatus('', $sercices{$key}, \%status);
foreach my $part (keys %status) {
print "\t$part : $status{$part}\n";

The next script checks the status of NetDDE. If it's already running, it dies with
an error. Otherwise, it tries to start it.

use Win32::Service;
use Win32;

my %status;
Win32::Service::GetStatus('', 'NetDDE', \%status);
die "service is already started\n"
if ($status{CurrentState} == 4); # running
Win32::Service: :StartService(Win32: :NodeName(), 'NetDDE"')

PerlClass.com for ACT Students August Feb 2007

Other Perl Win32 Modules 30

or die "can't start service\n";
print "Service started\n";

30.2.2 Functions

Note: All of the functions return false if they fail, unless otherwise noted. If
hostName is an empty string, the local machine is assumed.

StartService(hostName, serviceName)

Start the service serviceName on machine hostName.

StopService(hostName, serviceName)

Stop the service serviceName on the machine hostName.

GetStatus (hostName, serviceName, status)

Get the status of a service. The third argument must be a hash reference
that will be populated with entries corresponding to the SERVICE_STA-
TUS structure of the Win32 API. See the Win32 Platform SDK documen-
tation for details of this structure.

PauseService(hostName, serviceName)

ResumeService(hostName, serviceName)

GetServices(hostName, hashref)
Enumerates both active and inactive Win32 services at the specified host.
The hashref is populated with the descriptive service names as keys and the
short names as the values.

PerlClass.com for ACT Students August 2007 467

30 Other Perl Win32 Modules

30.3 Win32::Sound
30.3.1 Quick Sample

A sampling of Perl playing sounds and adjusting the volume:

use Win32::Sound;
Win32::Sound::Volume('50%"');

set volume for left and right seperately
Win32::Sound: :Volume('100%"', '50%"');

($left,$right) = Win32::Sound: :Volume();
Win32::Sound::Volume(0); # mute

Win32::Sound::Volume($left,$right); # restore prior values

Win32::Sound: :Play("example.wav") # arbitrary
Win32::Sound: :Play("SystemQuestion"); # symbolic

Win32::Sound: :Stop();

468 PerlClass.com for ACT Students August Feb 2007

Chapter 31: *NIX cheat
sheet

31

*NIX cheat sheet

31.1 Some UNIX commands

ddd

470

A brief run-down for those whose UNIX skills are rusty:

Table 31-1. Simple UNIX commands

Action

Command

Change to home directory

cd

Change to directory

cd directory

Change to directory above current | ed ..
directory

Show current directory pwd
Directory listing Is
Wide directory listing, showing Is -al
hidden files

Showing file permissions Is -al

Making a file executable

chmod +x filename

Printing a long file a screenful at a
time

more filenameorless file—
name

Getting help for command

man command

dddd

PerlClass.com for ACT Students August Feb 2007

Chapter 32: Editor

In this chapter...

cheat sheet

you will find an editor summary which is laid out as follows:

Table 32-1. Layout of editor cheat sheets

Running | Recommended command line for starting it.

Using Really basic howto. This is not even an at-
tempt at a detailed howto.

Exiting How to quit.

Gotchas Oddities to watch for.

32 Editor cheat sheet

32.1 vi

vi is the classic UNIX editor. It is strange but beautiful. It is very powerful in
educated hands and is universally available in the UNIX world.

A version of vi known as vim is available that can esaily be installed in Win-
dows and many other strange operating systems. Check out
http://www.vim.org/ for more information.

32.1.1 Running

$ vi filename

32.1.2 Using

- i to enter insert mode, then type text, press ESC to leave insert mode.
- x to delete character below cursor.

- dad to delete the current line

« Cursor keys should move the cursor while not in insert mode.

. If not, try hjx1, h = left, 1 = right, = down, x = up.

- /, then a string, then ENTER to search for text.

. :wthen ENTER to save.

32.1.3 Exiting

. Press ESC if necessary to leave insert mode.
. :qthen ENTER to exit.
- :q! ENTER to exit without saving.

- :wq to exit with save.

472 PerlClass.com for ACT Students August Feb 2007

http://www.vim.org/

Editor cheat sheet 32

32.1.4 Gotchas

vi has an insert mode and a command mode. Text entry only works in insert
mode, and cursor motion only works in command mode. If you get confused
about what mode you are in, pressing ESC twice is guaranteed to get you back

to command mode (from where you press i to insert text, etc).

32.1.5 Help

:help ENTER might work. If not, then see the man page.

32.1.6 vim

VOTE BUY HELP LEARN

| SPONSOR

Vim development for features

% the editor

the Vim book Uganda Vim

not logged in (Jogin
Home
Search

Community
Hews
Sponsoring
Trivia
Documentation
Download

News Wim 7.0182 is the currentversion

Vim presentation in Mountain View
eo0r-0z-05) Tuesday, Februany 13th, will be giving a presentation at the Google offices in Mountain View. The title is
"Seven habits for effective text editing, 2.0". [twill start at 7 pm. More information can be found on the Goodle code

site. For instructions how to get there click on "Maountain View headguarters”. But pay attention to the building
number 41, there are many Google buildings -). Hope to see many of you there! (Bram Moolenaar)

@vim.org email back

Scripts
Tips [2007-02-04] The problem in the @wim.org email has been solved, we're back! (Bram Moolenaar)
My Account
more news Eind Vimmers on Frappr! OVD and video about Yim's charity project
Recent Script Updates 1,784 scripts, 1,702,071 downloads

What is Vim?

Wim is a highly configurable
text editor built to enable
efficient text editing. It is an
improved version of the wi
editor distributed with most
UNEK systems. Wim is
distributed free as
charityware. If you find Vim a
useful addition to your life
please consider helping
needy children in Uganda

What is Vim online?

Wim online is a central place
for the Wim community to
store useful Vim tips and
tools. Vim has a scripting
language that allows for
plugin like extensions to
enable IDE behavior, syntax
highlighting, colorization as
well as other advanced
features. These scripts can
be uploaded and maintained
using Vim online.

listed at inwio. com

[2007-02-16] surround wim . Delete/change/add parentheses/quotes/XML-tags/imuch more with ease
(1.23) ¥xmap rather than vmap, to avoid interfering with select mode. surround_insert_tail to specify a
universal suffix for use in insert mode. - Tim Pope

[2007-02-15] polyclvim - Polyhedra CL syntax
(0.9 1) Major fixes (typos). Fixed string escapes. Started highlighting of operators and split of reserved
word in multiple classes. - Olivier Mangus

[2007-02-15] palycfg vim - Polyhedra configuration syntax
(1.0} Initial upload - Olivier Mengué

[2007-02-15] fesh tools : you can compile .as and mxml files from wim via fesh - Flex Comipler SHell
(0.2) added more quotes. - mike rows

more recent | most downloaded | top rated

Recent Tip Additions 1,304 tips, 3,657,456 tip views

[2007-02-06] tip #1504 - External commands on Windows (Tim Keating)
[eo0r-0z-02) tip #1501 - substitute last search (Jerome)

[2007-02-01] tip #1500 - By default, when opening files in Mac OS5 X, a new vim windowi is opened. This shows you
how to have only one window. (editin a single window in Mac 05 X)

200702017 tip #1499 - Jump back to spell checked words (john AT beever DOT nl)

more recent | most viewed | top rated

Ifyau have questions or remarks about this site, visitthe vimanline development pages. Please use this site

responsibly.

Questions about Yim should go o vim@vim.org after searching the archive. Help Bram help Uganda.

Special thanks to our SPONSOrS:

stats

Idealn - Preisvergleich in Osterreich

Testund Preisvergleich
Price Comparison
atego Shopping

Ilustration 8:

PerlClass.com for ACT Students August 2007

http:/fwww.vim.org/

473

32 Editor cheat sheet

32.2 pico

pico is the editor from pine turned into an external command. pine is no longer
supported by some Linux distributions so you may have to type "nano" to get
"pico", but you can always make an alias.

32.2.1 Running

% pico -w filename

32.2.2 Using

- Cursor keys should work to move the cursor.
- Type to insert text under the cursor.

. The menu bar has ~x commands listed. This means hold down CTRL and

press the letter involved, eg CTRL-W to search for text.

. CTRL-Oto save.

32.2.3 Exiting

Follow the menu bar, if you are in the midst of a command. Use CTRL-X from

the main menu.

32.2.4 Gotchas

Line wraps are automatically inserted unless the -w flag is given on the com-
mand line. This often causes problems when strings are wrapped in the middle
of code and similar. \\ \hline

32.2.5 Help

CTRL-G from the main menu, or just read the menu bar.

474 PerlClass.com for ACT Students August Feb 2007

Editor cheat sheet

32.3 joe

32.3.1 Running

% joe filename

32.3.2 Using

- Cursor keys to move the cursor.

- Type to insert text under the cursor.

« CTRL-K then S to save.

32.3.3 Exiting

« CTRL-C to exit without save.

. CTRL-K then X to save and exit.

32.3.4 Gotchas

Nothing in particular.

32.3.5 Help

CTRL-K then H.

PerlClass.com for ACT Students August 2007

32

475

32 Editor cheat sheet

32.4 jed

32.4.1 Running

% Jjed

32.4.2 Using

- Defaults to the emacs emulation mode.
- Cursor keys to move the cursor.
- Type to insert text under the cursor.

« CTRL-X then S to save.

32.4.3 Exiting

CTRL-X then CTRL-C to exit.

32.4.4 Gotchas

Nothing in particular.

32.4.5 Help

- Read the menu bar at the top.

. Press ESC then ? then H from the main menu.

476 PerlClass.com for ACT Students August Feb 2007

Chapter 33: ASCII Pro-
hunciation Guide

In this chapter...

It is widely recognized that speaking about computing topics requires
some common set of terms for communications, so computerese or
technobabble describe this dialect. But it is less widely recognized
that a dialect is necessary for unambiguously communicating about
individual characters.

33 ASCII Pronunciation Guide

Table 33-1. ASCII Pronunciation Guide

Character Pronunciation

!

bang, exlamation

*

star, asterisk

8 dollar

@ at

s percent

& ampersand

double quote

single quote, tick, or forward
quote

() open/close bracket, parentheses

< less than, left angle bracket

> greater than, right angle bracket

- dash, hyphen, n-dash

dot, period

’ comma

/ slash, forward slash

\ backslash

colon

; semicolon

= equals

? question mark

caret (pron. "carrot")

_ underscore

[] open/close square bracket

{1} open/close curly brackets, brace,

478 PerlClass.com for ACT Students August Feb 2007

ASCIIl Pronunciation Guide

squigglies, or squiggly brackets

pipe, bar, or vertical bar

tilde (pron."til-duh"), wiggle

backtick, backquote (below ~)

PerlClass.com for ACT Students August 2007

33

479

Chapter 34: HTML
Cheat Sheet

In this chapter....

The following table outlines a few HTML elements which may be
useful to you. For more detail or for information about elements
which are not listed here, consult one of the references listed below.

34 HTML Cheat Sheet

Table D-1. Basic HTML elements

Type of information Markup

Paragraph <P> ... </P>

Heading level 1 <H1>This is a level 1 heading</H1>
Heading level 2 <H2>This is a level 2 heading</H2>
Heading level 3 <H3>This is a level 3 heading</H3>
Heading level 4 <H4>This is a level 4 heading</H4>
Unordered (bulleted) list

List item 1

List item 2

List item 3

Ordered (numbered) list
List item 1

List item 2
List item 3
</0OL>

Table <TABLE BORDER>
<TR> <-- "table row" - >
<TH>Heading column 1</TH>
<TH>Heading column 2</TH>
<TH>Heading column 3</TH>
</TR>
<TR> <-- "table row" -- >
<TD>row 1, column 1</TD>
<TD>row 1, column 2</TD>
<TD>row 1, column 3</TD>
</TR>
<TR> <-- "table row" -- >
<TD>row 2, column 1</TD>
<TD>row 2, column 2</TD>
<TD>row 2, column 3</TD>
</TR>
</TABLE>

Horizontal rule <HR>

Anchor tag (hypertext hnk) De-
scriptive text

482 PerlClass.com for ACT Students August Feb 2007

HTML Cheat Sheet 34

For more information...
- HTMLhelp.org (http://htmlhelp.org/)
- The World Wide Web Consortium (W3C) (http://w3.org/)

PerlClass.com for ACT Students August 2007 483

http://w3.org/

Chapter 35: The Regex
Coach

In this chapter....

What follows is the nearly verbatim extract of
http://www.weitz.de/regex-coach which you can go to directly if

you're viewing this online, but for those die-hard fans of killing trees
to make reading easier (such as your humble author), here's some in-
formation on a neat utility.

http://www.weitz.de/regex-coach

35 The Regex Coach

35.1 Abstract

The Regex Coach is a graphical application for
Windows which can be used to experiment
with (Perl-compatible) regular expressions in-
teractively. It has the following features:

It shows whether a regular expression

matches a particular target string.

It can also show which parts of the target string correspond to captured
register groups or to arbitrary parts of the regular expression.

It can "walk" through the target string one match at a time.
It can simulate Perl's split and s/// (substitution) operators.
It tries to describe the regular expression in plain English.

It can show a graphical representation of the regular expression's parse
tree.

It can single-step through the matching process as performed by the regex
engine.

Everything happens in "real time", i.e. as soon as you make a change
somewhere in the application all other parts are instantly updated.

If you find this software useful then please consider making a small donation to-
wards the ongoing development costs. Website hosting costs money, as do com-
pilers and development tools.

486 PerlClass.com for ACT Students August Feb 2007

http://www.lispworks.com/

The Regex Coach

35.2 Contents

Download and installation
Older versions, Linux, FreeBSD., Mac
License

- Support, bug reports, mailing list
How to report bugs

Quick start tutorial

(An Italian version is available thanks to Lorenzo Marcon)

How to use The Regex Coach

The main panes

The message areas

- Highlighting selected parts of the match

- The highlight buttons
The highlight messages

- Walking through the target string

Narrowing the scan

The info pane

The parse tree

Replacing text

- Splitting text
- Single-stepping through the matching process
- Modifiers
- Resizing
Saving to and loading from files

- Autoscroll
Known bugs and limitations

Technical information

Compatibility with Perl

- Acknowledgements

PerlClass.com for ACT Students August 2007

35

487

http://www.weitz.de/regex-coach/#ack
http://www.weitz.de/regex-coach/#perl
http://www.weitz.de/regex-coach/#technical
http://www.weitz.de/regex-coach/#bugs
http://www.weitz.de/regex-coach/#autoscroll
http://www.weitz.de/regex-coach/#file
http://www.weitz.de/regex-coach/#resize
http://www.weitz.de/regex-coach/#modifiers
http://www.weitz.de/regex-coach/#step
http://www.weitz.de/regex-coach/#split
http://www.weitz.de/regex-coach/#replace
http://www.weitz.de/regex-coach/#parse-tree
http://www.weitz.de/regex-coach/#info
http://www.weitz.de/regex-coach/#narrow
http://www.weitz.de/regex-coach/#walking
http://www.weitz.de/regex-coach/#highlight-messages
http://www.weitz.de/regex-coach/#highlight-buttons
http://www.weitz.de/regex-coach/#highlight
http://www.weitz.de/regex-coach/#messages
http://www.weitz.de/regex-coach/#panes
http://www.weitz.de/regex-coach/#howto
http://ldphq.zapto.org/regexcoach_it/
http://www.weitz.de/regex-coach/tutorial1.html
http://www.weitz.de/regex-coach/#report
http://www.weitz.de/regex-coach/#mail
http://www.weitz.de/regex-coach/#license
http://www.weitz.de/regex-coach/#older
http://www.weitz.de/regex-coach/#install

35

The Regex Coach

35.3 Download and installation

35.3.1

488

The Regex Coach together with this documentation can be downloaded from
http://weitz.de/files/regex-coach.exe. The current version is 0.9.1 - see the

changelog for what's new. The file (an installer) is about 2MB in size.

You should use Windows 2000 or Windows XP with all updates and service

packs installed. The program might work with older or unpatched Windows ver-
sions, but don't expect support for these configurations. See also below.

You also must have the Microsoft runtime library msvcr80.d11 installed. If
you don't have it or if you aren't sure, you can get it from http://www.microsoft.-

com/downloads/details.aspx?familyid=32BC1BEE-A3F9-4C13-9C99-
220B62A 191 EE&displaylang=en.

If you have a previous version (0.8.5 or earlier) of The Regex Coach installed,
uninstall it first before you install the new version! If you haven't done this, and
the new application won't start, remove the file The Regex Coach.exe.mani-
fest from the application directory.

Older versions, Linux, FreeBSD, Mac

Beginning with version 0.9.0, there will no longer be a Linux version of The
Regex Coach - too few people were using it, and it's simply too much work for
me to maintain both versions. You can still download the last (now unsupported)
Linux release from http://weitz.de/files/regex-coach-0.8.5.tgz - it will also run

on FreeBSD, see documentation.

If you have an older version of Windows and the current version of The Regex
Coach doesn't work for you, you can try the last release which was built with
LispWorks 4.4.6 - it is at http://weitz.de/files/regex-coach-0.8.5.exe. If that
works for you - fine. Don't expect support or updates, though.

There 1s no Mac version and I have no plans to release one. Sending me email

PerlClass.com for ACT Students August Feb 2007

http://www.weitz.de/regex-coach/#mail
http://weitz.de/files/regex-coach-0.8.5.exe
http://www.weitz.de/regex-coach/#technical
http://weitz.de/files/regex-coach-0.8.5.tgz
http://www.microsoft.com/downloads/details.aspx?familyid=32BC1BEE-A3F9-4C13-9C99-220B62A191EE&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=32BC1BEE-A3F9-4C13-9C99-220B62A191EE&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=32BC1BEE-A3F9-4C13-9C99-220B62A191EE&displaylang=en
http://www.weitz.de/regex-coach/#older
http://update.microsoft.com/
http://update.microsoft.com/
http://www.weitz.de/regex-coach/changelog.txt
http://weitz.de/files/regex-coach.exe

The Regex Coach 35

and begging for it won't change that. And, no, I don't want to open source the

application or send the source code to you privately - no need to ask...

License

The Regex Coach is Copyright © 2003-2006 Dr. Edmund Weitz - All Rights Re-
served.

The Regex Coach is free for private or non-commercial use but if you like and
use it it'd be nice if you could donate a small amount to fund further develop-

ment. The Regex Coach is also free for commercial use but you are not allowed
to re-distribute it and/or charge money for it without written permission by the
author - email me at edi@weitz.de for details.

The program is provided 'as is' with no warranty - use at your own risk.

PerlClass.com for ACT Students August 2007 489

mailto:edi@weitz.de
http://www.weitz.de/regex-coach/#paypal

35

The Regex Coach

35.4 Support, bug reports, mailing list

35.4.1

490

If you want to be notified about new releases of The Regex Coach please sub-
scribe to the "regex-coach" mailing list using the web frontend at http://com-
mon-lisp.net/mailman/listinfo/regex-coach. You can search the mailing list

archives using this Google Custom Search Engine.

You should also use this list for questions, bug reports, and feature requests.

How to report bugs

If you've found a bug in The Regex Coach, I'm happy if you report it and I'll try
to fix it. However, please follow the following procedure:

- Make sure you're using the latest version of The Regex Coach on Win-

dows. Older versions and other operating systems are no longer support-
ed.

- Make sure you have msvcr80.d1l1 installed - see above.
- Make sure you don't have the old manifest file anymore - see above.

- Provide information about the Windows version (including service pack)

you're using.

- Try to reduce the problem you're encountering to a simple, self-contained

test case, so that I can reproduce the bug easily.

Send bug reports to the mailing list and not to me privately. I might simpy
ignore reports not sent to the list.

- If you have five minutes, read this text by Simon Tatham.

If you think this is asking too much, please keep in mind that you get The Regex
Coach for free and nobody pays me for fixing bugs or answering questions. If

PerlClass.com for ACT Students August Feb 2007

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://www.weitz.de/regex-coach/#mail
http://www.weitz.de/regex-coach/#manifest
http://www.weitz.de/regex-coach/#msvcr
http://www.weitz.de/regex-coach/#install
http://google.com/coop/cse?cx=000682109305866939995%3A7v26m29hxc0
http://common-lisp.net/mailman/listinfo/regex-coach
http://common-lisp.net/mailman/listinfo/regex-coach

The Regex Coach 35

it's too much work for you to send a decent bug report to the right place, then I
think it's only fair if I consider it too much work for me to answer.

PerlClass.com for ACT Students August 2007 491

35

The Regex Coach

35.5 How to use The Regex Coach

regex

message area

target
message area

The Regex Coach enables you to try out the behaviour of Perl's regular expres-

sion operators (namely m//, s///, and split) interactively and in "real time",

1.e. as soon as you make changes somewhere the results are instantly displayed.

You can also query the regex engine about selected parts of your regular expres-

sion and watch how it parses your input.

Of course, this application should also be useful to programmers using Perl-

compatible regex toolkits like PCRE (which is used by projects like Python,

Apache, and PHP) or CL-PPCRE. Also, Java's regular expressions and those of

XML Schema are very similar to Perl's.

modifier checkboxes

ﬂ The Regex Coach
File Autoscroll Help

CEX

Regular expression:

a(b|cd=)+e \ /
i Om s Ox O

Target string: "\.\

#yzabexzabbcddbcdest

tabs \
ol | Info | Tree | Replace | Splt | Step
Highlight (grey background):
(%) selection
highlight -15] [15-17]
messages ©) nothing

scan buttons

492

Scan H2 from & Start of string: 0 End of string: -

regex pane

target pane

b resize dividers

~ highlight buttons

e R

border buttons

PerlClass.com for ACT Students August Feb 2007

http://www.xmlschemareference.com/regularExpression.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html
http://weitz.de/cl-ppcre/
http://www.php.net/
http://httpd.apache.org/
http://www.python.org/
http://www.pcre.org/

The Regex Coach 35

35.5.1

The following descriptions will use the notions introduced by this annotated
screenshot.

The main panes

The main area of the application is inhabitated by two panes which are always
visible. Both behave like simple editors, i.e. you can type text into them and
modify it. You can also copy and paste text between these panes and other appli-
cations. On Windows, the keybindings resemble those of typical Windows edi-
tors, on Linux the keybindings are those of GNU Emacs. (If you have never used
Emacs you might know a couple of these keybindings from the bash shell.) You
can use the TAB key to switch between these editors. This will also cycle through
the replacement pane if it's visible.

The upper pane is the regex pane. Here you'll type the regular expression you
want to investigate.

The second pane is the target pane. Here you'll type the text (the target string)
the regular expression will try to match.

If there's a match, the part of the target string that matched will be emphasized
by a yellow background. (If you also check the 'g' modifier checkbox all matches

will be emphasized - the "current” one in yellow, the others in green.)

35.5.2 The message areas

Both of the afore-mentioned panes have message areas directly below them.
The regex message area 1s usually empty but it will show an error message in

red letters if the regular expression isn't syntactically correct. It'll also show a
warning in grey letters if the content of the regex pane ends with whitespace be-
cause this might not be what you want. You can of course ignore this warning if
you typed the whitespace characters on purpose.

The target message area will show the extent of the match (or notify you that

PerlClass.com for ACT Students August 2007 493

http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#walking
http://www.weitz.de/regex-coach/#modifiers
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#replace
http://www.gnu.org/software/emacs/emacs.html

35 The Regex Coach

there isn't a match at all). This is particularly useful if there's a zero-length
match because you won't see any highlighted characters in the target pane in this
case. The message "Match from n to m" means that the characters starting from
position n up to m (exclusively) belong to the match. The first character of the
string is character O (zero) as usual.

35.5.3 Highlighting selected parts of the match

If there's a match you can highlight selected parts of the match which are shown
in orange. The default setting is to reflect the selection you've made in the regex
pane. It works like this: If you've selected a valid subexpression of the regular
expression in the regex pane the corresponding part of the target string is shown
in orange. You see an example in the screen shot above where the 'b' in the regu-
lar expression was selected which corresponds to the fourth 'b' in the target
string.

If you've made an invalid selection the selection highlight button is disabled.
You'll also see a message about your selection being invalid in the info pane.

If you have no idea what a "valid subexpression" of the regular expression could
be consider the following rule of thumb: Every part of the regular expression
which can be wrapped in a non-capturing group - i.e. with (?:...) - without al-
tering the meaning of the expression is valid.

(A more precise description of this would be: Consider the parse tree of the reg-
ular expression and assume that every leaf of the tree which is a string is further
divided into the single characters which together constitute the string. Now, ev-
ery contiguous part of the regular expression which can be completely and ex-
actly covered by nodes of the parse tree is a valid subexpression.)

35.5.4 The highlight buttons

Apart from highlighting the part of the target string which corresponds to the se-
lected area in the regex pane you can also highlight the parts which correspond
to captured register groups (enclosed by parentheses) in the regular expression.

494 PerlClass.com for ACT Students August Feb 2007

http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#parse-tree
http://www.weitz.de/regex-coach/#info
http://www.weitz.de/regex-coach/#highlight-buttons
http://www.weitz.de/regex-coach/#shot

The Regex Coach 35

This is done by selecting one of the highlight buttons. These are only enabled if
there are any captured registers.

Press the "nothing" button to disable highlighting.

35.5.5 The highlight messages

Each of the highlight buttons has a small highlight message associated with it
(similar to the message area of the target pane) which shows which part would
be highlighted if the corresponding button were selected. Again, this is particu-
larly useful in the case of zero-length (sub-)matches.

35.5.6 Walking through the target string

Usually, the application will try to find the first match beginning from position 0
of the target string. You can use the scan buttons to move forward (or back-
ward) one match at a time if there's more than one match. (This is how the Perl
regex engine would behave in case of 'global' matches - i.e. those with a 'g' mod-
ifier - or if you apply the split operator.)

The headline above the scan buttons which usually says "Scan from 0" will
change accordingly showing a message like "Scan #n from m" which means that
the regex engine is trying to find the nth match starting at character m of the tar-
get string. The target message area will be changed as well - it'll say "Match #n

from k to [" instead of "Match from & to [" (or it'll say "No further match" in-
stead of "No match" if you've pressed the scan forward button too often).

35.5.7 Narrowing the scan

By using the border buttons you can narrow the scan to a part of the target

string. This effectively hides characters from the start and/or end of the target

string from the regex engine. The characters which are masked thusly are cov-
ered with a dark grey color in the target pane. Note that the effect of the scan
buttons is reset by the border buttons.

PerlClass.com for ACT Students August 2007 495

http://www.weitz.de/regex-coach/#walking
http://www.weitz.de/regex-coach/#walking
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#messages
http://www.weitz.de/regex-coach/#split
http://www.weitz.de/regex-coach/#modifiers
http://www.weitz.de/regex-coach/#modifiers
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#messages
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#highlight-buttons
http://www.weitz.de/regex-coach/#shot

35

The Regex Coach

35.5.8 The info pane

Choosing the "Info" tab will reveal the info pane which is an area where the ap-
plication tries to explain what the regular expression is supposed to do in plain
English. If you've selected a part of the regular expression only this part will be
explained.

35.5.9 The parse tree

If you select the "Tree" tab you'll see a (simplified) graphical representation of

the parse tree of the regular expression. This is how the regex engine "sees" the
expression and it might help you to understand what's going on (or why the reg-
ular expression isn't interpreted as you intended it to be).

35.5.10 Replacing text

By choosing the "Replace" tab you'll open up an area with two panes. The first
one includes a simple editor like the ones in the main panes. Here you can type a
replacement string which acts like the second argument to Perl's s/// (substitu-
tion) operator. The second pane will show the result of the substitution. The con-
tents of these panes are meaningless if the regular expression has syntactical er-
1Of1S.

Note that you'll have to use "\&", "\"", "\'" and "\n" instead of Perl's "$&",
"$ ", "$'" and "$n" - see the CL.-PPCRE documentation for the gory details.

35.5.11 Splitting text

496

The "Split" tab will reveal a pane which shows the result of applying Perl's
split operator to the target string. As this result is usually an array of strings
the elements of this array are visually divided by vertical lines the size of a
space character. (This implies that two vertical lines in a row denote that there's
a zero-length string between them. And it also follows that the array has only
one element if there's no vertical line at all.)

PerlClass.com for ACT Students August Feb 2007

http://www.weitz.de/regex-coach/#shot
http://weitz.de/cl-ppcre/#regex-replace
http://www.weitz.de/regex-coach/#panes
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#highlight
http://www.weitz.de/regex-coach/#shot

The Regex Coach 35

You can use the radio buttons below the pane to select another divider if the ver-
tical line happens to be a part of your target string. But note that choosing the
"block" option might significantly slow down the program if your target strings
are long.

You can type a non-negative integer into the "Limit" field. This corresponds to
the optional third argument to Perl's split operator.

35.5.12 Single-stepping through the matching process

Finally, the "Step" tab will lead you to two panes which have the same content
as the two main panes. However, here you can watch the regex engine "at
work". This is best explained with an example, so see the corresponding part of

the tutorial.

Note that many of the optimizations done by the CL-PPCRE engine are turned
off here for pedagogical reasons. (For example, when trying to match the regex
a*abc against the target string aaaabd the "real" engine wouldn't even start be-
cause it'll first use a Boyer-Moore-Horspool search to check if the constant
string abc is somewhere in the target.) Some of them remain, however: The en-
gine will only try to match from position O if the regex starts with . * and is in
single-line mode. Also, as you'll see, the stepper tries to match constant strings
as a whole (instead of single characters which would be quite boring).

35.5.13 Modifiers

Pressing one of the modifier checkboxes 1s equivalent to using the corresponding

modifier character in Perl. For example, the "1" checkbox toggles between case-
sensitive and case-insensitive matching. Note that the "g" ('global’) modifier

only affects the replacement operation - it has no effect on the match itself. If it's
enabled other matches the engine would find are highlighted in green in the far-

get pane, though.

PerlClass.com for ACT Students August 2007 497

http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#shot
http://www.weitz.de/regex-coach/#replace
http://www.weitz.de/regex-coach/#shot
http://weitz.de/cl-ppcre/
http://www.weitz.de/regex-coach/tutorial18.html
http://www.weitz.de/regex-coach/tutorial18.html
http://www.weitz.de/regex-coach/#panes
http://www.weitz.de/regex-coach/#shot

35

The Regex Coach

35.5.14 Resizing

You can resize the application window as usual by dragging the lower right cor-
ner. But you can also resize the panes relative to each other by dragging one of
the resize dividers. These aren't visible in the Windows version but you'll note

that the cursor changes if you position the mouse above them. There's also a re-
size divider between the two replacement panes. The Regex Coach will remem-
ber the size and position of its main window between two invocations.

35.5.15 Saving to and loading from files

If one of the two main panes has the focus you can - from the file menu - insert
the contents of a text file into this pane or save the contents of this pane to disk.
The latter can also be done by pressing Ctrl-s (or Ctrl-x Ctrl-s on Linux).
The contents of these two panes will also remain persistent between two invoca-
tions of The Regex Coach.

Note: Due to the way Motif works, the file menu can't be used like this on
Linux. Instead you can use the Emacs key sequences Ctrl-x Ctrl-wand
Ctrl-x 1i.

35.5.16 Autoscroll

498

The Regex Coach has an Autoscroll feature which can be switched on and off
via the corresponding menu. If Autoscroll is on, then each time the target string
is parsed the scrollbar of the target pane will be moved such that the start (or end
- depending on what you've chosen) of the match is visible more or less in the
middle of the pane. If you've chosen to highlight specific parts of the match,
then the scrollbar will move to the start or end of the highlighted region instead.
This is of course only meaningful if the target string is too large to fit into the

pane.

No automatic scrolling occurs while the target pane has the input focus.

PerlClass.com for ACT Students August Feb 2007

http://www.weitz.de/regex-coach/#highlight
http://www.weitz.de/regex-coach/#panes
http://www.weitz.de/regex-coach/#replace
http://www.weitz.de/regex-coach/#shot

The Regex Coach 35

35.6 Known bugs and limitations

The regex engine might give up with a stack overflow on relatively long regular
expressions. (This will happen much earlier as with CL-PPCRE alone as the
parsing process is interwoven with code specific to The Regex Coach.) Although
maybe counter-intuitive, it might help to add some non-capturing groups, i.€.

aa...abb...b" (with enough characters inbetween) might fail while
"(?:aa...a)(?:bb...b)" doesn't.

Also, there seem to be problems with Eastern European versions of Windows,
specifically with "character set 1250" or similar. Sorry, I currently don't have
the time and resources to investigate this any further.

If you encounter any other bugs or problems please send them to the mailing
list.

PerlClass.com for ACT Students August 2007 499

http://www.weitz.de/regex-coach/#mail
http://www.weitz.de/regex-coach/#mail
http://weitz.de/cl-ppcre/

35

The Regex Coach

35.7 Technical information

35.7.1

500

The Regex Coach is written in Common Lisp and was developed using the Lisp-
Works development environment. The regex engine used is CL-PPCRE.

It might be worthwhile to note that due to the dynamic nature of Lisp The Regex
Coach could be written without changing a single line of code in the CL-PPCRE
engine itself although the application has to track information and query the en-
gine while the regular expressions is parsed and the scanners are built. All this
could be done 'after the fact' by using facilities like defadvice and :around
methods. Imagine writing this application in Perl without touching Perl's regex

engine... :)

Also, thanks to LispWork's cross-platform CAPI toolkit the code for the Win-
dows and Linux versions is nearly identical without any platform-specific parts
(except for some lines regarding different fonts and keybindings).

Compatibility with Perl

See the CL-PPCRE documentation.

PerlClass.com for ACT Students August Feb 2007

http://weitz.de/cl-ppcre/
http://perl.plover.com/Rx/paper/
http://weitz.de/cl-ppcre/
http://www.lispworks.com/
http://www.lispworks.com/
http://www.lisp.org/

The Regex Coach 35

35.8 Acknowledgements

The script to compile the Windows installer was kindly provided by Ian H. The

icon for the Windows application was created by André Derouaux. The PNG in-
cluded with the Linux distribution was contributed by John Troy Hurteau and is
based on André's icon. The Lisp logo was designed by Manfred Spiller. Thanks

to Alex Wood for RPM information. Thanks to Jim Prewett for FreeBSD info.

Brigitte Bovy from LispWorks ("Xanalys" at that time) support helped with the
tricky interaction between the editor panes. I also got a couple of helpful tips
from the Lispworks mailing list, specifically from Jeff Caldwell, John DeSoi,
David Fox, and Nick Levine.

Thanks to the guys at "Café Ol€" in Hamburg where I wrote most of the code.

Development of the The Regex Coach has been supported by Euphemismen.de.

PerlClass.com for ACT Students August 2007 501

http://euphemismen.de/
http://www.weinhandel-ottensen.de/
http://normal-null.de/
http://www.digiserv.net/

Chapter 36: GPL2

In this chapter...

You will find our license.

36 GPL2

36.1 GNU General Public License

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone 1is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

504 PerlClass.com for ACT Students August Feb 2007

GPL2 36

36.2 Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software--to make sure the software is free for all its
users. This General Public License applies to most of the Free Software Foundation's
software and to any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone un-
derstands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not
the original, so that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to
avoid the danger that redistributors of a free program will individually obtain patent li-
censes, in effect making the program proprietary. To prevent this, we have made it clear

PerlClass.com for ACT Students August 2007 505

36 GPL2

that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

506 PerlClass.com for ACT Students August Feb 2007

GPL2 36

36.3 Terms and Conditions for Copying, Distri-
bution and Modification

0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public
License. The "Program", below, refers to any such program or work, and a "work based
on the Program" means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is in-
cluded without limitation in the term "modification".) Each licensee 1s addressed as

Activities other than copying, distribution and modification are not covered by this Li-
cense; they are outside its scope. The act of running the Program is not restricted, and
the output from the Program is covered only if its contents constitute a work based on
the Program (independent of having been made by running the Program). Whether that
is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you re-
ceive it, in any medium, provided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty; and give any other
recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus form-
ing a work based on the Program, and copy and distribute such modifications or work
under the terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a

PerlClass.com for ACT Students August 2007 507

36 GPL2

whole at no charge to all third parties under the terms of this License.

¢) If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling the
user how to view a copy of this License. (Exception: if the Program itself is inter-
active but does not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Program, and can be reasonably considered indepen-
dent and separate works in themselves, then this License, and its terms, do not apply to
those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Program, the distribution
of the whole must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribu-
tion of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Pro-
gram (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that
you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing source

508 PerlClass.com for ACT Students August Feb 2007

GPL2 36

distribution, a complete machine-readable copy of the corresponding source code,
to be distributed under the terms of Sections 1 and 2 above on a medium customar-
ily used for software interchange; or,

¢) Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifica-
tions to it. For an executable work, complete source code means all the source code for
all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a special ex-
ception, the source code distributed need not include anything that is normally distribut-
ed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component it-
self accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not com-
pelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or dis-
tribute the Program is void, and will automatically terminate your rights under this Li-
cense. However, parties who have received copies, or rights, from you under this Li-
cense will not have their licenses terminated so long as such parties remain in full com-
pliance.

S. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you indi-
cate your acceptance of this License to do so, and all its terms and conditions for copy-
ing, distributing or modifying the Program or works based on it.

PerlClass.com for ACT Students August 2007 509

36 GPL2

6. Each time you redistribute the Program (or any work based on the Program), the re-
cipient automatically receives a license from the original licensor to copy, distribute or
modify the Program subject to these terms and conditions. You may not impose any fur-
ther restrictions on the recipients' exercise of the rights granted herein. You are not re-
sponsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute so
as to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For exam-
ple, if a patent license would not permit royalty-free redistribution of the Program by all
those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of
the Program.

If any portion of this section is held invalid or unenforceable under any particular cir-
cumstance, the balance of the section is intended to apply and the section as a whole is
intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other proper-
ty right claims or to contest validity of any such claims; this section has the sole purpose
of protecting the integrity of the free software distribution system, which is implement-
ed by public license practices. Many people have made generous contributions to the
wide range of software distributed through that system in reliance on consistent applica-
tion of that system; it is up to the author/donor to decide if he or she is willing to dis-
tribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Pro-
gram under this License may add an explicit geographical distribution limitation exclud-
ing those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body

510 PerlClass.com for ACT Students August Feb 2007

GPL2 36

of this License.

9. The Free Software Foundation may publish revised and/or new versions of the Gen-
eral Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a ver-
sion number of this License which applies to it and "any later version", you have the op-
tion of following the terms and conditions either of that version or of any later version
published by the Free Software Foundation. If the Program does not specify a version
number of this License, you may choose any version ever published by the Free Soft-
ware Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose dis-
tribution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promot-
ing the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY -
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF

PerlClass.com for ACT Students August 2007 511

36 GPL2

THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

512 PerlClass.com for ACT Students August Feb 2007

Chapter 37: Ack-
nowledgements

In this section...

I will try to thank a few of the folks and projects that made this possi-
ble

37 Acknowledgements

37.1 Folks

First and foremost my wife, Cynthia Manuel has been an able and fun compan-
ion in life and work for years. Nothing would be possible without her.

Thanks to John Lundin for vast contriutions of systems administration, content
comments, and wonderful stir fries.

Thanks to Stephen Johnson for supporting my instruction and content creation
efforts for many years now. If it weren't for Stephen I would never have taught
this course for US News & World Report, Circuit City, or a lot of other folks.

Thanks to all of the folks who have survived my instruction of this course and
others. Your ideas, comments, complaints, and foolishness have all helped
make this class what it is.

Thanks to Mark Whittington for automotive wisdom and other random surpris-
es.

Thanks to Kirrily "skud" Robert for creating the DocBook version of this conent
and sharing it with the world. If only DocBook weren't such a pain. (Writing
LISP to make style sheets? Ick.)

Thanks to Carl Hicks, Thomas St. Jacques, Buffy Boke, and Jonathan Collie for
varied non-technical contributions.

514 PerlClass.com for ACT Students August Feb 2007

Acknowledgements 37

37.2 Projects

—~—
OpenOffice.org for providing a nice free word o
processor. OpenOfflce.OI'g

The Open Source Office Suite

Fedora for a damn fine desktop Linux. f d 9
eqaora

CentOS and Red Hat for a damn fine server

dia for easy ERD editing.

Linux.
TWiki for a mighty fine wiki. Written in Perl naturally.

Perl for being there to teach. Larry, Randal, and a cast of thousands work to-
gether to produce art and technology that looks less like a committee product
than most geeks would expect.

PerlClass.com for ACT Students August 2007 515

	Chapter 1: Intro­duction
	1.1 Assumed knowledge
	1.2 Day 1 rough outline
	1.3 Day 1 objectives
	1.4 Day 2 outline
	1.5 Day 2 objectives
	1.6 Day 3 outline
	1.7 Day 3 objectives
	1.8 Day 4 outline
	1.9 Day 4 objectives
	1.10 Other topics we can discuss
	1.11 Platform and version details
	1.12 The course notes
	1.13 Other materials

	Chapter 2: What is Perl
	2.1 Perl's name
	2.2 Typical uses of Perl
	2.2.1 Text processing
	2.2.2 System administration tasks
	2.2.3 CGI and web programming
	2.2.4 Database interaction
	2.2.5 Other Internet programming
	2.2.6 Less typical uses of Perl

	2.3 What is Perl like?
	2.4 The Perl Philosophy
	2.4.1 There's more than one way to do it
	2.4.2 A correct Perl program...
	2.4.3 Three virtues of a programmer
	2.4.3.1 Laziness
	2.4.3.2 Impatience
	2.4.3.3 Hubris

	2.4.4 Three more virtues
	2.4.5 Share and enjoy!

	2.5 Parts of Perl
	2.5.1 The Perl interpreter
	2.5.2 Manuals
	2.5.3 Perl Modules

	2.6 CPAN
	2.7 Slashdot
	2.8 Chapter summary

	Chapter 3: Creating a a Perl program
	3.1 Logging into your account
	3.2 Using perldoc
	3.3 Using the editor
	3.4 Our first Perl program
	3.5 Running a Perl program from the command line
	3.6 The "shebang" line
	3.7 Comments
	3.8 Command line options
	3.9 Chapter summary

	Chapter 4: Perl variables
	4.1 What is a variable?
	4.2 Variable names
	4.3 Variable scoping and the strict pragma
	4.3.1 Arguments in favour of strictness
	4.3.2 Arguments against strictness

	4.4 Using the strict pragma
	4.5 Scalars
	4.6 Double and single quotes
	4.7 Exercises
	4.8 Answers
	4.9 Arrays
	4.9.1 A quick look at context
	4.9.2 What's the difference between a list and an array?

	4.10 Exercises
	4.10.1 Advanced exercises

	4.11 Answers
	4.11.1 Advanced Answer

	4.12 Hashes
	4.12.1 Initializing a hash
	4.12.2 Reading hash values
	4.12.3 Adding new hash elements
	4.12.4 Other things about hashes
	4.12.5 What's the difference between a hash and an associative array?

	4.13 Exercises
	4.14 Answers
	4.15 Special variables
	4.16 The first special variable, $_
	4.16.1 Exercises

	4.17 Answer
	4.18 @ARGV - a special array
	4.18.1 Exercises

	4.19 Answers
	4.20 %ENV - a special hash
	4.20.1 Exercises

	4.21 Answer
	4.22 Chapter summary

	Chapter 5: Operators and functions
	5.1 What are operators and functions?
	5.2 Arithmetic operators
	5.3 String operators
	5.3.1 Exercises

	5.4 Answers
	5.4.1 Exercise 1
	5.4.2 Exercise 2
	5.4.3 Source to operate.pl

	5.5 File operators
	5.6 Other operators
	5.7 Functions
	5.7.1 Types of arguments
	5.7.2 Return values

	5.8 More about context
	5.9 String manipulation
	5.9.1.1 Finding the length of a string
	5.9.1.2 Case conversion
	5.9.1.3 chop() and chomp()
	5.9.1.4 String substitutions with substr()

	5.10 Numeric functions
	5.11 Type conversions
	5.12 Manipulating lists and arrays
	5.12.1 Stacks and queues
	5.12.2 Sorting lists
	5.12.3 Converting lists to strings, and vice versa

	5.13 Hash processing
	5.14 Reading and writing files
	5.15 Time
	5.16 Exercises
	5.17 Answers
	5.17.1 Exercise 1
	5.17.2 Exercise 3
	5.17.3 Exercise 4
	5.17.4 Exercise 5
	5.17.5 Exercise 6

	5.18 Chapter summary

	Chapter 6: Condi­tional constructs
	6.1 What is a block?
	6.2 Scope
	6.3 What is a conditional statement?
	6.4 What is truth?
	6.5 Comparison operators
	6.5.1 Existence and Defined-ness
	6.5.2 Boolean logic operators
	6.5.3 Using boolean logic operators as short circuit operators

	6.6 Types of conditional constructs
	6.6.1 if statements
	6.6.2 while loops
	6.6.3 for and foreach
	6.6.4 Exercises

	6.7 Answer
	6.8 Practical uses of while loops: taking input from STDIN
	6.9 Named blocks
	6.10 Breaking out of loops
	6.11 Chapter summary

	Chapter 7: Sub­routines
	7.1 Introducing subroutines
	7.2 Calling a subroutine
	7.3 Passing arguments to a subroutine
	7.4 Returning values from a subroutine
	7.5 Exercises
	7.6 Answers
	7.6.1 Exercise 1
	7.6.2 Exercise 2
	7.6.3 Exercise 3

	7.7 Chapter summary

	Chapter 8: Regular expressions
	8.1 What are regular expressions?
	8.2 Regular expression operators and functions
	8.2.1 m/PATTERN/ - the match operator
	8.2.2 s/PATTERN/REPLACEMENT/ - the substitution operator

	8.3 Binding operators
	8.4 Metacharacters
	8.4.1 Some easy metacharacters

	8.5 Quantifiers
	8.6 Greediness
	8.7 Exercises
	8.8 Answers
	8.8.1 Exercise 1
	8.8.2 Exercise 2
	8.8.3 Exercise 3

	8.9 Character classes
	8.9.1 Exercises as a group

	8.10 Alternation
	8.11 The concept of atoms
	8.12 Exercises
	8.13 Answers
	8.13.1 Exercise 1
	8.13.2 Exercise 2
	8.13.3 Exercise 3

	8.14 split() function
	8.15 Exercises
	8.16 Answers
	8.16.1 Exercise 1
	8.16.2 Exercise 2

	8.17 Chapter summary

	Chapter 9: Practical exercises
	9.1 Exercises

	Chapter 10: File I/O
	10.1 Assumed knowledge
	10.2 Angle brackets - the line input and globbing operators
	10.2.1 Exercises
	10.2.1.1 Advanced exercises

	10.3 Answers
	10.3.1 Exercise 2
	10.3.2 Exercise 3
	10.3.3 Advanced Exercise 1

	10.4 open() and friends - the gory details
	10.4.1 Opening a file for reading, writing or appending
	10.4.2 Exercises

	10.5 Answers
	10.5.1 Exercise 3
	10.5.2 Exercise 4
	10.5.3 Exercise 5

	10.6 Reading directories
	10.7 Exercises
	10.8 Answer to #2
	10.9 Opening files for simultaneous read/write
	10.9.1 Exercises

	10.10 Answer
	10.11 Opening pipes
	10.11.1 Exercises

	10.12 Answers
	10.12.1 Exercise 2
	10.12.2 Exercise 3

	10.13 Finding information about files
	10.14 Exercises
	10.15 Answers
	10.15.1 Exercise 1
	10.15.2 Exercise 2
	10.15.3 Exercise 3

	10.16 Recursing down directories
	10.16.1 Exercises

	10.17 Answer to Exercise #2
	10.18 File locking
	10.19 Handling binary data
	10.20 Best practices template for file manipulation
	10.21 Chapter summary

	Chapter 11: Advanced regular expressions
	11.1 Assumed knowledge
	11.2 Review exercises
	11.3 Answers
	11.3.1 Exercise 1
	11.3.2 Exercise 2
	11.3.3 Exercise 3
	11.3.4 Exercise 4

	11.4 More metacharacters
	11.5 Working with multiline strings
	11.5.1 Exercises

	11.6 Answer
	11.7 Regexp modifiers for multiline data
	11.8 Backreferences
	11.8.1 Special variables

	11.9 Exercises
	11.9.1 Advanced

	11.10 Answers
	11.10.1 Exercise 1
	11.10.2 Exercise 2
	11.10.3 Advanced Exercise 1

	11.11 Section summary

	Chapter 12: More functions
	12.1 The grep() function
	12.1.1 Exercises

	12.2 Answers
	12.2.1 Exercise 1
	12.2.2 Exercise 2a
	12.2.3 Exercise 2b

	12.3 The map() function
	12.3.1 Exercises

	12.4 Chapter summary

	Chapter 13: System interaction
	13.1 system() and exec()
	13.1.1 Exercises

	13.2 Answer
	13.3 Using backticks
	13.3.1 Exercises

	13.4 Answers
	13.4.1 Exercise 1
	13.4.2 Exercise 2
	13.4.3 Exercise 3

	13.5 Platform dependency issues
	13.6 Security considerations
	13.6.1 Exercises

	13.7 Answers
	13.7.1 Exercise 1
	13.7.2 Exercise 2

	13.8 Section summary

	Chapter 14: Refer­ences and data structures
	14.1 Assumed knowledge
	14.2 Introduction to references
	14.3 Uses for references
	14.3.1 Creating complex data structures
	14.3.2 Passing arrays and hashes to subroutines and functions
	14.3.3 Object oriented Perl

	14.4 Creating and dereferencing references
	14.5 Passing multiple arrays/hashes as arguments
	14.6 Complex data structures
	14.7 Anonymous data structures
	14.8 Exercises
	14.9 Answers
	14.9.1 Exercise 1
	14.9.2 Exercise 2

	14.10 Section summary

	Chapter 15: perlstyle
	15.1 perlstyle 5.8.8

	Chapter 16: About databases
	16.1 What is a database?
	16.2 Types of databases
	16.3 Database management systems
	16.4 Uses of databases
	16.5 Chapter summary

	Chapter 17: Textfiles as databases
	17.1 Delimited text files
	17.1.1 Reading delimited text files
	17.1.2 Searching for records
	17.1.3 Sorting records
	17.1.4 Writing to delimited text files

	17.2 Comma-separated variable (CSV) files
	17.3 Problems with flat file databases
	17.3.1 Locking
	17.3.2 Complex data
	17.3.3 Efficiency

	17.4 Chapter summary

	Chapter 18: Relational databases
	18.1 Tables and relationships
	18.2 Structured Query Language
	18.2.1 General syntax
	18.2.1.1 SELECT
	18.2.1.2 INSERT
	18.2.1.3 DELETE
	18.2.1.4 UPDATE
	18.2.1.5 CREATE
	18.2.1.6 DROP

	18.3 Chapter summary

	Chapter 19: MySQL
	19.1 MySQL features
	19.1.1 General features
	19.1.2 Cross-platform compatibility

	19.2 Comparisions with other popular DBMSs
	19.2.1 PostgreSQL
	19.2.2 Oracle, Sybase, etc

	19.3 Getting MySQL
	19.3.1 Red Hat Linux
	19.3.2 Debian Linux
	19.3.3 Compiling from source
	19.3.4 Binaries for other platforms

	19.4 Setting up MySQL databases
	19.4.1 Creating the Acme inventory database
	19.4.2 Setting up permissions
	19.4.3 Creating tables

	19.5 The MySQL client
	19.6 Understanding the MySQL client prompts
	19.7 Exercises
	19.8 Chapter summary

	Chapter 20: The DBI and DBD modules
	20.1 What is DBI?
	20.2 DBI documentation set
	20.3 Supported database types
	20.4 How does DBI work?
	20.5 DBI/DBD syntax
	20.5.1 Variable name conventions

	20.6 Connecting to the database
	20.7 Executing an SQL query
	20.8 Doing useful things with the data
	20.9 An easier way to execute non-SELECT queries
	20.10 Quoting special characters in SQL
	20.11 Exercises
	20.11.1 Advanced exercises

	20.12 Chapter summary

	Chapter 21: Acme Widget Co. Exercises
	21.1 The Acme inventory application
	21.2 Listing stock items
	21.2.1 Advanced exercises:

	21.3 Adding new stock items
	21.3.1 Advanced exercises

	21.4 Entering a sale into the system
	21.5 Creating sales reports
	21.5.1 Advanced exercises

	21.6 Searching for stock items
	21.6.1 Advanced exercises

	Chapter 22: What is CGI?
	22.1 Definition of CGI
	22.2 Introduction to HTTP
	22.3 Terminology
	22.4 HTTP status codes
	22.5 HTTP Methods
	22.5.1.1 GET
	22.5.1.2 HEAD
	22.5.1.3 POST

	22.6 Exercises
	22.7 What is needed to run CGI programs?
	22.8 Chapter summary

	Chapter 23: Gene­rating web pages with Perl
	23.1 Your public_html directory
	23.2 The CGI directory
	23.3 The HTTP headers
	23.4 HTML output
	23.5 Running and debugging CGI programs
	23.5.1 Exercises

	23.6 Quoting made easy
	23.6.1 Here documents

	23.7 Pick your own quotes
	23.8 Exercises
	23.9 Environment variables
	23.9.1 Exercises

	23.10 Chapter summary

	Chapter 24: Process­ing form input
	24.1 A quick look at HTML forms
	24.2 The FORM element
	24.3 Input fields
	24.3.1 TEXT
	24.3.2 CHECKBOX
	24.3.3 SELECT
	24.3.4 SUBMIT

	24.4 The CGI module
	24.4.1 What is a module?
	24.4.2 Using the CGI module
	24.4.3 Accepting parameters with CGI
	24.4.4 Debugging with the CGI module's offline mode
	24.4.5 Exercises

	24.5 Practical Exercise: Data validation
	24.5.1 Exercises

	24.6 Practical Exercise: Multi-form "Wizard" interface
	24.6.1 Exercises

	24.7 Practical Exercise: File upload
	24.8 Chapter summary

	Chapter 25: Security issues
	25.1 Authentication and access control for CGI scripts
	25.1.1 Why is CGI authentication a bad idea?

	25.2 HTTP authentication
	25.3 Access control
	25.3.1 Exercises

	25.4 Tainted data
	25.4.1 Exercises

	25.5 cgiwrap
	25.6 Secure HTTP
	25.7 Chapter summary

	Chapter 26: Other related Perl modules
	26.1 Useful Perl modules
	26.2 Failing gracefully with CGI::Carp
	26.2.1 Exercise

	26.3 Encoding URIs with URI::Escape
	26.3.1 Exercise

	26.4 Creating templates with Text::Template
	26.4.1 Introduction to object oriented modules
	26.4.2 Using the Text::Template module
	26.4.3 Exercise

	26.5 Sending email with Mail::Mailer
	26.5.1 Exercises

	26.6 Chapter Summary

	Chapter 27: Conclusion
	27.1 Day 1: What you've learned
	27.2 Day 2: What you've learned
	27.3 Day 3: What you've learned
	27.4 Day 4: What you've learned
	27.5 Where to now?
	27.6 Further reading -- books
	27.7 Online
	27.8 The Perl home page (http://www.perl.com/)
	27.9 Perl Monks (http://www.perlmonks.com/)
	27.9.1 The Perl Monks Guide to the Monastery
	27.9.1.1 Finding Your Way Around
	27.9.1.1.1Sections
	27.9.1.1.2Information
	27.9.1.1.3Find Interesting Nodes
	27.9.1.1.4Additional Miscellany

	27.10 The Perl Journal (http://www.tpj.com/)
	27.11 Perl Mongers (http://www.pm.org/)
	27.12 The Richmond Perl Mongers (http://wiki.fini.net/bin/view/RichmondPM)
	27.13 London Perl Mongers and NMS
	27.14 O'Reilly's Perl books
	27.15 Newsgroups

	Chapter 28: Win32::­EventLog
	28.1 Win32::EventLog Examples
	28.2 Win32::EventLog Reference
	28.2.1 The EventLog Object and its Methods
	28.2.2 Other Win32::EventLog functions

	Chapter 29: Win32::NetAdmin
	29.1 Example
	29.2 Win32::NetAdmin provided functions

	Chapter 30: Other Perl Win32 Modules
	30.1 Win32::NetResource
	30.1.1 Examples
	30.1.2 Data Types
	30.1.2.1 %NETRESOURCE
	30.1.2.2 %SHARE_INFO

	30.1.3 Functions

	30.2 Win32::Service
	30.2.1 Examples
	30.2.2 Functions

	30.3 Win32::Sound
	30.3.1 Quick Sample

	Chapter 31: *NIX cheat sheet
	31.1 Some UNIX commands

	Chapter 32: Editor cheat sheet
	32.1 vi
	32.1.1 Running
	32.1.2 Using
	32.1.3 Exiting
	32.1.4 Gotchas
	32.1.5 Help
	32.1.6 vim

	32.2 pico
	32.2.1 Running
	32.2.2 Using
	32.2.3 Exiting
	32.2.4 Gotchas
	32.2.5 Help

	32.3 joe
	32.3.1 Running
	32.3.2 Using
	32.3.3 Exiting
	32.3.4 Gotchas
	32.3.5 Help

	32.4 jed
	32.4.1 Running
	32.4.2 Using
	32.4.3 Exiting
	32.4.4 Gotchas
	32.4.5 Help

	Chapter 33: ASCII Pronunciation Guide
	Chapter 34: HTML Cheat Sheet
	Chapter 35: The Regex Coach
	35.1 Abstract
	35.2 Contents
	35.3 Download and installation
	35.3.1 Older versions, Linux, FreeBSD, Mac

	35.4 Support, bug reports, mailing list
	35.4.1 How to report bugs

	35.5 How to use The Regex Coach
	35.5.1 The main panes
	35.5.2 The message areas
	35.5.3 Highlighting selected parts of the match
	35.5.4 The highlight buttons
	35.5.5 The highlight messages
	35.5.6 Walking through the target string
	35.5.7 Narrowing the scan
	35.5.8 The info pane
	35.5.9 The parse tree
	35.5.10 Replacing text
	35.5.11 Splitting text
	35.5.12 Single-stepping through the matching process
	35.5.13 Modifiers
	35.5.14 Resizing
	35.5.15 Saving to and loading from files
	35.5.16 Autoscroll

	35.6 Known bugs and limitations
	35.7 Technical information
	35.7.1 Compatibility with Perl

	35.8 Acknowledgements

	Chapter 36: GPL2
	36.1 GNU General Public License
	36.2 Preamble
	36.3 Terms and Conditions for Copying, Distribution and Modification

	Chapter 37: Ack­nowledgements
	37.1 Folks
	37.2 Projects

